Grant Bauserman International Aerospace Tubes, LLC 4760 Kentucky Avenue Indianapolis, Indiana 46221

Re: Registered Construction and Operation Status, 097-12857-00013

Dear Mr. Bauserman:

The application from International Aerospace Tubes, received on 10/18/00, has been reviewed. Based on the data submitted and the provisions in 326 IAC 2-5.1, it has been determined that the following stationary manufacturer of repair steel tubing and fabricated pipes for the aerospace industry, , is classified as registered:

- (a) Four (4) Plasma Spray Booths, identified as EU1, EU2, EU3, and EU4, with a combined maximum capacity to use approximately 3.9 tons of powder per year. EU1 uses DC1 as control equipment, EU2 and EU3 use DC2 as control equipment, and EU4 uses DC3 as control equipment. EU1 exhausts to S-1, EU2 and EU3 exhaust to S2, and EU3 exhausts to S3
- (b) Two (2) Acid Cleaning Lines, identified as EU5 and EU6, consisting of several tanks, each with a maximum capacity of 300 gallons, using no control equipment. EU5 Vents to V-1 and EU6 vents to V-2. These tanks will use Nitric Acid (no more than 45% by volume), potassium permanganate, Vitroklene (sodium hydroxide), and rinse water to clean titanium and stainless steel parts
- (c) Three (3) Wash Lines, identified as EU7, EU8, and EU9, consisting of several tanks, most tanks having a capacity of 350 gallons, using no control equipment. EU7 vents to V-3, EU8 vents to V-4, and EU9 vents to V-5. These tanks will use mineral spirits, Vitroklene (sodium hydroxide), Jettacin, and rinse water to remove heavy oil from metal parts
- (d) Glass Bead Blast Cabinet, identified as EU10, with a maximum capacity of 109 lbs/hr, using DC4 as control equipment, and venting inside the building.
- (e) Glass Bead Blast Cabinet, identified as EU11, with a maximum capacity of 420 lbs/hr, using DC5 as control equipment, and venting inside the building
- (f) Silicon Dioxide Blast Cabinet, identified as EU12, with a maximum capacity of 109 lbs/hr, using DC6 as control equipment, and venting inside the building
- (g) Silicon Carbide Blast Cabinet, identified as EU13, with a maximum capacity of 109 lbs/hr, using DC7 as control equipment, and venting inside the building
- (h) Aluminum Oxide Blast Cabinet, identified as EU14, with a maximum capacity of 507 lbs/hr, using DC5 as control equipment, and venting inside the building
- (i) Nineteen (19) gas fired combustion units, identified as EU15, with a combined capacity of 4,601,194.5 Btu/hr (4.6 mmBtu/hr), using no controls and venting inside the building

- (j) Small drum mounted parts washing machine with a capacity of 30 gallons, with no controls and venting inside the building
- (k) Various welding operations, including semi-automatic TIG welders, TIG line welders, and TIG welding stations. Annual maximum capacity will be approximately 75 pounds of wire consumed
- (I) Various electric heat treating furnaces and drying ovens
- (m) Alloying process which involves the use of a syringe type device that places a small bead of brazing compound onto small metal parts. These parts are then placed in electric heat treating furnaces to complete the alloying process.
- (n) Alodine treatment process which applies a protective chromate conversion on aluminum parts
- (o) Anti gall coatings applied to the threads of end fittings
- (p) Acetone cleaning used in various hand wiping applications at the facility.
- (q) Non destructive testing of parts for cracks and other defects

The following conditions shall be applicable:

Pursuant to IAPCB Regulation 2 (Permits) and 326 IAC 2-5.5-4 (Registration Content) An authorized individual shall provide an annual notice to the Environmental Resources Management Division and the Office of Air Management that the source is in operation and in compliance with this registration pursuant to state regulation 326 IAC 2-5.5-4(a)(3).

Pursuant to 326 IAC 5-1-2 (Opacity Limitations) except as provided in 326 IAC 5-1-3 (Temporary Exemptions), opacity shall meet the following:

- (a) Opacity shall not exceed an average of forty percent (30%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of 15 minutes (60 readings) in a 6-hour period as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuos opacity monitor in a six (6) hour period.

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Operations), the owner or operator of a cold cleaner degreaser facility shall:

- (a) Equip the cleaner with a cover;
- (b) Equip the cleaner with a facility for draining cleaned parts;
- (c) Close the degreaser cover whenever parts are not being handled in the cleaner;
- (d) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases;
- (e) Provide a permanent, conspicuous label summarizing the operation requirements;

(f) Store waste solvent only in covered containers and not dispose of waste solvent or transfer it to another party, in such a manner that greater than twenty percent (20%) of the waste solvent (by weight) can evaporate into the atmosphere.

Pursuant to 326 IAC 8-3-5(a) (Cold Cleaner Degreaser Operation and Control), the owner or operator of a cold cleaner degreaser facility shall ensure that the following control equipment requirements are met:

- (a) Equip the degreaser with a cover. The cover must be designed so that it can be easily operated with one (1) hand if:
  - (1) The solvent volatility is greater than two (2) kiloPascals (fifteen (15) millimeters of mercury or three-tenths (0.3) pounds per square inch) measured at thirty-eight degrees Celsius (38°C) (one hundred degrees Fahrenheit (100°F));
  - (2) The solvent is agitated; or
  - (3) The solvent is heated.
- (b) Equip the degreaser with a facility for draining cleaned articles. If the solvent volatility is greater than four and three-tenths (4.3) kiloPascals (thirty-two (32) millimeters of mercury or six-tenths (0.6) pounds per square inch) measured at thirty-eight degrees Celsius (38°C) (one hundred degrees Fahrenheit (100°F)), then the drainage facility must be internal such that articles are enclosed under the cover while draining. The drainage facility may be external for applications where an internal type cannot fit into the cleaning system.
- (c) Provide a permanent, conspicuous label which lists the operating requirements outlined in subsection (b).
- (d) The solvent spray, if used, must be a solid, fluid stream and shall be applied at a pressure which does not cause excessive splashing.
- (e) Equip the degreaser with one (1) of the following control devices if the solvent volatility is greater than four and three-tenths (4.3) kiloPascals (thirty-two (32) millimeters of mercury or six-tenths (0.6) pounds per square inch) measured at thirty-eight degrees Celsius (38°C) (one hundred degrees Fahrenheit (100°F)), or if the solvent is heated to a temperature greater than forty-eight and nine-tenths degrees Celsius (48.9°C) (one hundred twenty degrees Fahrenheit (120°F)):
  - (1) A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.
  - (2) A water cover when solvent is used is insoluble in, and heavier than, water.
  - (3) Other systems of demonstrated equivalent control such as a refrigerated chiller of carbon adsorption. Such systems shall be submitted to the U.S. EPA as a SIP revision.

Pursuant to 326 IAC 8-3-5(b) (Cold Cleaner Degreaser Operation and Control), the owner or operator of a cold cleaning facility shall ensure that the following operating requirements are met:

(a) Close the cover whenever articles are not being handled in the degreaser.

- (b) Drain cleaned articles for at least fifteen (15) seconds or until dripping ceases.
- (c) Store waste solvent only in covered containers and prohibit the disposal or transfer of waste solvent in any manner in which greater than twenty percent (20%) of the waste solvent by weight could evaporate.

326 IAC 6-3-2 (Process Operations)

326 IAC 6-3-2 (Process Operations)

Interpolation of the data for all PM emitting units (EU1, EU2, EU3, EU4, EU10, EU11, EU12, EU13, and EU14) shall be accomplished by use of the equation for the process weight rate up to sixty thousand (60,000) pounds per hour:

E = 4.10 P<sup>0.67</sup> where E = rate of emission in pounds per hour and P = process weight rate in tons per hour

PM emissions shall not exceed 0.5837 pounds per hour for EU10, and filter baghouse DC4 shall be in operation any time that EU10 is in operation in order to comply with this limit. PM emissions shall not exceed 1.441 pounds per hour for EU11, and filter baghouse DC5 shall be in operation any time that EU11 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU12, and filter baghouse DC6 shall be in operation any time that EU12 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU12, and filter baghouse DC6 shall be in operation any time that EU12 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU13, and filter baghouse DC7 shall be in operation any time that EU13 is in operation in order to comply with this limit. PM emissions shall not exceed 1.6347 pounds per hour for EU14, and filter baghouse DC8 shall be in operation any time that EU14 is in operation in order to comply with this limit. For detailed calculations, see appendix A page 11.

Pursuant to 326 IAC 1-2-59, process weight does not include liquid or gaseous fuels, therefore 326 IAC 6-3-2 does not apply to EU15.

Compliance Data Section Office of Air Management 100 North Senate Avenue P.O. Box 6015 Indianapolis, IN 46206-6015

and

Environmental Resources Management Division Air Quality Management Section, Compliance Data Group 2700 South Belmont Avenue Indianapolis, Indiana 46221-2097

no later than March 1 of each year, with the annual notice being submitted in the format attached.

An application or notification shall be submitted in accordance with 326 IAC 2 to the City of Indianapolis Environmental Resources Management Division (ERMD) and Office of Air Management (OAM) if the source proposes to construct new emission units, modify existing emission units, or otherwise modify the source.

International Aerospace Tubes, LLC Indianapolis, Indiana

Page 5 of 6 CP-097-12857-00013

Sincerely,

Mona A. Salem, Chief Operating Officer Department of Public Works City of Indianapolis

DRA

cc: cc: file (2 copies) Mindy Hahn, IDEM This form should be used to comply with the notification requirements under 326 IAC 2-5.1- 2(f)(3)

| Company Name:         | International Aerospace Tubes, LLC |
|-----------------------|------------------------------------|
| Address:              | 4760 Kentucky Avenue               |
| City:                 | Indianapolis                       |
| Authorized individual | : General Manager                  |
| Phone #:              | 860-513-7620                       |
| Registration #:       | 097-12857-00013                    |

I hereby certify that International Aerospace Tubes, LLC is still in operation and is in compliance with the requirements of Registration 097-12857-00013.

| Name (typed): |  |
|---------------|--|
| Title:        |  |
| Signature:    |  |
| Date:         |  |

# Indiana Department of Environmental Management Office of Air Management and City of Indianapolis Indianapolis Environmental Resources Management Division

# Technical Support Document (TSD) for a New Source Construction and Registration

## Source Background and Description

| Source Name:                 | International Aerospace Tubes, LLC |
|------------------------------|------------------------------------|
| Source Location:             | 4760 Kentucky Avenue               |
|                              | Indianapolis, Indiana 46221        |
| County:                      | Marion                             |
| SIC Code:                    | 3498                               |
| <b>Operation Permit No.:</b> | 097-12857-00013                    |
| Permit Reviewer:             | Dana Armstrong                     |

The City of Indianapolis Environmental Resources Management Division (ERMD) has reviewed an application from International Aerospace Tubes, LLC relating to the construction and operation of manufacturer of repair steel tubing and fabricated pipes for the aerospace industry.

## Permitted Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units and pollution control devices:

- (a) Four (4) Plasma Spray Booths, identified as EU1, EU2, EU3, and EU4, with a combined maximum capacity to use approximately 3.9 tons of powder per year. EU1 uses DC1 as control equipment, EU2 and EU3 use DC2 as control equipment, and EU4 uses DC3 as control equipment. EU1 exhausts to S-1, EU2 and EU3 exhaust to S2, and EU3 exhausts to S3.
- (b) Two (2) Acid Cleaning Lines, identified as EU5 and EU6, consisting of several tanks, each with a maximum capacity of 300 gallons, using no control equipment. EU5 Vents to V-1 and EU6 vents to V-2. These tanks will use Nitric Acid (no more than 45% by volume), potassium permanganate, Vitroklene (sodium hydroxide), and rinse water to clean titanium and stainless steel parts.
- (c) Three (3) Wash Lines, identified as EU7, EU8, and EU9, consisting of several tanks, most tanks having a capacity of 350 gallons, using no control equipment. EU7 vents to V-3, EU8 vents to V-4, and EU9 vents to V-5. These tanks will use mineral spirits, Vitroklene (sodium hydroxide), Jettacin, and rinse water to remove heavy oil from metal parts.
- (d) Glass Bead Blast Cabinet, identified as EU10, with a maximum capacity of 109 lbs/hr, using DC4 as control equipment, and venting inside the building.

- (e) Glass Bead Blast Cabinet, identified as EU11, with a maximum capacity of 420 lbs/hr, using DC5 as control equipment, and venting inside the building.
- (f) Silicon Dioxide Blast Cabinet, identified as EU12, with a maximum capacity of 109 lbs/hr, using DC6 as control equipment, and venting inside the building.
- (g) Silicon Carbide Blast Cabinet, identified as EU13, with a maximum capacity of 109 lbs/hr, using DC7 as control equipment, and venting inside the building.
- (h) Aluminum Oxide Blast Cabinet, identified as EU14, with a maximum capacity of 507 lbs/hr, using DC5 as control equipment, and venting inside the building.
- (i) Nineteen (19) gas fired combustion units, identified as EU15, with a combined capacity of 4,601,194.5 Btu/hr (4.6 mmBtu/hr), using no controls and venting inside the building.
- (j) Small drum mounted parts washing machine, identified as Parts Washer, with a capacity of 30 gallons, with no controls and venting inside the building.
- (k) Various welding operations, including semi-automatic TIG welders, TIG line welders, and TIG welding stations. Annual maximum capacity will be approximately 75 pounds of wire consumed.
- (I) Various electric heat treating furnaces and drying ovens
- (m) Alloying process which involves the use of a syringe type device that places a small bead of brazing compound onto small metal parts. These parts are then placed in electric heat treating furnaces to complete the alloying process.
- (n) Alodine treatment process which applies a protective chromate conversion on aluminum parts. A chromic acid tank is used as part of the alodining process.
- (o) Anti gall coatings will be applied to the threads of end fittings.
- (p) Acetone cleaning will be used in various hand wiping applications at the facility.
- (q) Non destructive testing of parts for cracks and other defects.

## **Unpermitted Emission Units and Pollution Control Equipment**

There are no unpermitted facilities operating at this source during this review process.

## **Existing Approvals**

There are no existing permits for this source.

## Air Pollution Control Justification as an Integral Part of the Process

The company has submitted the following justification such that the filter baghouses (DC4, DC 5, DC6, DC7, and DC8) for the following blasting cabinets; EU10, EU11, EU12, EU13, and EU14, be considered as an integral part of the abrasive blasting operations.

The source has stated that recovery of the abrasive media is more economical than replacing it with new abrasive media and that this demonstrates that the control equipment has an overwhelming positive net economic effect, making it integral or inherent to the physical or operational design of the facility. The abrasive blast media is recycled through the blaster an average of four times before it has to be removed. This results in an overall annual cost savings

of approximately \$33,446 annually. In addition, re-use of the abrasive significantly reduces disposal expense. See the calculations on page 11 on Appendix A.

IDEM, OAM and ERMD have evaluated the justifications and agreed that the collection and control equipment will be considered as an integral part of the blasting operations. Therefore, the permitting level will be determined using the potential to emit after the collection and control equipment. Operating conditions in the proposed permit will specify that this collection and control equipment shall operate at all times when the blasting units are in operation.

## **Stack Summary**

| Stack ID | Operation | Height<br>(feet) | Diameter<br>(feet) | Flow Rate<br>(acfm) | Temperature<br>(ºF) |
|----------|-----------|------------------|--------------------|---------------------|---------------------|
| S1       | EU1       | 16               | 1.5                | 5,000               | 70                  |
| S2       | EU2, EU3  | 16               | 1.5                | 11,500              | 70                  |
| S3       | EU4       | 16               | 1.5                | 12,000              | 70                  |
| V1       | EU5       | 16               | 2.2                | 10,000              | 70                  |
| V2       | EU6       | 16               | 1.5                | 10,000              | 70                  |
| V3       | EU7       | 16               | 1.5                | 10,000              | 70                  |
| V4       | EU8       | 16               | 1.5                | 10,000              | 70                  |
| V5       | EU9       | 16               | 1.5                | 10,000              | 70                  |

## **Enforcement Issue**

There are no enforcement actions pending.

## Recommendation

The staff recommends to the Administrator that the construction and operation be approved. This recommendation is based on the following facts and conditions:

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant.

An application for the purposes of this review was received on 10/18/00, with additional information received on 11/6/00 and 11/10/00.

## **Emission Calculations**

See Appendix A of this document for detailed emissions calculations

## **Potential To Emit**

Pursuant to 326 IAC 2-1.1-1(16), Potential to Emit is defined as "the maximum capacity of a stationary source or emissions unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, the department, or the appropriate local air pollution control agency."

| Pollutant       | Potential To Emit (tons/year) |
|-----------------|-------------------------------|
| РМ              | 8.22                          |
| PM-10           | 8.22                          |
| SO <sub>2</sub> | 0.01                          |

| VOC             | 3.93 |
|-----------------|------|
| СО              | 1.69 |
| NO <sub>x</sub> | 3.55 |

| HAP's    | Potential To Emit (tons/year) |
|----------|-------------------------------|
| Chromium | 0.89                          |
| Nickel   | 0.81                          |
| Cobalt   | 0.79                          |
| TOTAL    | 2.51                          |

## Actual Emissions

No previous emission data has been received from the source.

## **County Attainment Status**

The source is located in Marion County.

| Pollutant       | Status (attainment, maintenance<br>attainment or unclassifiable;<br>severe, moderate, marginal, or<br>nonattainment) |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| PM-10           | unclassifiable                                                                                                       |
| SO <sub>2</sub> | maintenance attainment                                                                                               |
| NO <sub>2</sub> | attainment                                                                                                           |
| Ozone           | maintenance attainment                                                                                               |
| CO              | attainment                                                                                                           |
| Lead            | unclassifiable                                                                                                       |

- (a) Volatile organic compounds (VOC) and oxides of nitrogen (NOx) are precursors for the formation of ozone. Therefore, VOC emissions are considered when evaluating the rule applicability relating to the ozone standards. Marion County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2 and 40 CFR 52.21.
- (b) Marion County has been classified as attainment or unclassifiable for PM-10, SO2, CO, and Lead. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2 and 40 CFR 52.21.

## Part 70 Permit Determination

326 IAC 2-7 (Part 70 Permit Program)

This new source is not subject to the Part 70 Permit requirements because the potential to emit (PTE) of:

- (a) each criteria pollutant is less than 100 tons per year,
- (b) a single hazardous air pollutant (HAP) is less than 10 tons per year, and
- (c) any combination of HAPs is less than 25 tons/year.

This is the first air approval issued to this source.

## Federal Rule Applicability

(a) There are no New Source Performance Standards (NSPS)(326 IAC 12 and 40 CFR Part 60) applicable to this source.

١

(b) Pursuant to 40 CFR 63.741(a), 40 CFR 63 Subpart GG does not apply to this source since it is not a major source pursuant to the definition of "major source", given in 40 CFR 63.2. None of the solvents used by the wash lines or the parts washer permitted by this registration contain any of the constituents listed in 40 CFR 63.460(a), therefore 40 CFR Subpart T does not apply. There are no other National Emission Standards for Hazardous Air Pollutants (NESHAPs)(326 IAC 14 and 40 CFR art 63) applicable to this source.

## State Rule Applicability - Entire Source

## 326 IAC 2-5.1-2 (Registrations)

Since the source wide emissions for PM are greater than 5 tons per year but less than 25 tons per year for this new source, section 326 IAC 2-5.1 applies to this source, and it will be a registration.

## 326 IAC 2-5.5-4(Registration Content)

Pursuant to IAPCB Regulation 2 (Permits) and 326 IAC 2-5.5-4 (Registration Content) An authorized individual shall provide an annual notice to the Environmental Resources Management Division and the Office of Air Management that the source is in operation and in compliance with this registration pursuant to state regulation 326 IAC 2-5.5-4(a)(3).

## 326 IAC 2-6 (Emission Reporting)

This source is located in Marion County, the potential to emit VOC and  $NO_x$  is less than ten (10) tons per year and its potential to emit PM is less than one-hundred (100) tons per year including fugitive emissions, therefore, 326 IAC 2-6 does not apply.

## 326 IAC (Opacity Limitations)

The Opacity regulation 326 IAC 5-1 is generally applicable to all point sources of emissions. Since the source is located in Marion County, and is not located in the areas of Marion County referred to in 326 IAC 5-1-5, pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-3 (Temporary Exemptions), opacity shall meet the following, unless otherwise stated in this permit:

- (a) Opacity shall not exceed an average of forty percent (30%) any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

## 326 IAC 6-1 (Non Attainment Area Limitations)

Since the source does not have the potential to emit greater than 100 tons per year of particulate matter, or actual emissions of greater than 10 tons per year of particulate matter, and it is not one of the sources listed in 326 IAC 6-1-12, 326 IAC 6-1 does not apply.

## State Rule Applicability - Individual Facilities

326 IAC 2-4.1 (New Source Toxics Control)

The source is not subject to 326 IAC 2-4.1 since it is not a major source of HAPs as defined by 40 CFR 63.41.

326 IAC 8-2 (VOC Rules)

The four Plasma Spray Booths (EU1, EU2, EU3, and EU4) are not subject to this rule since they do not use or emit any VOCs.

## 326 IAC 8-3-2 (Cold cleaner operation)

The organic solvent cold cleaner operation regulation applies to the The Wash Lines (EU7, EU8, and EU9), and small drum mounted parts washing machine identified as the Parts Washer.

## 326 IAC 8-3-5 (Cold cleaner degreaser operation and control)

The organic solvent cold cleaner degreaser operation and control regulation applies to the The Wash Lines (EU7, EU8, and EU9), and small drum mounted parts washing machine identified as the Parts Washer.

## 326 IAC 6-3-2 (Process Operations)

Interpolation of the data for all PM emitting units (EU1, EU2, EU3, EU4, EU10, EU11, EU12, EU13, and EU14) shall be accomplished by use of the equation for the process weight rate up to sixty thousand (60,000) pounds per hour:

E = 4.10 P<sup>0.67</sup> where E = rate of emission in pounds per hour and P = process weight rate in tons per hour

PM emissions shall not exceed 0.5837 pounds per hour for EU10, and filter baghouse DC4 shall be in operation any time that EU10 is in operation in order to comply with this limit. PM emissions shall not exceed 1.441 pounds per hour for EU11, and filter baghouse DC5 shall be in operation any time that EU11 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU12, and filter baghouse DC6 shall be in operation any time that EU12 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU12, and filter baghouse DC6 shall be in operation any time that EU12 is in operation in order to comply with this limit. PM emissions shall not exceed 0.5837 pounds per hour for EU13, and filter baghouse DC7 shall be in operation any time that EU13 is in operation in order to comply with this limit. PM emissions shall not exceed 1.6347 pounds per hour for EU14, and filter baghouse DC8 shall be in operation any time that EU14 is in operation in order to comply with this limit. For detailed calculations, see appendix A page 11.

Pursuant to 326 IAC 1-2-59, process weight does not include liquid or gaseous fuels, therefore 326 IAC 6-3-2 does not apply to EU15.

## Conclusion

The construction and operation of this manufacturer of repair steel tubing and fabricated pipes for the aerospace industry shall be subject to the conditions of the attached proposed New Source Construction and Registration 097-12857-00013.

## Appendix A: Emission Calculations Equipment Descriptions Company Name: International Aerospace Tubes Address City IN Zip: 46221 CP: 097-12857-00013 Plt ID: 00013 Reviewer: DRA Date: 05-Dec-00

| Emission |               | Control      |                               |
|----------|---------------|--------------|-------------------------------|
| Unit ID  | Vent Stack ID | Equipment ID | Description                   |
| EU1      | S1            | DC1          | Plasma Spray Booth #1         |
| EU2      | S2            | DC2          | Plasma Spray Booth #2         |
| EU3      | S2            | DC2          | Plasma Spray Booth #3         |
| EU4      | S3            | DC3          | Plasma Spray Booth #4         |
| EU5      | V1            | N/A          | Acid Cleaning Line #1         |
| EU6      | V2            | N/A          | Acid Cleaning Line #2         |
| EU7      | V3            | N/A          | Wash Line #1                  |
| EU8      | V4            | N/A          | Wash Line #2                  |
| EU9      | V5            | N/A          | Wash Line #3                  |
| EU10     | N/A           | DC4          | Glass Bead Blast Cabinet #1   |
| EU11     | N/A           | DC5          | Glass Bead Blast Cabinet #2   |
| EU12     | N/A           | DC6          | Silicon Dioxide Blast Cabinet |
| EU13     | N/A           | DC7          | Silicon Carbide Blast Cabinet |
| EU14     | N/A           | DC8          | Aluminum Oxide Blast Cabinet  |
| EU15     | N/A           | N/A          | Maintenance Parts Washer      |
| EU16     | N/A           | N/A          | Natural Gas Fired Combustion  |

| Metal Powder Name      | Monthly                 | 1                      |                                                        |                       |          |
|------------------------|-------------------------|------------------------|--------------------------------------------------------|-----------------------|----------|
|                        | Usage(lbs/month)        |                        | Appen                                                  | dix A: Emission Calcu |          |
| Ni-109                 | 10                      |                        |                                                        | Plasma Spray Booths   |          |
| CRC-106                | 45                      |                        | Company Name:                                          |                       | e Tubes  |
| CO-103                 | 60                      |                        | Address City IN Zip:                                   |                       |          |
| WC-106                 | 40                      |                        | CP:                                                    | 097-12857-00013       |          |
| 42C                    | 20                      |                        | Pit ID:                                                | 00013                 |          |
| CO-211                 | 20                      |                        | Reviewer:                                              | DRA                   |          |
| ZRO-103                | 30                      |                        | Date:                                                  | 05-Dec-00             |          |
| 204B-NS                | 230                     |                        |                                                        |                       |          |
| CO-159                 | 100                     |                        |                                                        |                       |          |
| NI-109b                | 15                      |                        |                                                        |                       |          |
| 204NS                  | 80                      |                        |                                                        |                       |          |
| Total                  | 650                     | lbs per month          | 7800                                                   | lbs/year              |          |
| *MSDS were not prov    | ided for these products |                        | 3.9                                                    | tons/year             |          |
| **This product is cour | ted twice on the table  |                        |                                                        | ,                     |          |
| Dust Collected/Year    | 5700                    | (Actual 4,750 + 20% f  | rom new paint booth)                                   |                       |          |
| Baghouse Control       | 99.00%                  |                        |                                                        |                       |          |
| Baghouse Capture       | 100.00%                 |                        |                                                        |                       |          |
| Actual PM Emission     | 5757.575758             | Amount Captured and    | Amount Captured and Controlled/[(%Capture)*(%Control)] |                       |          |
| Hours Operation/Year   | 4000                    |                        |                                                        |                       |          |
| Potential Hours/Year   | 8760                    |                        |                                                        |                       |          |
| PTE PM                 | 12609.09091             | (Potential Hours/Actua | al Hours)*Actual PM                                    |                       |          |
| PTE PM TPY             | 6.304545455             |                        | ,                                                      |                       |          |
| Product                | Percent Usage           | Cobalt                 | Chromium                                               | Nickel                |          |
| CO-211                 | 3.08%                   | 33.30%                 | 33.30%                                                 | 33.30%                |          |
| CRC-106                | 6.92%                   | 0.00%                  | 62.50%                                                 | 35.00%                |          |
| CO-103                 | 9.23%                   | 62.50%                 | 35.00%                                                 | 12.50%                |          |
| WC-106                 | 6.15%                   |                        |                                                        |                       |          |
| 42C                    | 3.08%                   |                        | 16.00%                                                 |                       |          |
| Ni-109                 | 1.54%                   |                        |                                                        |                       |          |
| *CO-159                | 15.38%                  |                        | 33%                                                    | 33%                   |          |
| *NI-109b               | 2.31%                   | 0%                     | 0%                                                     | 75%                   |          |
| Due du et              | 1                       | Cabalt                 | Charamium                                              | Niekel                | Tatal    |
| Product                | 4                       | Cobalt                 | Chromium                                               | Nickel                | Total    |
| CO-211                 | 4                       | 129.1946853            |                                                        |                       |          |
| CRC-106                | 4                       | 0                      |                                                        |                       |          |
| CO-103                 |                         | 727.4475524            | 407.3706294                                            | 145.4895105           | 1280.308 |

| CO-211   |                       | 129.1946853 | 129.1946853 | 129.1946853         | 387.5841 |
|----------|-----------------------|-------------|-------------|---------------------|----------|
| CRC-106  |                       | 0           | 545.5856643 | 305.527972          | 851.1136 |
| CO-103   |                       | 727.4475524 | 407.3706294 | 145.4895105         | 1280.308 |
| WC-106   |                       | 96.99300699 | 0           | 0                   | 96.99301 |
| 42C      |                       | 0           | 62.07552448 | 7.759440559         | 69.83497 |
| Ni-109   |                       | 0           | 0           | 176.5272727         | 176.5273 |
| *CO-159  |                       | 645.9734266 | 645.9734266 | 645.9734266         | 1937.92  |
| *NI-109b |                       | 0           | 0           | 218.2342657         | 218.2343 |
|          | Total Individual HAPs | 1599.608671 | 1790.19993  | 1628.706573         |          |
|          | Tons Per Year         | 0.799804336 | 0.895099965 | 0.814353287         |          |
|          |                       |             |             | Total Combined HAPs | 5018.515 |

Total Combined HAPs5018.515Tons Per Year2.509258

## Appendix A: Emission Calculations Acid Wash Tanks

Company Name:International Aerospace TubesAddress City IN Zip:46221CP:097-12857-00013Plt ID:00013Reviewer:DRADate:05-Dec-00

Given:

| Nitric acid reacts with metal and releases NO2 at a one to one molar basis |                  |     |  |  |
|----------------------------------------------------------------------------|------------------|-----|--|--|
| 1 mole of nitric is                                                        | 63 grams         |     |  |  |
| 1 mole of nitrite is                                                       | 46 grams         |     |  |  |
| mass HNO3/mass NO2 is                                                      | 0.730159         |     |  |  |
| Amount of Nitric Used                                                      | 500 gal/yr       |     |  |  |
| Percent Concentration                                                      | 72%              |     |  |  |
| Density of Acid                                                            | 11.7 lbs/gal     |     |  |  |
| lbs of HNO3                                                                | 4212 lbs/yr      |     |  |  |
| lbs of NO2                                                                 | 3075.429 lbs/yr  |     |  |  |
| TPY                                                                        | 1.537714 tons/yr | NO2 |  |  |

## Appendix A: Emission Calculations Wash Lines Company Name: International Aerospace Tubes Address City IN Zip: 46221 CP: 097-12857-00013 Plt ID: 00013 Reviewer: DRA Date: 05-Dec-00

Given:

Amount of Solvent Used Per Year Amount of Solvent Reclaimed Per Year Amount of Solvent Consumed Per Year Density of Solvent % of solvent VOC Ibs of VOC Hours of operation per year Maximum hours of operation Potential VOC emissions Tons Per Year VOC emissions 1000 gal/yr 700 gal/yr 300 gal/yr 6.54 lbs/gal 100% 1962 lbs/yr 2250 hr/yr 8760 hr/yr 7638.72 lbs/yr 3.81936 tons/yr

#### Appendix A: Emission Calculations Abrasive Blasting Company Name: International Aerospace Tubes

 Address City IN Zip:
 46221

 CP:
 097-12857-00013

 PIt ID:
 00013

 Reviewer:
 DRA

 Date:
 05-Dec-00

#### Table 1 - Emission Factors for Abrasives

|            | Emission Factor     |                 |  |  |  |  |
|------------|---------------------|-----------------|--|--|--|--|
| Abrasive   | lb PM / lb abrasive | lb PM10 / lb PM |  |  |  |  |
| Sand       | 0.041               | 0.70            |  |  |  |  |
| Grit       | 0.010               | 0.70            |  |  |  |  |
| Steel Shot | 0.004               | 0.86            |  |  |  |  |
| Other      | 0.010               |                 |  |  |  |  |

#### Table 2 - Density of Abrasives (lb/ft3)

| Abrasive    | Density (lb/ft3) |
|-------------|------------------|
| Al oxides   | 160              |
| Sand        | 99               |
| Glass Beads | 99               |

#### Table 3 - Sand Flow Rate (FR1) Through Nozzle (lb/hr)

Flow rate of Sand Through a Blasting Nozzle as a Function of Nozzle pressure and Internal Diameter

|                       | Nozzle Pressure (psig) |      |      |      |      |      |      |      |  |
|-----------------------|------------------------|------|------|------|------|------|------|------|--|
| Internal diameter, in | 30                     | 40   | 50   | 60   | 70   | 80   | 90   | 100  |  |
| 1/8                   | 28                     | 35   | 42   | 49   | 55   | 63   | 70   | 77   |  |
| 3/16                  | 65                     | 80   | 94   | 107  | 122  | 135  | 149  | 165  |  |
| 1/4                   | 109                    | 138  | 168  | 195  | 221  | 255  | 280  | 309  |  |
| 5/16                  | 205                    | 247  | 292  | 354  | 377  | 420  | 462  | 507  |  |
| 3/8                   | 285                    | 355  | 417  | 477  | 540  | 600  | 657  | 720  |  |
| 7/16                  | 385                    | 472  | 560  | 645  | 755  | 820  | 905  | 940  |  |
| 1/2                   | 503                    | 615  | 725  | 835  | 945  | 1050 | 1160 | 1265 |  |
| 5/8                   | 820                    | 990  | 1170 | 1336 | 1510 | 1680 | 1850 | 2030 |  |
| 3/4                   | 1140                   | 1420 | 1670 | 1915 | 2160 | 2400 | 2630 | 2880 |  |
| 1                     | 2030                   | 2460 | 2900 | 3340 | 3780 | 4200 | 4640 | 5060 |  |

#### Calculations

Adjusting Flow Rates for Different Abrasives and Nozzle Diameters

Flow Rate (FR) = Abrasive flow rate (lb/hr) with internal nozzle diameter (ID)

- FR1 = Sand flow rate (lb/hr) with internal nozzle diameter (ID1) From Table 3 =
- D = Density of abrasive (lb/ft3) From Table 2 =

D1 = Density of sand (lb/ft3) =

ID = Actual nozzle internal diameter (in) =

ID1 = Nozzle internal diameter (in) from Table 3 =



Flow Rate (FR) (lb/hr) =

109.000 per nozzle

0.010

109.000

#### Uncontrolled Emissions (E, lb/hr)

EF = emission factor (Ib PM/ Ib abrasive) From Table 1 =

FR = Flow Rate (lb/hr) =

w = fraction of time of wet blasting =

N = number of nozzles =

|                          |          | 1       |
|--------------------------|----------|---------|
| Uncontrolled Emissions = | 1.09     | lb/hr   |
|                          | 4.77     | ton/yr  |
|                          |          | _       |
| Control Efficiency       | 98%      |         |
| Controlled Emissions     | 0.095484 | tons/yr |

#### METHODOLOGY

Emission Factors from Stappa Alapco, Section 3 "Abrasive Blasting" Ton/yr = lb/hr X 8760 hr/yr X ton/2000 lbs Flow Rate (FR) (lb/hr) = FR1 x (ID/ID1)2 x (D/D1) E = EF x FR x (1-w/200) x N w should be entered in as a whole number (if w is 50%, enter 50)

#### Appendix A: Emission Calculations Abrasive Blasting Company Name: International Aerospace Tubes Address City IN Zip: 46221 CP: 097-12857-00013 Plt ID: 00013 Reviewer: DRA

Date: 05-Dec-00

#### Table 1 - Emission Factors for Abrasives

|            | Emission Factor     |                 |  |  |  |  |  |
|------------|---------------------|-----------------|--|--|--|--|--|
| Abrasive   | lb PM / lb abrasive | lb PM10 / lb PM |  |  |  |  |  |
| Sand       | 0.041               | 0.70            |  |  |  |  |  |
| Grit       | 0.010               | 0.70            |  |  |  |  |  |
| Steel Shot | 0.004               | 0.86            |  |  |  |  |  |
| Other      | 0.010               |                 |  |  |  |  |  |

Table 2 - Density of Abrasives (lb/ft3)

| Abrasive    | Density (lb/ft3) |
|-------------|------------------|
| Al oxides   | 160              |
| Sand        | 99               |
| Glass Beads | 99               |

#### Table 3 - Sand Flow Rate (FR1) Through Nozzle (lb/hr)

Flow rate of Sand Through a Blasting Nozzle as a Function of Nozzle pressure and Internal Diameter

|                       |      | N    | lozzle Pressure | e (psig) |      |      |      |      |
|-----------------------|------|------|-----------------|----------|------|------|------|------|
| Internal diameter, in | 30   | 40   | 50              | 60       | 70   | 80   | 90   | 100  |
| 1/8                   | 28   | 35   | 42              | 49       | 55   | 63   | 70   | 77   |
| 3/16                  | 65   | 80   | 94              | 107      | 122  | 135  | 149  | 165  |
| 1/4                   | 109  | 138  | 168             | 195      | 221  | 255  | 280  | 309  |
| 5/16                  | 205  | 247  | 292             | 354      | 377  | 420  | 462  | 507  |
| 3/8                   | 285  | 355  | 417             | 477      | 540  | 600  | 657  | 720  |
| 7/16                  | 385  | 472  | 560             | 645      | 755  | 820  | 905  | 940  |
| 1/2                   | 503  | 615  | 725             | 835      | 945  | 1050 | 1160 | 1265 |
| 5/8                   | 820  | 990  | 1170            | 1336     | 1510 | 1680 | 1850 | 2030 |
| 3/4                   | 1140 | 1420 | 1670            | 1915     | 2160 | 2400 | 2630 | 2880 |
| 1                     | 2030 | 2460 | 2900            | 3340     | 3780 | 4200 | 4640 | 5060 |

#### Calculations

#### Adjusting Flow Rates for Different Abrasives and Nozzle Diameters

Flow Rate (FR) = Abrasive flow rate (lb/hr) with internal nozzle diameter (ID)

FR1 = Sand flow rate (lb/hr) with internal nozzle diameter (ID1) From Table 3 =

D = Density of abrasive (lb/ft3) From Table 2 =

D1 = Density of sand (lb/ft3) =

- ID = Actual nozzle internal diameter (in) =
- ID1 = Nozzle internal diameter (in) from Table 3 =



420.000 per nozzle

#### Uncontrolled Emissions (E, lb/hr)

| EF = emission factor (lb PM/ lb abrasive) From Table 1<br>FR = Flow Rate (lb/hr) =<br>w = fraction of time of wet blasting =<br>N = number of nozzles = | =                        |         | 0.010<br>420.000<br>0<br>% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|----------------------------|
|                                                                                                                                                         | Uncontrolled Emissions = | 4.20    | lb/hr                      |
|                                                                                                                                                         |                          | 18.40   | ton/yr                     |
|                                                                                                                                                         |                          |         | _                          |
|                                                                                                                                                         | Control Efficiency       | 98%     |                            |
|                                                                                                                                                         | Controlled Emissions     | 0.36792 | tons/yr                    |

Flow Rate (FR) (lb/hr) =

#### METHODOLOGY

 $\begin{array}{l} \mbox{Emission Factors from Stappa Alapco, Section 3 "Abrasive Blasting"} \\ \mbox{Ton/yr} = lb/hr X 8760 hr/yr X ton/2000 lbs \\ \mbox{Flow Rate (FR)} (lb/hr) = FR1 x (ID/ID1)2 x (D/D1) \\ \mbox{E} = EF x FR x (1-w/200) x N \\ \mbox{w should be entered in as a whole number (if w is 50%, enter 50) } \end{array}$ 

Page 2 of 2

#### Appendix A: Emission Calculations Abrasive Blasting

 Company Name:
 International Aerospace Tubes

 Address City IN Zip:
 46221

 CP:
 097-12857-00013

 Pit ID:
 00013

 Reviewer:
 DRA

 Date:
 05-Dec-00

#### Table 1 - Emission Factors for Abrasives

|            | Emission Factor                     |      |  |  |  |  |
|------------|-------------------------------------|------|--|--|--|--|
| Abrasive   | Ib PM / Ib abrasive Ib PM10 / Ib PM |      |  |  |  |  |
| Sand       | 0.041                               | 0.70 |  |  |  |  |
| Grit       | 0.010                               | 0.70 |  |  |  |  |
| Steel Shot | 0.004                               | 0.86 |  |  |  |  |
| Other      | 0.010                               |      |  |  |  |  |

#### Table 2 - Density of Abrasives (lb/ft3)

| Abrasive    | Density (lb/ft3) |
|-------------|------------------|
| Al oxides   | 160              |
| Sand        | 99               |
| Glass Beads | 99               |

#### Table 3 - Sand Flow Rate (FR1) Through Nozzle (lb/hr)

Flow rate of Sand Through a Blasting Nozzle as a Function of Nozzle pressure and Internal Diameter

|                       |      | No   | zzle Pressure (p | psig) |      |      |      |      |
|-----------------------|------|------|------------------|-------|------|------|------|------|
| Internal diameter, in | 30   | 40   | 50               | 60    | 70   | 80   | 90   | 100  |
| 1/8                   | 28   | 35   | 42               | 49    | 55   | 63   | 70   | 77   |
| 3/16                  | 65   | 80   | 94               | 107   | 122  | 135  | 149  | 165  |
| 1/4                   | 109  | 138  | 168              | 195   | 221  | 255  | 280  | 309  |
| 5/16                  | 205  | 247  | 292              | 354   | 377  | 420  | 462  | 507  |
| 3/8                   | 285  | 355  | 417              | 477   | 540  | 600  | 657  | 720  |
| 7/16                  | 385  | 472  | 560              | 645   | 755  | 820  | 905  | 940  |
| 1/2                   | 503  | 615  | 725              | 835   | 945  | 1050 | 1160 | 1265 |
| 5/8                   | 820  | 990  | 1170             | 1336  | 1510 | 1680 | 1850 | 2030 |
| 3/4                   | 1140 | 1420 | 1670             | 1915  | 2160 | 2400 | 2630 | 2880 |
| 1                     | 2030 | 2460 | 2900             | 3340  | 3780 | 4200 | 4640 | 5060 |

#### Calculations

Adjusting Flow Rates for Different Abrasives and Nozzle Diameters

Flow Rate (FR) = Abrasive flow rate (lb/hr) with internal nozzle diameter (ID)

| FR1 = Sand flow rate | (lb/hr) wit | h internal noz | zle diameter | (ID1) | From Table 3 = |
|----------------------|-------------|----------------|--------------|-------|----------------|

D = Density of abrasive (lb/ft3) From Table 2 =

D1 = Density of sand (lb/ft3) =

ID = Actual nozzle internal diameter (in) =

ID1 = Nozzle internal diameter (in) from Table 3 =



Flow Rate (FR) (lb/hr) =

109.000 per nozzle

0.010

#### Uncontrolled Emissions (E, lb/hr)

EF = emission factor (lb PM/ lb abrasive) From Table 1 =

FR = Flow Rate (lb/hr) =

w = fraction of time of wet blasting =

N = number of nozzles =

|                          |          | 0<br>0<br>1 |
|--------------------------|----------|-------------|
| Uncontrolled Emissions = | 1.09     | lb/hr       |
|                          | 4.77     | ton/yr      |
| Control Efficiency       | 98%      | ]           |
| Controlled Emissions     | 0.095484 | tons/yr     |

#### METHODOLOGY

Emission Factors from Stappa Alapco, Section 3 "Abrasive Blasting" Ton/yr = lb/hr X 8760 hr/yr X ton/2000 lbs Flow Rate (FR) (lb/hr) = FR1 x (ID/ID1)2 x (D/D1) E = EF x FR x (1-w/200) x N w should be entered in as a whole number (if w is 50%, enter 50)

#### Appendix A: Emission Calculations Abrasive Blasting

Company Name:International Aerospace TubesAddress City IN Zip:46221CP:097-12857-00013PIt ID:00013Reviewer:DRADate:05-Dec-00

#### Table 1 - Emission Factors for Abrasives

|            | Emission Factor                     |      |  |  |  |
|------------|-------------------------------------|------|--|--|--|
| Abrasive   | Ib PM / Ib abrasive Ib PM10 / Ib PM |      |  |  |  |
| Sand       | 0.041                               | 0.70 |  |  |  |
| Grit       | 0.010                               | 0.70 |  |  |  |
| Steel Shot | 0.004                               | 0.86 |  |  |  |
| Other      | 0.010                               |      |  |  |  |

#### Table 2 - Density of Abrasives (lb/ft3)

| Abrasive       | Density (lb/ft3) |
|----------------|------------------|
| Al oxides      | 160              |
| Sand           | 99               |
| Aluminum Oxide | 246.875          |

3.95 SG Aluminum oxide media 62.5 lbs/ft^3 H20

246.875 lbs/ft^3 Aluminum Oxide Media

#### Table 3 - Sand Flow Rate (FR1) Through Nozzle (lb/hr)

Flow rate of Sand Through a Blasting Nozzle as a Function of Nozzle pressure and Internal Diameter

|                       | Nozzle Pressure (psig) |      |      |      |      |      |      |      |
|-----------------------|------------------------|------|------|------|------|------|------|------|
| Internal diameter, in | 30                     | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
| 1/8                   | 28                     | 35   | 42   | 49   | 55   | 63   | 70   | 77   |
| 3/16                  | 65                     | 80   | 94   | 107  | 122  | 135  | 149  | 165  |
| 1/4                   | 109                    | 138  | 168  | 195  | 221  | 255  | 280  | 309  |
| 5/16                  | 205                    | 247  | 292  | 354  | 377  | 420  | 462  | 507  |
| 3/8                   | 285                    | 355  | 417  | 477  | 540  | 600  | 657  | 720  |
| 7/16                  | 385                    | 472  | 560  | 645  | 755  | 820  | 905  | 940  |
| 1/2                   | 503                    | 615  | 725  | 835  | 945  | 1050 | 1160 | 1265 |
| 5/8                   | 820                    | 990  | 1170 | 1336 | 1510 | 1680 | 1850 | 2030 |
| 3/4                   | 1140                   | 1420 | 1670 | 1915 | 2160 | 2400 | 2630 | 2880 |
| 1                     | 2030                   | 2460 | 2900 | 3340 | 3780 | 4200 | 4640 | 5060 |

#### Calculations

Adjusting Flow Rates for Different Abrasives and Nozzle Diameters

| Flow Rate (FR) = Abrasive flow rate (lb/hr) with internal nozzle diameter (ID)  |         |
|---------------------------------------------------------------------------------|---------|
| FR1 = Sand flow rate (lb/hr) with internal nozzle diameter (ID1) From Table 3 = | 507     |
| D = Density of abrasive (lb/ft3) From Table 2 =                                 | 246.875 |
| D1 = Density of sand (lb/ft3) =                                                 | 99      |
| ID = Actual nozzle internal diameter (in) =                                     | 0.3125  |
| ID1 = Nozzle internal diameter (in) from Table 3 =                              | 0.3125  |
|                                                                                 |         |

Flow Rate (FR) (lb/hr) =

1264.299 per nozzle

0.010

1264.299

#### Uncontrolled Emissions (E, lb/hr)

EF = emission factor (lb PM/ lb abrasive) From Table 1 =

FR = Flow Rate (lb/hr) =

- w = fraction of time of wet blasting =
- N = number of nozzles =

|                          | L              | 1      |
|--------------------------|----------------|--------|
| Uncontrolled Emissions = | 12.64 II       | b/hr   |
|                          | 55.38 t        | on/yr  |
| Control Efficiency       | 98%            |        |
| Controlled Emissions     | 1.107526136 to | ons/yr |

#### METHODOLOGY

Emission Factors from Stappa Alapco, Section 3 "Abrasive Blasting" Ton/yr = lb/hr X 8760 hr/yr X ton/2000 lbs Flow Rate (FR) (lb/hr) = FR1 x (lD/lD1)2 x (D/D1) E = EF x FR x (1-w/200) x N w should be entered in as a whole number (if w is 50%, enter 50)

## Appendix A: Emission Calculations

Heating Units

Company Name:International Aerospace TubesAddress City IN Zip:46221CP:097-12857-00013Plt ID:00013Reviewer:DRADate:05-Dec-00

## Natural Gas Combustion Potential Emissions

## **Comfort Heating Units**

| Pollutant  | emfac    |          |
|------------|----------|----------|
| PM         | 7.6      |          |
| SO2        | 0.6      |          |
| NO x       | 100      |          |
| VOC        | 5.5      | -        |
| CO         | 84       |          |
| Heat Input | Capacity | 4.601    |
| Throughpu  | t        | 40.30476 |

| РМ       | SO2         | NO x     | VOC      | CO     |         |
|----------|-------------|----------|----------|--------|---------|
| 306.3162 | 24.182856   | 4030.476 | 221.6762 | 3385.6 | lbs/yr  |
| 0.153158 | 0.012091428 | 2.015238 | 0.110838 | 1.6928 | tons/yr |

## **Appendix A: Emission Calculations**

Summary

Company Name: International Aerospace Tubes

Address City IN Zip: 46221

**CP**: 097-12857-00013

- **Pit ID:** 00013
- Reviewer: DRA

Date: 05-Dec-00

|         |          |          |          |            |        | Individual | Combined  |
|---------|----------|----------|----------|------------|--------|------------|-----------|
|         | РМ       | SO2      | NO x     | VOC        | со     | HAPs       | HAPs      |
| EU1-4   | 6.304545 |          |          |            |        | 0.7998043  | 2.5092576 |
| EU5,6   |          |          | 1.537714 |            |        |            |           |
| EU7-9   |          |          |          | 3.81936    |        |            |           |
| EU10    | 0.095484 |          |          |            |        |            |           |
| EU11    | 0.36792  |          |          |            |        |            |           |
| EU12    | 0.095484 |          |          |            |        |            |           |
| EU13    | 0.095484 |          |          |            |        |            |           |
| EU14    | 1.107526 |          |          |            |        |            |           |
| Boilers | 0.153158 | 0.012091 | 2.015238 | 0.11083809 | 1.6928 |            |           |
| Totals  | 8.22     | 0.01     | 3.55     | 3.93       | 1.69   | 0.80       | 2.51      |

## Cost savings from recycling blast media:

|             | price per | pounds | price per | X4 if not |
|-------------|-----------|--------|-----------|-----------|
| Blast media | pound     | /month | year      | recycled  |
| Grit Blast  |           |        |           |           |
| Bead        | 0.47      | ' 190  | ) 1071.6  | 4286.4    |
| Aluminum    |           |        |           |           |
| Oxide       | 0.47      | 250    | ) 1410    | 5640      |
| Silicon     |           |        |           |           |
| Carbide     | 1.75      | 5 280  | ) 5880    | 23520     |
|             |           | Total  | 8361.6    | 33446.4   |

(P Below 100 pounds/hr=.551 pursuant to table

|      | (. = e.e       | (0.01                |                                      |            |              |  |  |  |
|------|----------------|----------------------|--------------------------------------|------------|--------------|--|--|--|
|      | 326 IAC 6-3-2© | ons                  | Process Weight Emission Calculations |            |              |  |  |  |
| 4    | EU1, EU2, EU3, | E=                   | Pt=                                  | P=         |              |  |  |  |
| .551 | E=             | 0.583673             | 0.0545                               | 109        | EU10         |  |  |  |
|      |                | 1.441023             | 0.21                                 | 420        | EU11         |  |  |  |
|      |                | 0.583673             | 0.0545                               | 109        | EU12         |  |  |  |
|      |                | 0.583673             | 0.0545                               | 109        | EU13         |  |  |  |
|      |                | 1.634742             | 0.2535                               | 507        | EU14         |  |  |  |
|      |                | 0.583673<br>0.583673 | 0.0545<br>0.0545                     | 109<br>109 | EU12<br>EU13 |  |  |  |