INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

Mitchell E. Daniels Jr. Governor

Thomas W. Easterly Commissioner 100 North Senate Avenue Indianapolis, Indiana 46204 (317) 232-8603 Toll Free (800) 451-6027 www.idem.IN.gov

TO: Interested Parties / Applicant

DATE: June 25, 2008

RE: Dalton Corporation / 085-25816-00003

FROM: Matthew Stuckey, Branch Chief Permits Branch Office of Air Quality

Notice of Decision: Approval - Effective Immediately

Please be advised that on behalf of the Commissioner of the Department of Environmental Management, I have issued a decision regarding the enclosed matter. Pursuant to IC 13-15-5-3, this permit is effective immediately, unless a petition for stay of effectiveness is filed and granted according to IC 13-15-6-3, and may be revoked or modified in accordance with the provisions of IC 13-15-7-1.

If you wish to challenge this decision, IC 4-21.5-3 and IC 13-15-6-1 require that you file a petition for administrative review. This petition may include a request for stay of effectiveness and must be submitted to the Office of Environmental Adjudication, 100 North Senate Avenue, Government Center North, Suite N 501E, Indianapolis, IN 46204, **within eighteen (18) calendar days of the mailing of this notice**. The filing of a petition for administrative review is complete on the earliest of the following dates that apply to the filing:

- (1) the date the document is delivered to the Office of Environmental Adjudication (OEA);
- (2) the date of the postmark on the envelope containing the document, if the document is mailed to OEA by U.S. mail; or
- (3) The date on which the document is deposited with a private carrier, as shown by receipt issued by the carrier, if the document is sent to the OEA by private carrier.

The petition must include facts demonstrating that you are either the applicant, a person aggrieved or adversely affected by the decision or otherwise entitled to review by law. Please identify the permit, decision, or other order for which you seek review by permit number, name of the applicant, location, date of this notice and all of the following:

- (1) the name and address of the person making the request;
- (2) the interest of the person making the request;
- (3) identification of any persons represented by the person making the request;
- (4) the reasons, with particularity, for the request;
- (5) the issues, with particularity, proposed for considerations at any hearing; and
- (6) identification of the terms and conditions which, in the judgment of the person making the request, would be appropriate in the case in question to satisfy the requirements of the law governing documents of the type issued by the Commissioner.

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178. Callers from within Indiana may call toll-free at 1-800-451-6027, ext. 3-0178.

Enclosures FNPER.dot12/03/07

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

Mitchell E. Daniels Jr. Governor we Protect Hoosiers and Our En

Thomas W. Easterly Commissioner 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204 (317) 232-8603 Toll Free (800) 451-6027 www.idem.IN.gov

Mr. Michael Schall Dalton Corp., Warsaw Manufacturing Facility 1900 E. Jefferson Street, Warsaw, IN 46755 June 25, 2008

Re: 085-25816-00003 PSD/Significant Source Modification to: Part 70 Permit Renewal No.: T085-6708-00003

Dear Mr. Schall:

Dalton Corp., Warsaw Manufacturing Facility was issued a Part 70 operating permit T085-6708-00003 on May 9, 2007, for the operation of a gray iron foundry. A PSD application for PSD review of carbon monoxide emissions from the Pouring, Cooling and Shakeout operations was received on December 31, 2007. Pursuant to 326 IAC 2-2, the following emission units were reviewed.

Herman 3 Mold Line

(a) One (1) Herman 3 Pouring Station, constructed in 1991, with a nominal throughput of 28 tons of iron per hour and 165 tons of mold and core sand per hour.

Emissions from the Herman 3 Pouring Station are captured, but uncontrolled, and exhaust to the atmosphere through a vent, identified as Vent V-10.

(b) One (1) Herman 3 Castings Cooling process, constructed in 1991, and modified in 2004, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

Emissions from the Herman 3 Castings Cooling process are captured, but uncontrolled and exhaust to the atmosphere through a vent, identified as Vent V-12.

(c) One (1) Herman 3 Shakeout process, constructed in 1991, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

The particulate emissions from the Herman 3 Shakeout process are captured and controlled by:

- a wet collector, identified as Wet Collector #4, and exhaust through a stack, identified as Stack E; and
- a baghouse, identified as Baghouse #11 and exhaust through a stack, identified as Stack W.
- CO emissions are uncontrolled.

The following construction conditions are applicable to the proposed project:

- 1. <u>Effective Date of the Permit</u> Pursuant to IC 13-15-5-3, this approval becomes effective upon its issuance.
- 2. All requirements and conditions of this approval shall remain in effect unless modified in a manner consistent with procedures established pursuant to 326 IAC 2.

Operating conditions shall be incorporated into the Part 70 operating permit as significant permit modification in accordance with 326 IAC 2-7-12.

This decision is subject to the Indiana Administrative Orders and Procedures Act - IC 4-21.5-3-5. If you have any questions on this matter, please contact Josiah Balogun at the Indiana Department of Environmental Management, Office of Air Quality, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, IN 46204-2251, or by telephone at (317) 234-5257 or toll free at 1-800-451-6027 extension 4-5257.

Sincerely/Original Signed By:

Matt Stuckey, Chief Permits Branch Office of Air Quality

Attachments:

- JB
- cc: File Kosciusko County U.S. EPA, Region V Kosciusko County Health Department Regional Office Air Compliance Section Inspector Compliance Data Section Administrative and Development

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

Mitchell E. Daniels Jr. Governor

100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204 (317) 232-8603 Toll Free (800) 451-6027 www.idem.IN.gov

Thomas W. Easterly Commissioner

PSD/Significant Source Modification OFFICE OF AIR QUALITY

Dalton Corporation, Warsaw Manufacturing Facility 1900 East Jefferson Street Warsaw, Indiana 46580

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a deviation from the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B – Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments). 40 CFR Part 70.6. IC 13-15 and IC 13-17. This permit also addresses certain new source review requirements for existing equipment and is intended to fulfill the new source review procedures pursuant to 326 IAC 2-2 and 326 IAC 2-7-10.5, applicable to those conditions.

PSD/Significant Permit Modification No.: 085-25816-00003				
Issued by/Original Signed By:	Issuance Date:	June 25, 2008		
Matt Stuckey, Chief Permits Branch Office of Air Quality				

TABLE OF CONTENTS

Α

- SOURCE SUMMARY

 A.1
 General Information [326 IAC 2-7-4(c)] [326 IAC 2-7-5(15)] [326 IAC 2-7-1(22)]
- Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)] [326 IAC A.2 2-7-5(15)
- A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)] [326 IAC 2-7-4(c)] [326 IAC 2-7-5(15)]
- Part 70 Permit Applicability [326 IAC 2-7-2] A.4

GENERAL CONDITIONS В

- Definitions [326 IAC 2-7-1] B.1
- **B.2** Permit Term [326 IAC 2-7-5(2)] [326 IAC 2-1.1-9.5] [326 IAC 2-7-4(a)(1)(D)] [IC 13-15-3-6(a)]
- B.3 Term of Conditions [326 IAC 2-1.1-9.5]
- B.4 Enforceability [326 IAC 2-7-7]
- B.5 Severability [326 IAC 2-7-5(5)]
- B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
- **B.7** Duty to Provide Information [326 IAC 2-7-5(6)(E)]
- B.8 Certification [326 IAC 2-7-4(f)] [326 IAC 2-7-6(1)] [326 IAC 2-7-5(3)(C)]
- Annual Compliance Certification [326 IAC 2-7-6(5)] B.9
- B.10 Preventive Maintenance Plan [326 IAC 2-7-5(1),(3) and (13)] [326 IAC 2-7-6(1) and (6)] [326 IAC 1-6-3]
- B.11 Emergency Provisions [326 IAC 2-7-16]
- Permit Shield [326 IAC 2-7-15] [326 IAC 2-7-20] [326 IAC 2-7-12] B.12
- Prior Permits Superseded [326 IAC 2-1.1-9.5] [326 IAC 2-7-10.5] B.13
- Termination of Right to Operate [326 IAC 2-7-10] [326 IAC 2-7-4(a)] B.14
- Deviations from Permit Requirements and Conditions [326 IAC 2-7-5(3)(C)(ii)] B.15
- B.16 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)] [326 IAC 2-7-8(a)] [326 IAC 2-7-9]
- Permit Renewal [326 IAC 2-7-3] [326 IAC 2-7-4] [326 IAC 2-7-8(e)] B.17
- B.18 Permit Amendment or Modification [326 IAC 2-7-11] [326 IAC 2-7-12] [40 CFR 72]
- B.19 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)] [326 IAC 2-7-12 (b)(2)]
- B.20 Operational Flexibility [326 IAC 2-7-20] [326 IAC 2-7-10.5]
- B.21 Source Modification Requirement [326 IAC 2-7-10.5]
- Inspection and Entry [326 IAC 2-7-6] [IC 13-14-2-2] [IC 13-30-3-1] [IC 13-17-3-2] B.22
- B.23 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
- B.24 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)] [326 IAC 2-1.1-7]
- Credible Evidence [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [62 FR 8314] [326 IAC 1-1-6] B.25

С SOURCE OPERATION CONDITIONS 19

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- Particulate Emission Limitations for Processes with Process Weight Rates Less Than C.1 One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
- C.2 Opacity [326 IAC 5-1]
- C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]
- C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]
- C.5 Fugitive Dust Emissions [326 IAC 6-4]
- C.6 Stack Height [326 IAC 1-7]
- C.7 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR Part 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)]

C.8 Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11]

C.9 Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-5(1)] [326 IAC 2-7-6(1)]

- C.10 Compliance Monitoring [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]
- C.11 Monitoring Methods [326 IAC 3] [40 CFR 60] [40 CFR 63]
- C.12 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

Corrective Actions and Response Steps [326 IAC 2-7-5] [326 IAC 2-7-6]

- C.13 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
- C.14 Risk Management Plan [326 IAC 2-7-5(12)] [40 CFR 68]
- C.15 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]
- C.16 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5] [326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- C.17 Emission Statement [326 IAC 2-7-5(3)(C)(iii)] [326 IAC 2-7-5(7)] [326 IAC 2-7-19(c)] [326 IAC 2-6]
- C.18 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2] [326 IAC 2-3]
- C.19 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2] [326 IAC 2-3]

Stratospheric Ozone Protection

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

D.4 FACILITY OPERATION CONDITIONS – Herman 3 Mold Line_____28

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.4.1 VOC PSD and BACT Requirements [326 IAC 2-2-3] [326 IAC 8-1-6] [326 IAC 2-7-6(3)] [326 IAC 2-7-15]
- D.4.2 PM, PM₁₀, and Lead PSD Minor Limits [326 IAC 2-2]
- D.4.3 CO Emissions [326 IAC 2-2] [326 IAC 2-7-6(3)] [326 IAC 2-7-15]
- D.4.4 Particulate Emission Limitation [326 IAC 6-3-2]
- D.4.5 Preventive Maintenance Plan [326 IAC 2-7-5(13)]

Compliance Determination Requirements

- D.4.6 Emission Controls Operation
- D.4.7 Testing Requirements [326 IAC 2-7-6(1),(6)]
- D.4.8 Continuous Opacity Monitoring [326 IAC 3-5] [326 IAC 2-2-3]
- D.4.9 Maintenance of Continuous Opacity Monitoring Equipment [326 IAC 2-7-5(3)(A)(iii)]

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

- D.4.10 Visible Emissions Notations
- D.4.11 Wet Collector Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.12 Wet Collector Failure Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.13 Baghouse Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.14 Broken or Failed Bag Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.15 Parametric Monitoring of Sonoperoxone[®] System or Equivalent System [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

Record Keeping and Reporting Requirement [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.4.16 Record Keeping Requirements
- D.4.17 Reporting Requirements

E.1	NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) REQUIREMENTS [326 IAC 2-7-5(1)]						
	E.1.1	General Provisions Relating to National Emission Standards for Hazardous Air Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]					
	E.1.2	.2 Applicability of Iron and Steel Foundries NESHAP Requirements [40 CFR Part 63, Subpart EEEE]					
	E.1.3 Iron and Steel Foundries Requirements [40 CFR Part 63, Subpart EEEEE]						
	E.1.4	State Only Iron and Steel Foundries NESHAP Requirements [326 IAC 20-92]					
	E.1.5	One-Time Deadlines Relating to Iron and Steel Foundries Notifications [40 CFR Part 63, Subpart EEEEE]					
Certific	ation						
Emerg	ency Oc	currence Report45					
Quarte	rly Repo	orts47-49					
Quarte	rly Devi	ation and Compliance Monitoring Report50					

SECTION A

SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)] [326 IAC 2-7-5(15)] [326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary gray iron foundry.

Source Address: Mailing Address: General Source Phone Number: SIC Code: County Location: County Status: Source Status:	1900 E. Jefferson Street, Warsaw, Indiana 46580 P.O. Box 1388, Warsaw, Indiana 46581-1388 (574) 267-8111 3321 Kosciusko Attainment for all criteria pollutants Part 70 Permit Program Major Source, under PSD Rules
Source Status:	

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)] [326 IAC 2-7-5(15)]

This stationary source consists of the following emission units and pollution control devices:

SECTION D.4

(5) Herman 3 Mold Line

The volatile organic compound (VOC) emissions from the Herman 3 Mold line are reduced by one (1) Sonoperoxone[®] system (or an equivalent advanced oxidation system), sand system optimization, use of low VOC core resin binder materials, and automatic mold vent-off gas ignition.

The Sonoperoxone[®] system is common to:

- Herman 3 Pouring Station,
- Herman 3 Castings Cooling,
- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (a) One (1) Herman 3 Pouring Station, constructed in 1991, with a nominal throughput of 28 tons of iron per hour and 165 tons of mold and core sand per hour.

Emissions from the Herman 3 Pouring Station are captured, but uncontrolled, and exhaust to the atmosphere through a vent, identified as Vent V-10.

(b) One (1) Herman 3 Castings Cooling process, constructed in 1991, and modified in 2004, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

Emissions from the Herman 3 Castings Cooling process are captured, but uncontrolled and exhaust to the atmosphere through a vent, identified as Vent V-12.

(c) One (1) Herman 3 Shakeout process, constructed in 1991, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

The particulate emissions from the Herman 3 Shakeout process are captured and controlled by:

- a wet collector, identified as Wet Collector #4, and exhaust through a stack, identified as Stack E; and
- a baghouse, identified as Baghouse #11 and exhaust through a stack, identified as Stack W.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (d) One (1) Herman 3 Sand Handling process, constructed in 1991, with a nominal throughput of 165 tons of mold and core sand per hour.

The Herman 3 Sand Handling process includes sand screening, sand cooling, water addition, sand mulling, and the ancillary equipment associated with each.

Particulate emissions from the Herman 3 Sand Handling process are captured and controlled by:

- a wet collector, identified as Wet Collector #1, and exhaust through a stack, identified as Stack D; and
- a wet collector, identified as Wet Collector #4, and exhaust through a stack, identified as Stack E; and
- a baghouse, identified as Baghouse #11, and exhaust through a stack, identified as Stack W.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

SECTION E.1 – NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Under the Iron and Steel Foundries NESHAP (40 CFR 63, Subpart EEEEE), the following affected facilities are considered an existing affected source:

(4) Herman 3 Pouring Station.

A.3 Part 70 Permit Applicability [326 IAC 2-7-2] This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

- (a) It is a major source, as defined in 326 IAC 2-7-1(22).
- (b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 Applicability).

SECTION B

GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

- B.2 Permit Term [326 IAC 2-7-5(2)] [326 IAC 2-1.1-9.5] [326 IAC 2-7-4(a)(1)(D)] [IC 13-15-3-6(a)]
 - (a) This permit, T 085-6708-00003, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.
 - (b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.
- B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

- (a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or
- (b) the emission unit to which the condition pertains permanently ceases operation.
- B.4 Enforceability [326 IAC 2-7-7]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

- B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
 This permit does not convey any property rights of any sort or any exclusive privilege.
- B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
 - (a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ, may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The submittal by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34). Upon request, the Permittee shall also furnish to IDEM, OAQ, copies of records required to be kept by this permit.
 - (b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.8 Certification [326 IAC 2-7-4(f)] [326 IAC 2-7-6(1)] [326 IAC 2-7-5(3)(C)]

- (a) Where specifically designated by this permit or required by an applicable requirement, any application form, report, or compliance certification submitted shall contain certification by a responsible official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
 - (b) One (1) certification shall be included, using the attached Certification Form, with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.
 - (c) A responsible official is defined at 326 IAC 2-7-1(34).
- B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]
 - (a) The Permittee shall annually submit a compliance certification report, which addresses the status of the source's compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. The initial certification shall cover the time period from the date of final permit issuance through December 31 of the same year. All subsequent certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management Compliance Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V Air and Radiation Division, Air Enforcement Branch – Indiana (AE-17J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

- (b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ, on or before the date it is due.
- (c) The annual compliance certification report shall include the following:
 - (1) The appropriate identification of each term or condition of this permit that is the basis of the certification;
 - (2) The compliance status;
 - (3) Whether compliance was continuous or intermittent;
 - (4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
 - (5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ, may require to determine the compliance status of the source.

The submittal by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- B.10 Preventive Maintenance Plan [326 IAC 2-7-5(1),(3) and (13)] [326 IAC 2-7-6(1) and (6)] [326 IAC 1-6-3]
 - (a) If required by specific condition(s) in Section D of this permit, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) within ninety (90) days after issuance of this permit, including the following information on each facility:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - (2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
 - (3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.
 - (b) A copy of the PMPs shall be submitted to IDEM, OAQ, upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ, may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions or potential to emit. The PMPs do not require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).
 - (c) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.
- B.11 Emergency Provisions [326 IAC 2-7-16]
 - (a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.
 - (b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:
 - (1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
 - (2) The permitted facility was at the time being properly operated;
 - (3) During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
 - (4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number:1-800-451-6027 (ask for Office of Air Quality,
Compliance Section), orTelephone Number:317-233-0178 (ask for Compliance Section)
317-233-6865

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management Compliance Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

- (A) A description of the emergency;
- (B) Any steps taken to mitigate the emissions; and
- (C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (6) The Permittee immediately took all reasonable steps to correct the emergency.
- (c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.
- (d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.
- (e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ, may require that the Preventive Maintenance Plans (PMPs) required under 326 IAC 2-7-4(c)(9) be revised in response to an emergency.
- (f) Failure to notify IDEM, OAQ, by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a deviation from 326 IAC 2-7 and any other applicable rules.
- (g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.
- (h) The Permittee shall include all emergencies in the Quarterly Deviation and Compliance Monitoring Report.

B.12 Permit Shield [326 IAC 2-7-15] [326 IAC 2-7-20] [326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged deviation from any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

- (b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ, shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.
- (c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.
- (d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:
 - (1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;
 - (2) The liability of the Permittee for any deviation from applicable requirements prior to or at the time of this permit's issuance;
 - (3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and
 - (4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.
- (e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).
- (f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]
- (g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5] [326 IAC 2-7-10.5]

- (a) All terms and conditions of permits established prior to and issued pursuant to permitting programs approved into the state implementation plan have been either:
 - (1) incorporated as originally stated,
 - (2) revised under 326 IAC 2-7-10.5, or
 - (3) deleted under 326 IAC 2-7-10.5.
- (b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this combined new source review and Part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10] [326 IAC 2-7-4(a)]

- The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).
- B.15 Deviations from Permit Requirements and Conditions [326 IAC 2-7-5(3)(C)(ii)]
 - (a) Deviations from any permit requirements (for emergencies see Section B Emergency Provisions), the probable cause of such deviations, and any response steps or preventive measures taken shall be reported to:

Indiana Department of Environmental Management Compliance Data Section, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

using the attached Quarterly Deviation and Compliance Monitoring Report, or its equivalent. A deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report.

The Quarterly Deviation and Compliance Monitoring Report does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (b) A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.
- B.16 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)] [326 IAC 2-7-8(a)] [326 IAC 2-7-9]
 - (a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).
 - (b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ, determines any of the following:
 - (1) That this permit contains a material mistake.

- (2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
- (3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]
- (c) Proceedings by IDEM, OAQ, to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]
- (d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ, at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ, may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.17 Permit Renewal [326 IAC 2-7-3] [326 IAC 2-7-4] [326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ, and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(40). The renewal application does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management Permits Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (b) A timely renewal application is one that is:
 - (1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and
 - (2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ, on or before the date it is due.
- (c) If the Permittee submits a timely and complete application for renewal of this permit, the source's failure to have a permit is not a deviation from 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.18 Permit Amendment or Modification [326 IAC 2-7-11] [326 IAC 2-7-12] [40 CFR 72]

- Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.
- (b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management Permits Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Any such application shall be certified by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]
- B.19 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)] [326 IAC 2-7-12 (b)(2)]
 - (a) No Part 70 permit revision shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.
 - (b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.
- B.20 Operational Flexibility [326 IAC 2-7-20] [326 IAC 2-7-10.5]
 - (a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b), (c), or (e), without a prior permit revision, if each of the following conditions is met:
 - (1) The changes are not modifications under any provision of Title I of the Clean Air Act;
 - (2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
 - (3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
 - (4) The Permittee notifies the:

Indiana Department of Environmental Management Permits Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V Air and Radiation Division, Regulation Development Branch – Indiana (AR-18J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590 in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of the proposed change. The Permittee shall attached every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site which document, on a rolling five (5) year basis, all such changes and emission trades that are subject to 326 IAC 2-7-20(b), (c), or (e). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ, in the notices specified in 326 IAC 2-7-20(b)(1), (c)(1), and (e)(2).

- (b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(36)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:
 - (1) A brief description of the change within the source;
 - (2) The date on which the change will occur;
 - (3) Any change in emissions; and
 - (4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (c) Emission Trades [326 IAC 2-7-20(c)] The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
- (d) Alternative Operating Scenarios [326 IAC 2-7-20(d)] The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ, or U.S. EPA is required.
- (e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.
- (f) This condition does not apply to emission trades of SO_2 or NO_X under 326 IAC 21 or 326 IAC 10-4.
- B.21
 Source Modification Requirement [326 IAC 2-7-10.5]

 A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2 and 326 IAC 2-7-10.5.

B.22 Inspection and Entry [326 IAC 2-7-6] [IC 13-14-2-2] [IC 13-30-3-1] [IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

- Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
- (b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;
- (c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;
- (d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and
- (e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.23 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

- (a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.
- (b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management Permits Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The application which shall be submitted by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]
- B.24 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)] [326 IAC 2-1.1-7]
 - (a) The Permittee shall pay annual fees to IDEM, OAQ, within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ, the applicable fee is due April 1 of each year.

- (b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.
- (c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.25 Credible Evidence [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [62 FR 8314] [326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in deviation from any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.

SECTION C

SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Particulate Emission Limitations for Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a nominal process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

- (a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.
- C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator or incinerate any waste or refuse except as provided in 326 IAC 4-2 and 326 IAC 9-1-2.

C.5 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.6 Stack Height [326 IAC 1-7]

The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted. The provisions of 326 IAC 1-7-2, 326 IAC 1-7-3(c) and (d), 326 IAC 1-7-4(d), (e), and (f), and 326 IAC 1-7-5(d) are not federally enforceable.

C.7 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR Part 61, Subpart M]

- (a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.
 - (b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:
 - (1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or
 - (2) If there is a change in the following:
 - (A) Asbestos removal or demolition start date;
 - (B) Removal or demolition contractor; or
 - (C) Waste disposal site.
 - (c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).
 - (d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management Asbestos Section, Office of Air Quality 100 North Senate Avenue MC61-52 IGCN 1003 Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (e) Procedures for Asbestos Emission Control The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.
- (f) Demolition and renovation The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Accredited Asbestos Inspector The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Accredited Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Accredited Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

- C.8 Performance Testing [326 IAC 3-6]
 - (a) All testing shall be performed according to the provisions of 326 IAC 3-6 (Source Sampling Procedures), except as provided elsewhere in this permit, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

A test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management Compliance Data Section, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

- (b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require certification by the "responsible official" as defined by 326 IAC 2-7-1(34).
- (c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ, if the Permittee submits to IDEM, OAQ, a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.9 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)] [326 IAC 2-7-6(1)]

C.10 Compliance Monitoring [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

Unless otherwise specified in this permit, all monitoring and record keeping requirements not already legally required shall be implemented within ninety (90) days of permit issuance. If required by Section D, the Permittee shall be responsible for installing any necessary equipment and initiating any required monitoring related to that equipment. If due to circumstances beyond its control, that equipment cannot be installed and operated within ninety (90) days, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units or emission units added through a source modification shall be implemented when operation begins.

C.11 Monitoring Methods [326 IAC 3] [40 CFR 60] [40 CFR 63]

Any monitoring or testing required by Section D of this permit shall be performed according to the provisions of 326 IAC 3, 40 CFR 60, Appendix A, 40 CFR 60 Appendix B, 40 CFR 63, or other approved methods as specified in this permit.

- C.12 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]
 - (a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected nominal reading for the normal range shall be no less than twenty percent (20%) of full scale.
 - (b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5] [326 IAC 2-7-6]

C.13 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3] Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

- (a) The Permittee shall prepare written emergency reduction plans (ERPs) consistent with safe operating procedures.
- (b) These ERPs shall be submitted for approval to:

Indiana Department of Environmental Management Compliance Branch, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

within ninety (90) days after the date of issuance of this permit.

The ERP does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

(c) If the ERP is disapproved by IDEM, OAQ, the Permittee shall have an additional thirty (30) days to resolve the differences and submit an approvable ERP.

- (d) These ERPs shall state those actions that will be taken, when each episode level is declared, to reduce or eliminate emissions of the appropriate air pollutants.
- (e) Said ERPs shall also identify the sources of air pollutants, the approximate amount of reduction of the pollutants, and a brief description of the manner in which the reduction will be achieved.
- (f) Upon direct notification by IDEM, OAQ, that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.14 Risk Management Plan [326 IAC 2-7-5(12)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the source must comply with the applicable requirements of 40 CFR 68.

C.15 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]

- (a) Upon detecting an excursion or exceedance, the Permittee shall restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (b) The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Corrective actions may include, but are not limited to, the following:
 - (1) initial inspection and evaluation;
 - (2) recording that operations returned to normal without operator action (such as through response by a computerized distribution control system); or
 - (3) any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.
- (c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:
 - (1) monitoring results;
 - (2) review of operation and maintenance procedures and records;
 - (3) inspection of the control device, associated capture system, and the process.
- (d) Failure to take reasonable response steps shall be considered a deviation from the permit.
- (e) The Permittee shall maintain the following records:
 - (1) monitoring data;
 - (2) monitor performance data, if applicable; and
 - (3) corrective actions taken.

C.16 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5] [326 IAC 2-7-6]

- (a) When the results of a stack test performed in conformance with Section C Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall take appropriate response actions. The Permittee shall submit a description of these response actions to IDEM, OAQ, within thirty (30) days of receipt of the test results. The Permittee shall take appropriate action to minimize excess emissions from the affected facility while the response actions are being implemented.
 - (b) A retest to demonstrate compliance shall be performed within one hundred twenty (120) days of receipt of the original test results. Should the Permittee demonstrate to IDEM, OAQ that retesting in one-hundred and twenty (120) days is not practicable, IDEM, OAQ may extend the retesting deadline.
 - (c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- C.17 Emission Statement [326 IAC 2-7-5(3)(C)(iii)] [326 IAC 2-7-5(7)] [326 IAC 2-7-19(c)] [326 IAC 2-6]
 - (a) Pursuant to 326 IAC 2-6-3(a)(1), the Permittee shall submit by July 1 of each year an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:
 - (1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);
 - (2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1 (32) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management Technical Support and Modeling Section, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The emission statement does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

(b) The emission statement required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

- C.18 General Record Keeping Requirements[326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2] [326 IAC 2-3]
 - (a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.
 - (b) Unless otherwise specified in this permit, all record keeping requirements not already legally required shall be implemented within ninety (90) days of permit issuance.
 - (c) If there is a reasonable possibility (as defined in 40 CFR 51.165 (a)(6)(vi)(A), 40 CFR 51.165 (a)(6)(vi)(B), 40 CFR 51.166 (r)(6)(vi)(a), and/or 40 CFR 51.166 (r)(6)(vi)(b)) that a "project" (as defined in 326 IAC 2-2-1(qq) and/or 326 IAC 2-3-1(II)) at an existing emissions unit, which is not part of a "major modification" (as defined in 326 IAC 2-2-1(ee) and/or 326 IAC 2-3-1(z)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions" (as defined in 326 IAC 2-2-1(rr) and/or 326 IAC 2-3-1(mm)), the Permittee shall comply with following:
 - Before beginning actual construction of the "project" (as defined in 326 IAC 2-2-1(qq) and/or 326 IAC 2-3-1(II)) at an existing emissions unit, document and maintain the following records:
 - (A) A description of the project.
 - (B) Identification of any emissions unit whose emissions of a regulated new source review pollutant could be affected by the project.
 - (C) A description of the applicability test used to determine that the project is not a major modification for any regulated NSR pollutant, including:
 - (i) Baseline actual emissions;
 - (ii) Projected actual emissions;
 - (iii) Amount of emissions excluded under section 326 IAC 2-2-1(rr)(2)(A)(iii) and/or 326 IAC 2-3-1(mm)(2)(A)(3); and
 - (iv) An explanation for why the amount was excluded, and any netting calculations, if applicable.
 - (d) If there is a reasonable possibility (as defined in 40 CFR 51.165 (a)(6)(vi)(A) and/or 40 CFR 51.166 (r)(6)(vi)(a)) that a "project" (as defined in 326 IAC 2-2-1(qq) and/or 326 IAC 2-3-1(II)) at an existing emissions unit, other than projects at a source with a Plantwide Applicability Limitation (PAL), which is not part of a "major modification" (as defined in 326 IAC 2-2-1(ee) and/or 326 IAC 2-3-1(z)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions"
 - Monitor the emissions of any regulated NSR pollutant that could increase as a result of the project and that is emitted by any existing emissions unit identified in (1)(B) above; and

- (2) Calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of five (5) years following resumption of regular operations after the change, or for a period of ten (10) years following resumption of regular operations after the change if the project increases the design capacity of or the potential to emit that regulated NSR pollutant at the emissions unit.
- C.19 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2] [326 IAC 2-3]
 - (a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported. This report shall be submitted within thirty (30) days of the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).
 - (b) The report required in (a) of this condition and reports required by conditions in Section D of this permit shall be submitted to:

Indiana Department of Environmental Management Compliance Data Section, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ, on or before the date it is due.
- (d) Unless otherwise specified in this permit, all reports required in Section D of this permit shall be submitted within thirty (30) days of the end of the reporting period. All reports do require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).
- (e) The first report shall cover the period commencing on the date of issuance of this permit and ending on the last day of the reporting period. Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit "calendar year" means the twelve (12) month period from January 1 to December 31 inclusive.
- (f) If the Permittee is required to comply with the recordkeeping provisions of (c) in Section C – General Record Keeping Requirements for any "project" (as defined in 326 IAC 2-2-1(qq) and/or 326 IAC 2-3-1(II)) at an existing emissions unit, and the project meets the following criteria, then the Permittee shall submit a report to IDEM, OAQ:
 - (1) The annual emissions, in tons per year, from the project identified in (c)(1) in Section C – General Record Keeping Requirements exceed the baseline actual emissions, as documented and maintained under Section C – General Record Keeping Requirements (c)(1)(C)(i), by a significant amount, as defined in 326 IAC 2-2-1(xx) and/or 326 IAC 2-3-1(qq), for that regulated NSR pollutant, and
 - (2) The emissions differ from the preconstruction projection as documented and maintained under Section C – General Record Keeping Requirements (c)(1)(C)(ii).

The report for project at an existing emissions unit shall be submitted within sixty (60) days after the end of the year and contain the following:

- (1) The name, address, and telephone number of the major stationary source.
- (2) The annual emissions calculated in accordance with (c)(2) and (3) in Section C General Record Keeping Requirements.
- (3) The emissions calculated under the actual-to-projected actual test stated in 326 IAC 2-2-2(d)(3) and/or 326 IAC 2-3-2(c)(3).
- (4) Any other information that the Permittee deems fit to include in this report,

Reports required in this part shall be submitted to:

Indiana Department of Environmental Management Air Compliance Section, Office of Air Quality 100 North Senate Avenue MC61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

(g) The Permittee shall make the information required to be documented and maintained in accordance with (c) in Section C – General Record Keeping Requirements available for review upon a request for inspection by IDEM, OAQ. The general public may request this information from the IDEM, OAQ under 326 IAC 17.1.

Stratospheric Ozone Protection

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with the standards for recycling and emissions reduction:

- (a) Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to 40 CFR 82.156.
- (b) Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to 40 CFR 82.158.
- (c) Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to 40 CFR 82.161.

SECTION D.4 FACILITY OPERATION CONDITIONS

	Facility Description [326 IAC 2-7-5(15)]				
(5)	The vo one (1 optimi	Herman 3 Mold Line The volatile organic compound (VOC) emissions from the Herman 3 Mold line are reduced by one (1) Sonoperoxone [®] system (or an equivalent advanced oxidation system), sand system optimization, use of low VOC core resin binder materials, and automatic mold vent-off gas ignition.			
	The S –	conoperoxone [®] system is common to: Herman 3 Pouring Station,			
	_	Herman 3 Castings Cooling,			
	_	Herman 3 Shakeout, and			
	-	Herman 3 Sand Handling.			
	(a)	One (1) Herman 3 Pouring Station, constructed in 1991, with a nominal throughput of 28 tons of iron per hour and 165 tons of mold and core sand per hour.			
		Emissions from the Herman 3 Pouring Station are captured, but uncontrolled, and exhaust to the atmosphere through a vent, identified as Vent V-10.			
	(b)	One (1) Herman 3 Castings Cooling process, constructed in 1991, and modified in 2004, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.			
		Emissions from the Herman 3 Castings Cooling process are captured, but uncontrolled and exhaust to the atmosphere through a vent, identified as Vent V-12.			
	(c)	One (1) Herman 3 Shakeout process, constructed in 1991, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.			
		The particulate emissions from the Herman 3 Shakeout process are captured and controlled by: – a wet collector, identified as Wet Collector #4, and exhaust through a stack,			
		identified as Stack E; and – a baghouse, identified as Baghouse #11 and exhaust through a stack, identified as Stack W.			
		Wet Collector #4 is common to: – Herman 3 Shakeout, and – Herman 3 Sand Handling.			
		Baghouse #11 is common to: – Herman 3 Shakeout, and – Herman 3 Sand Handling.			
	(d)	One (1) Herman 3 Sand Handling process, constructed in 1991, with a nominal throughput of 165 tons of mold and core sand per hour.			
		The Herman 3 Sand Handling process includes sand screening, sand cooling, water addition, sand mulling, and the ancillary equipment associated with each.			

Particulate emissions from the Herman 3 Sand Handling process are captured and controlled by:

- a wet collector, identified as Wet Collector #1, and exhaust through a stack, identified as Stack D; and
- a wet collector, identified as Wet Collector #4, and exhaust through a stack, identified as Stack E; and
- a baghouse, identified as Baghouse #11, and exhaust through a stack, identified as Stack W.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.4.1 VOC and CO PSD BACT Requirements [326 IAC 2-2-3] [326 IAC 8-1-6]

- Pursuant to SSM 085-18009-00003, issued on December 9, 2003, and the requirements of 326 IAC 2-2-3 (PSD) and 326 IAC 8-1-6 (General Reduction Requirements for New Facilities), the Best Available Control Technology (BACT) shall consist of the following:
 - (1) Metal Throughput Limit The amount of metal throughput to the Herman 3 Mold Line shall not exceed 90,578 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of metal throughput is the same as the metal throughput limit specified in Condition D.4.2 –PSD Minor Limits.

(2) Sand Throughput Limits:

The amount of sand throughput to the Herman 3 Mold Line shall not exceed 543,470 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of sand throughput is the same as the sand throughput limit specified in Condition D.4.2 –PSD Minor Limits.

- (3) VOC Limits and Standards
 - (A) The VOC emissions from the Herman 3 Pouring Station shall not exceed 0.163 pounds per ton of metal.

- (B) The VOC emissions from the Herman 3 Castings Cooling process shall not exceed 0.36 pounds per ton of metal. The Department may revise this permit to adjust the VOC limitation based upon the results of the stack test required in Condition D.4.6. The Department will provide an opportunity for public notice and comment prior to finalizing any permit revision. IC 13-15-7-3 (Revocation or Modification of a Permit: Appeal to Board) shall apply to this permit condition.
- (C) The combined VOC emissions from the Herman 3 Shakeout and Herman 3 Sand Handling operations shall not exceed 0.115 pounds per ton of metal and sand total.

This VOC limitation is for the Herman 3 Shakeout and Herman 3 Sand Handling combined.

- (D) The VOC emissions from the Herman 3 Mold Line shall be reduced through the continuous use of the Sonoperoxone[®] system or an equivalent system, sand system optimization, low VOC core resin binder materials, and automatic mold vent-off gas ignition.
- (b) Pursuant to PSD/SSM 085-25816-00003 and 326 IAC 2-2-3 (PSD), Best Available Control Technology (BACT for Herman 3 Pouring, Cooling and Shakeout), the Permittee shall comply with the following:

Emission Units	CO Limits
	(Pounds per ton metal)
Herman 3 Mold Pouring	1.80
Herman 3 Cast Cooling	2.88
Herman 3 Shakeout	1.32

- D.4.2 PSD Minor Limits [326 IAC 2-2]
 - (a) Pursuant to SSM 085-18009-00003, issued on December 9, 2003, and in order to render the requirements of 326 IAC 2-2 (PSD) not applicable for PM, PM₁₀, and lead emissions, the following conditions shall apply:
 - (1) Metal Throughput Limit

The amount of metal throughput to the Herman 3 Mold Line shall not exceed 90,578 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of metal throughput is the same as the metal throughput limit specified in Condition D.4.1 – VOC and CO PSD BACT Requirements.

(2) Sand Throughput Limits:

The amount of sand throughput to the Herman 3 Mold Line shall not exceed 543,470 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of sand throughput is the same as the sand throughput limit specified in Condition D.4.1 – VOC and CO PSD BACT Requirements.

- Herman 3 Mold Line Lead Emissions
 The combined lead emissions from the Herman 3 Mold Line shall not exceed 0.013 pounds per ton of metal throughput.
- (b) Pursuant to SSM 085-14027-00003, issued on February 22, 2002:
 - (1) Sand Throughput Limits:
 - (A) The combined amount of core and mold sand handled for the:
 - (1) Herman 1 Sand Handling,
 - (2) Herman 2 Sand Handling, and
 - (3) Herman 3 Sand Handling

shall be limited to 1,127,516 tons of sand per twelve (12) consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This core and mold sand limitation is for the Herman 1, Herman 2, and Herman 3 Sand Handling combined.

- (2) Herman 3 Pouring (V-10)
 - (A) The PM emissions from the Herman 3 Pouring Station shall not exceed 0.1176 pounds per ton of metal throughput.
 - (B) The PM₁₀ emissions from the Herman 3 Pouring Station shall not exceed 0.0524 pounds per ton of metal throughput.
- (3) Herman 3 Castings Cooling (V-12)
 - (A) The PM emissions from the Herman 3 Castings Cooling process shall not exceed 0.2881 pounds per ton of metal throughput.
 - (B) The PM₁₀ emissions from the Herman 3 Castings Cooling process shall not exceed 0.1959 pounds per ton of metal throughput.
- (4) Herman 3 Shakeout (Stack E and Stack W)
 - (A) The PM emissions from the Herman 3 Shakeout process shall not exceed 0.034 pounds per ton of metal and sand throughput.

This PM limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

(B) The PM₁₀ emissions from the Herman 3 Shakeout process shall not exceed 0.058 pounds per ton of metal and sand throughput.

This PM₁₀ limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

- (5) Herman 3 Sand Handling (Stack D and Stack W)
 - (A) The PM emissions from the Herman 3 Sand Handling process shall not exceed 0.034 pounds per ton of metal and sand throughput.

This PM limitation for the Herman 3 Sand Handling is for Stack D and Stack W combined.

(B) The PM₁₀ emissions from the Herman 3 Sand Handling process shall not exceed 0.058 pounds per ton of metal and sand throughput.

This PM_{10} limitation for the Herman 3 Sand Handling is for Stack D and Stack W combined.

The conditions of this permit shall supersede the requirements of Operation Conditions #5 and #7 of CP 085-2141-00003, issued on December 12, 1991.

D.4.3 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), the following conditions shall apply:

(a) Herman 3 Pouring (V-10)

The allowable particulate emission rate from the Herman 3 Pouring operation shall not exceed 58.1 pounds per hour when operating at a process weight rate of 193 tons per hour.

- (b) Herman 3 Castings Cooling (V-12) The allowable particulate emission rate from the Herman 3 Castings Cooling operation shall not exceed 58.1 pounds per hour when operating at a process weight rate of 193 tons per hour.
- (c) Herman 3 Shakeout (Wet Collector #4, Stack E and Baghouse #11, Stack W) The allowable particulate emission rate from the Herman 3 Shakeout and Herman 3 Sand Handling operation shall not exceed 58.1 pounds per hour when operating at a process weight rate of 193 tons per hour.

This PM limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

process weight rate of 165 tons per hour.

 (d) Herman 3 Sand Handling (Wet Collector #1, Stack D, Wet Collector #4, Stack E and Baghouse #11, Stack W)
 The allowable particulate emission rate from the Herman 3 Shakeout and Herman 3 Sand Handling operation shall not exceed 56.4 pounds per hour when operating at a

This PM limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

Wet Collector #4 is common to:

Herman 3 Shakeout, and

- Herman 3 Sand Handling.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (e) The pounds per hour limitations were calculated with the following equation:

Interpolation and extrapolation of the data for the process weight rate greater than 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 55 P^{0.11} - 40$ where E = rate of emission in pounds per hour; and P = process weight rate in tons per hour

D.4.4 Preventive Maintenance Plan [326 IAC 2-7-5(13)]

A Preventive Maintenance Plan, in accordance with Section B – Preventive Maintenance Plan, of this permit, is required for these facilities and their control devices.

Compliance Determination Requirements

D.4.5 Emission Controls Operation

- (a) Wet Collector #1 Herman 3 Sand Handling The Wet Collector #1 for particulate emissions control shall be in operation and control emissions from the Herman 3 Sand Handling at all times when Herman 3 Sand Handling is in operation.
- (b) Wet Collector #4 Herman 3 Shakeout The Wet Collector #4 for particulate control shall be in operation at all times and control emissions from the Herman 3 Shakeout process at all times when the Herman 3 Shakeout process is in operation.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (c) Baghouse #11 Herman 3 Shakeout and Herman 3 Sand Handling
 - (1) The Baghouse #11 for particulate control shall be in operation and control emissions from the Herman 3 Shakeout and Herman 3 Sand Handling processes at all times when either of these processes are in operation.
 - (2) In the event that bag failure is observed in a multi-compartment baghouse, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

- (d) Sonoperoxone[®] System or Equivalent System Herman 3 Mold Line The Sonoperoxone[®] system or an equivalent system for volatile organic compounds emissions control shall be in operation and control emissions from the Herman 3 Mold Line at all times when the Herman 3 Mold Line is in operation.
- D.4.6 Testing Requirements [326 IAC 2-7-6(1),(6)]
 - (a) VOC Testing
 - (1) The Permittee shall perform VOC testing on the:
 - (A) Herman 3 Pouring,
 - (B) Herman 3 Castings Cooling,
 - (C) Herman 3 Shakeout, and
 - (D) Herman 3 Sand Handling

using methods as approved by the Commissioner, in order to demonstrate compliance with Condition D.4.1 - VOC and CO PSD BACT Requirements.

- (2) During the VOC tests, the Permittee shall monitor and record those parameters required to be measured by D.4.14 – Parametric Monitoring of Sonoperoxone[®] System or Equivalent System.
- (3) The VOC tests shall be repeated at least once every two and a half (2.5) years from the date of the last valid compliance demonstration.
- (b) PM and PM₁₀ Testing
 - (1) The Permittee shall perform PM and PM_{10} testing on the:
 - (A) Herman 3 Shakeout, and
 - (B) Herman 3 Sand Handling

using methods as approved by the Commissioner, in order to demonstrate compliance with Conditions D.4.2 – PSD Minor Limits, and D.4.3 – Particulate Emission Limitations for Manufacturing Processes.

- (2) During the PM and PM₁₀ tests, the Permittee shall monitor and record those parameters required to be measured and monitored by Conditions D.4.7 – Continuous Opacity Monitoring, D.4.10 – Wet Collector Parametric Monitoring, and D.4.12 – Baghouse Parametric Monitoring.
- (3) The PM and PM₁₀ tests shall be repeated at least once every five (5) years from the date of the last valid compliance demonstration.

PM₁₀ includes filterable and condensible PM₁₀.

- (c) Lead Testing
 - (1) The Permittee shall perform lead testing on the:
 - (A) Herman 3 Pouring,
 - (B) Herman 3 Castings Cooling,

- (C) Herman 3 Shakeout, and
- (D) Herman 3 Sand Handling

using methods as approved by the Commissioner, in order to demonstrate compliance with Condition D.4.2 – PSD Minor Limits.

- (2) During the lead tests, the Permittee shall monitor and record those parameters required to be measured by Conditions D.4.7 Continuous Opacity Monitoring, D.4.10 Wet Collector Parametric Monitoring, and D.4.12 Baghouse Parametric Monitoring.
- (3) The lead tests shall be repeated at least once every five (5) years from the date of the last valid compliance demonstration.
- (d) Testing shall be conducted in accordance with Section C Performance Testing.

D.4.7 Continuous Opacity Monitoring [326 IAC 3-5] [326 IAC 2-2-3]

- (a) Continuous Opacity Monitoring (COM)
 - (1) Pursuant to 326 IAC 2-2-3, upon startup of the Herman 3 Castings Cooling, a continuous monitoring system shall be installed, calibrated, maintained, and operated for measuring opacity from the Herman 3 Castings Cooling vent (V-12).
 - (2) The continuous monitoring systems shall meet the performance specifications of 326 IAC 3-5-2.
- (b) Opacity 10% Pursuant to SSM 085-18009-00003, issued on December 9, 2003:

The Permittee shall take appropriate response steps in accordance with Section C – Response to Excursions or Exceedances, whenever the opacity exceeds 10% for three (3) consecutive six (6) minute averaging periods. Failure to take response steps in accordance with Section C – Response to Excursions or Exceedances, shall be considered a deviation from this permit.

- D.4.8 Maintenance of Continuous Opacity Monitoring Equipment [326 IAC 2-7-5(3)(A)(iii)]
 - (a) The Permittee shall install, calibrate, maintain, and operate all necessary continuous opacity monitoring systems (COMS) and related equipment.
 - (b) All COMS shall meet the performance specifications of 40 CFR 60, Appendix B, Performance Specification No. 1, and are subject to monitor system certification requirements pursuant to 326 IAC 3-5.
 - (c) In the event that a breakdown of a COMS occurs, a record shall be made of the times and reasons of the breakdown and efforts made to correct the problem.
 - (d) Whenever a COMS is malfunctioning or is down for maintenance or repairs for a period of twenty-four (24) hours or more and a backup COMS is not online within twenty-four (24) hours of shutdown or malfunction of the primary COMS, the Permittee shall provide a certified opacity reader, who may be an employee of the Permittee or an independent contractor, to self-monitor Emissions from the emission unit stack.

- (1) Visible emission readings shall be performed in accordance with 40 CFR 60, Appendix A, Method 9, for a minimum of five (5) consecutive six (6) minute averaging periods beginning not more than twenty-four (24) hours after the start of the malfunction or down time.
- (2) Method 9 opacity readings shall be repeated for a minimum of five (5) consecutive six (6) minute averaging periods at least twice per day during daylight operations, with at least four (4) hours between each set of readings, until a COMS is online.
- (3) Method 9 readings may be discontinued once a COMS is online.
- (4) Any opacity exceedances determined by Method 9 readings shall be reported with the Quarterly Opacity Exceedances Reports.
- (e) Nothing in this permit shall excuse the Permittee from complying with the requirements to operate a continuous opacity monitoring system pursuant to 326 IAC 3-5.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

- D.4.9 Visible Emissions Notations
 - (a) Visible emission notations of the:
 - (1) Wet Collector #1 exhaust stack (Stack D),
 - (2) Wet Collector #4 exhaust stack (Stack E), and
 - (3) Baghouse #11 exhaust stack (Stack W)

shall be performed once per day during normal daylight operations when exhausting to the atmosphere and when the associated processes are in operation. A trained employee shall record whether emissions are normal or abnormal.

- (b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.
- (c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.
- (d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.
- (e) If abnormal emissions are observed, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances. Failure to take response steps in accordance with Section C – Response to Excursions or Exceedances shall be considered a deviation from this permit.

D.4.10 Wet Collector Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

 Wet Collector #1 – Herman 3 Sand Handling The Permittee shall record the pressure drop and flow rate across the Wet Collector #1, at least once per day, when the Herman 3 Sand Handling process is in operation.

- (1) When for any one reading, the pressure drop across Wet Collector #1 is below a minimum of 8 inches of water or a minimum established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances.
- (2) When for any one reading, the flow rate across Wet Collector #1 is below a minimum of 200 gallons per minute or a minimum flow rate established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances.
- (b) Wet Collector #4 Herman 3 Shakeout The Permittee shall record the pressure drop and flow rate across Wet Collector #4, at least once per day, when the Herman 3 Shakeout process is in operation.
 - (1) When for any one reading, the pressure drop across Wet Collector #4 is below a minimum of 8 inches of water or a minimum established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances.
 - (2) When for any one reading, the flow rate across Wet Collector #4 is below a minimum of 200 gallons per minute or a minimum flow rate established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances.

Wet Collector #4 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (c) A pressure reading or flow rate that is below the above mentioned minimums is not a deviation from this permit. Failure to take response steps in accordance with Section C – Response to Excursions or Exceedances, shall be considered a deviation from this permit.
- (d) The instruments used for determining the pressures and flow rates shall comply with Section C Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated at least once every six (6) months.

D.4.11 Wet Collector Failure Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

In the event that wet collector failure has been observed, the failed wet collector and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B – Emergency Provisions).

D.4.12 Baghouse Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

- (a) The Permittee shall record the pressure drop across the Baghouse #11, at least once per day, when either of the following processes:
 - (1) Herman 3 Shakeout, or
 - (2) Herman 3 Sand Handling

are in operation. When for any one reading, the pressure drop across the baghouse is outside the normal range of 4.0 and 10.0 inches of water or a range established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps in accordance with Section C – Response to Excursions or Exceedances, shall be considered a deviation from this permit.

Baghouse #11 is common to:

- Herman 3 Shakeout, and
- Herman 3 Sand Handling.
- (b) The instruments used for determining the pressure shall comply with Section C Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated at least once every six (6) months.

D.4.13 Broken or Failed Bag Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

- (a) For a single compartment baghouse controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B – Emergency Provisions).
- (b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emission unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B – Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

- D.4.14 Parametric Monitoring of Sonoperoxone[®] System or Equivalent System [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
 - (a) Ultra-Sonic Power Herman 3 Mold Line The Permittee shall monitor and record the ultra-sonic power of the Sonoperoxone[®] system or equivalent system used in conjunction with the Herman 3 Mold Line, at least once per day when the Herman 3 Mold Line is in operation. When for any one reading, the ultra-sonic power is less than 1500 W or a minimum established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances. An ultra-sonic power reading that is below the above mentioned minimum is not a deviation from this permit.
 (b) Ozone Generator Plasma Voltage – Herman 3 Mold Line
 - The Permittee shall monitor and record the ozone generator plasma voltage of the Sonoperoxone[®] system or equivalent system used in conjunction with the Herman 3 Mold Line, at least once per day when the Herman 3 Mold Line is in operation. When for any one reading, the ozone generator plasma voltage is less than 2700 V or a minimum established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C Response to Excursions or Exceedances. An ozone generator plasma voltage reading that is below the above mentioned minimum is not a deviation from this permit.

Dalton Corp., Warsaw Manufacturing FacilityPSD/ Significant Source Modification No. 085-25816-00003Page 39 of 51Warsaw, IndianaModified by Josiah BalogunOP No.: 085-6708-00003Permit Reviewer: Kimberly Cottrell

- (c) Hydrogen Peroxide Usage Herman 3 Mold line The Permittee shall monitor and record the hydrogen peroxide usage of the Sonoperoxone[®] system or equivalent system used in conjunction with the Herman 3 Mold Line, at least once per day when the Herman 3 Mold Line is in operation. When for any one reading, the hydrogen peroxide is less than 1 gallon per hour of muller operation, or a minimum established during the latest stack test, the Permittee shall take reasonable response steps in accordance with Section C – Response to Excursions or Exceedances. A peroxide usage reading that is below the above mentioned minimum is not a deviation from this permit. The instruments used for determining the ultra-sonic power, the ozone generator plasma voltage and the hydrogen peroxide usage shall comply with Section C – Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated at least once every six (6) months.
- (d) Failure to take response steps in accordance with Section C Response to Excursions or Exceedances, shall be considered a deviation from this permit.

The Sonoperoxone[®] system is common to:

- Herman 3 Pouring Station,
- Herman 3 Castings Cooling,
- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

Record Keeping and Reporting Requirement [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.4.15 Record Keeping Requirements
 - (a) To document compliance with Conditions D.4.1 VOC and CO PSD BACT Requirements, and D.4.2 – PSD Minor Limits, the Permittee shall maintain records of the amounts of metal and sand throughputs to the Herman 3 Mold Line.
 - (b) To document compliance with Conditions D.4.1 VOC and CO PSD BACT Requirements, and D.4.2 – PSD Minor Limits, the Permittee shall maintain records of the combined amount of core and mold sand handled for the:
 - (1) Herman 1 Sand Handling,
 - (2) Herman 2 Sand Handling, and
 - (3) Herman 3 Sand Handling.
 - (c) To document compliance with Condition D.4.7 Continuous Opacity Monitoring and Section C – Opacity, the Permittee shall maintain records of opacity from the continuous opacity monitor on the Herman 3 Castings Cooling vent (V-12), including raw data and supporting information, for a minimum of five (5) years, and make such records available upon request to IDEM, OAQ.
 - (d) To document compliance with Condition D.4.9 Visible Emission Notations, the Permittee shall maintain daily records of visible emission notations of the wet collector #1, wet collector #4 and baghouse #1 stack exhausts. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g. the process did not operate that day).

- (e) To document compliance with Condition D.4.10– Wet Collector Parametric Monitoring, the Permittee shall maintain the daily records of the pressure drop and flow rate reading across wet collector #1 and wet collector #4. The Permittee shall include in its daily record when a pressure drop and flow rate reading are not taken and the reason for the lack of a pressure drop and flow rate readings, (e.g. the process did not operate that day).
- (f) To document compliance with Condition D.4.12– Baghouse Parametric Monitoring, the Permittee shall maintain the daily records of the pressure drop across baghouse #11. The Permittee shall include in its daily record when a pressure drop reading is not taken and the reason for the lack of a pressure drop reading, (e.g. the process did not operate that day).
- (g) To document compliance with Condition D.4.14 Parametric Monitoring of Sonoperoxone[®] System or Equivalent System, the Permittee shall maintain records of the:
 - (1) ultra-sonic power,
 - (2) ozone generator plasma voltage, and
 - (3) hydrogen peroxide usage of the Sonoperoxone[®] system

and make such records available upon request to IDEM, OAQ.

- (h) All records shall be maintained in accordance with Section C General Record Keeping Requirements, of this permit.
- D.4.16 Reporting Requirements
 - (a) A quarterly summary of the information to document compliance with Conditions D.4.1 VOC and CO PSD BACT Requirements, and D.4.2 – PSD Minor Limits, shall be submitted to the address listed in Section C – General Reporting Requirements, using the reporting forms located at the end of this permit, or the equivalent, within thirty (30) days after the end of the quarter being reported.
 - (b) A quarterly summary of excess opacity emissions, as defined in 326 IAC 3-5-7, from the continuous monitoring system, shall be submitted to the address listed in Section C General Reporting Requirements, of this permit, within thirty (30) days after the end of the quarter being reported.
 - (c) These reports submitted by the Permittee do require the certification by the "responsible official" as defined by 326 IAC 2-7-1(34).

SECTION E.1 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) REQUIREMENTS [326 IAC 2-7-5(1)]

Facility Description [326 IAC 2-7-5(15)]

(4) Herman 3 Mold Line

The volatile organic compound (VOC) emissions from the Herman 3 Mold line are reduced by one (1) Sonoperoxone[®] system (or an equivalent advanced oxidation system), sand system optimization, use of low VOC core resin binder materials, and automatic mold vent-off gas ignition.

The Sonoperoxone[®] system is common to:

- Herman 3 Pouring Station,
- Herman 3 Castings Cooling,
- Herman 3 Shakeout, and
- Herman 3 Sand Handling.

One (1) Herman 3 Pouring Station, constructed in 1991, with a nominal throughput of 28 tons of iron per hour and 165 tons of mold and core sand per hour.

Emissions from the Herman 3 Pouring Station are captured, but uncontrolled, and exhaust to the atmosphere through a vent, identified as Vent V-10.

Under the Iron and Steel Foundries NESHAP (40 CFR 63, Subpart EEEEE)), the following affected facilities are considered an existing affected source:

- Cupola Melt Furnace
- Herman 1 Pouring Station
- Herman 2 Pouring Station
- Herman 3 Pouring Station

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) REQUIREMENTS [326 IAC 2-7-5(1)]

- E.1.1 General Provisions Relating to National Emission Standards for Hazardous Air Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]
 - (a) Pursuant to 40 CFR 63.7760, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1-1 for the affected facilities as specified in Table 1 of 40 CFR 63, Subpart EEEEE in accordance with schedule in 40 CFR 63 Subpart EEEEE.
 - (b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance Branch, Office of Air Quality 100 North Senate Avenue Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V Air and Radiation Division, Air Enforcement Branch – Indiana (AE-17J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

E.1.2 Applicability of Iron and Steel Foundries NESHAP Requirements [40 CFR Part 63, Subpart EEEEE]

The provisions of 40 CFR Part 63, Subpart EEEEE (National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries) apply to the affected facilities. A copy of this rule is available on the US EPA Air Toxics Website at www.epa.gov/ttn/atw/ifoundrypg.html.

(1)	40 CFR 63.7680
(2)	40 CFR 63.7681
(3)	40 CFR 63.7682
(4)	40 CFR 63.7683
(5)	40 CFR 63.7690
(6)	40 CFR 63.7700
(7)	40 CFR 63.7710
(8)	40 CFR 63.7720
(9)	40 CFR 63.7730
(10)	40 CFR 63.7731
(11)	40 CFR 63.7732
(12)	40 CFR 63.7733
(13)	40 CFR 63.7734
(14)	40 CFR 63,7735
	40 CFR 63.7736
	40 CFR 63.7740
	40 CFR 63.7741
	40 CFR 63.7742
	40 CFR 63.7743
	40 CFR 63.7744
. ,	40 CFR 63.7745
(22)	40 CFR 63.7746
	40 CFR 63.7747
(24)	40 CFR 63.7750
(25)	40 CFR 63.7751
(26)	40 CFR 63.7753
(27)	40 CFR 63.7760
(28)	40 CFR 63.7761
(29)	40 CFR 63.7765
 (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) 	40 CFR 63.7736 40 CFR 63.7740 40 CFR 63.7741 40 CFR 63.7742 40 CFR 63.7743 40 CFR 63.7743 40 CFR 63.7745 40 CFR 63.7746 40 CFR 63.7746 40 CFR 63.7750 40 CFR 63.7751 40 CFR 63.7753 40 CFR 63.7760 40 CFR 63.7761

(30) Appendix - Table 1 to Subpart EEEEE of Part 63

E.1.3 Iron and Steel Foundries Requirements [40 CFR Part 63, Subpart EEEEE]

Pursuant to CFR Part 63, Subpart EEEEE, the Permittee shall comply with the provisions of National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries for the affected facilities, as specified as follows on and after April 23, 2007. Pursuant to the compliance extension granted by IDEM on May 11, 2006, in accordance with the provisions in 40 CFR 63.7761, the Permittee shall comply with the:

- (a) Notice of Compliance Status,
- (b) First Compliance Report,
- (c) Notification of Performance Test,

- (d) Conducting the Initial Performance Test, and
- (e) Submission of the Start-Up, Shutdown and Malfunction Plan

on and after April 23, 2008.

E.1.4 State Only Iron and Steel Foundries NESHAP Requirements [326 IAC 20-92]

Pursuant to 326 IAC 20-92, the Permittee shall comply with the provisions of the April 22, 2004 version of 40 CFR Part 63, Subpart EEEEE, which are incorporated by reference as 326 IAC 20-92, for the affected facilities. The Permittee shall comply with the provisions of 40 CFR Part 63, Subpart EEEEE, as listed in condition D.1.3, except the Permittee shall follow the requirements of the April 22, 2004 version of 40 CFR Part 63, Subpart EEEEE, as incorporated into 326 IAC 20-92, as follows.

The requirements of 326 IAC 20-92 listed in this condition are not federally enforceable.

E.1.5 One-Time Deadlines Relating to Iron and Steel Foundries Notifications [40 CFR Part 63, Subpart EEEEE]

The Permittee shall comply with the following notification requirements by the dates listed:

Requirement	Rule Cite	Affected Facility	Deadline
Initial Notification	40 CFR 63.7750(b) 40 CFR 63.9(b)(2)	affected facilities	August 20, 2004
Initial Compliance Date	40 CFR 63.7683(a) 40 CFR 63.7683(b)	affected facilities	April 23, 2007
Conduct Initial Compliance Demonstration	40 CFR 63.7730(a)	affected facilities	180 days after April 23, 2007
Initial Compliance Date for Work Practice Standards	40 CFR 63.7683(a) 40 CFR 63.7683(b)	affected facilities	April 22, 2005
Conduct Initial Compliance Demonstration for Work Practice Standards	40 CFR 63.7730(a)	affected facilities	180 days after April 22, 2005
Notification of Intent to Conduct a Performance Test	40 CFR 63.7750(d); 40 CFR 63.7(b)(1)	affected facilities	At least 60 days before the scheduled performance test
Notification of Compliance Status	40 CFR 63.7750(e); 40 CFR 63.9(h)(2)(ii)	affected facilities	within 30 days after compliance demonstration
Compliance Report	40 CFR 63.7751(a)	affected facilities	semi-annually
Immediate Startup, Shutdown, and Malfunction Report	40 CFR 63.7751(c); 40 CFR 63.10(d)(5)(ii)	affected facilities	as needed
Part 70 Monitoring Report	40 CFR 63.7751(d)	affected facilities	semi-annually

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY

PART 70 OPERATING PERMIT CERTIFICATION

Source Name:	Dalton Corporation, Warsaw Manufacturing Facility
Source Address:	1900 Jefferson Street, Warsaw, Indiana 46580
Mailing Address:	P.O. Box 1388, Warsaw, Indiana 46581-1388
Part 70 Permit No.:	T 085-6708-00003

This certification shall be included when submitting monitoring, testing reports/results or oth	er
documents as required by this permit.	

Please check what document is being certified:

Annual Compliance Certification Letter
--

Test Result (specify):

Report (specify):

 \square

Notification (specify):

Affidavit (specify):

Other (specify):

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
Signature:
Printed Name:
Title/Position:
Phone:
Date:

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE BRANCH 100 North Senate Avenue

Indianapolis, Indiana 46204-2251 Phone: 317-233-0178 Fax: 317-233-6865

PART 70 OPERATING PERMIT EMERGENCY OCCURRENCE REPORT

Source Name:	Dalton Corporation, Warsaw Manufacturing Facility
Source Address:	1900 Jefferson Street, Warsaw, Indiana 46580
Mailing Address:	P.O. Box 1388, Warsaw, Indiana 46581-1388
Part 70 Permit No.:	T 085-6708-00003

This form consists of 2 pages

Page 1 of 2

- This is an emergency as defined in 326 IAC 2-7-1(12)
 - The Permittee must notify the Office of Air Quality (OAQ), within four (4) business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 - The Permittee must submit notice in writing or by facsimile within two (2) days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency

Describe the cause of the Emergency

Dalton Corp., Warsaw Manufacturing Facility PSD/ Significant Source Modification No. 085-25816-00003 Page 46 of 51 Warsaw, Indiana Modified by Josiah Balogun OP No.: 085-6708-00003 Permit Reviewer: Kimberly Cottrell OP No.: 085-6708-00003
If any of the following are not applicable, mark N/A Page 2 of 2
Date/Time Emergency started:
Date/Time Emergency was corrected:
Was the facility being properly operated at the time of the emergency? Describe:
Type of Pollutants Emitted: TSP PM-10 SO2 VOC NOX CO Pb other:
Estimated amount of pollutant(s) emitted during emergency:
Describe the steps taken to mitigate the problem:
Describe the corrective actions/response steps taken:
Describe the measures taken to minimize emissions:
If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:
Form Completed By:
Title/Position:
Date:
Phone:

Part 70 Quarterly Report

Dalton Corporation, Warsaw Manufacturing Facility Source Name: Source Address: 1900 Jefferson Street, Warsaw, Indiana 46580 Mailing Address: P.O. Box 1388, Warsaw, Indiana 46581-1388 Part 70 Permit No.: T 085-6708-00003 Facilities: Herman 1, Herman 2, and Herman 3 Sand Handling Amount of Core and Mold Sand Handled Parameters: Limits: 1,127,516 tons of sand per twelve (12) consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month. (Sections D.3 and D.4)

YEAR:

Month	Column 1	Column 2	Column 1 + Column 2
	This Month	Previous 11 Months	12 Month Total

	No deviation occurred in this quarter.	
	Deviations occurred in this quarter. Deviation has been reported on:	
Submit	ted By:	
Title/Pc		
Signatu	ure:	
Date:		

Phone:

Part 70 Quarterly Report

Source Name: Dalton Corporation, Warsaw Manufacturing Facility Source Address: 1900 Jefferson Street, Warsaw, Indiana 46580 Mailing Address: P.O. Box 1388, Warsaw, Indiana 46581-1388 Part 70 Permit No.: T 085-6708-00003 Facilities: Herman 3 Mold Line Amount of Metal Throughput Parameters: Limits: 90,578 tons of metal per twelve (12) consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month. (Section D.4)

YEAR:

Month	Column 1	Column 2	Column 1 + Column 2
	This Month	Previous 11 Months	12 Month Total

	No deviation occurred in this quarter.	
	Deviations occurred in this quarter. Deviation has been reported on:	
Submitte	d By:	
Title/Posi		
Signature	e:	
Date:		
Phone:		

Part 70 Quarterly Report

Source Name: Dalton Corporation, Warsaw Manufacturing Facility Source Address: 1900 Jefferson Street, Warsaw, Indiana 46580 Mailing Address: P.O. Box 1388, Warsaw, Indiana 46581-1388 Part 70 Permit No.: T 085-6708-00003 Facilities: Herman 3 Mold Line Amount of Sand Throughput Parameters: 543,470 tons of sand per twelve (12) consecutive month period, rolled on a Limits: monthly basis, with compliance determined at the end of each month. (Section D.4)

YEAR:

Month	Column 1	Column 2	Column 1 + Column 2
	This Month	Previous 11 Months	12 Month Total

	No deviation occurred in this quarter.			
	Deviations occurred in this quarter. Deviation has been reported on:			
Submitted By:				
Title/Position:				
Signature:				
Date:				
Phone	:			

PART 70 OPERATING PERMIT QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name:Dalton Corporation, Warsaw Manufacturing FacilitySource Address:1900 Jefferson Street, Warsaw, Indiana 46580Mailing Address:P.O. Box 1388, Warsaw, Indiana 46581-1388Part 70 Permit No.:T 085-6708-00003

to

Months:

Year:

Page 1 of 2

This report shall be submitted quarterly based on a calendar year. Any deviation from the requirements, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

□ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.

☐ THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD

Permit Requirement (specify permit condition #)

Date of Deviation:

Duration of Deviation:

Number of Deviations:

Probable Cause of Deviation:

Response Steps Taken:

Permit Requirement (specify permit condition #)

Date of Deviation:

Duration of Deviation:

Number of Deviations:

Probable Cause of Deviation:

Response Steps Taken:

	Page 2 of 2	
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Form Completed By:		
Title/Position:		
Date:		

Phone:

Attachment A to a Part 70 Significant Source Modification

40 CFR 63, Subpart EEEEE—National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries

Source Name:	Dalton Corporation, Warsaw Manufacturing Facility
Source Location:	1900 E. Jefferson Street, Warsaw, IN 46580
County:	Kosciusko
SIC Code:	3321
Significant Source Modification No.:	085-25816-00003
Permit Reviewer:	Josiah Balogun

Source: 69 FR 21923, Apr. 22, 2004, unless otherwise noted.

What this Subpart Covers

§ 63.7680 What is the purpose of this subpart?

This subpart establishes national emission standards for hazardous air pollutants (NESHAP) for iron and steel foundries. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emissions limitations, work practice standards, and operation and maintenance requirements in this subpart.

§ 63.7681 Am I subject to this subpart?

You are subject to this subpart if you own or operate an iron and steel foundry that is (or is part of) a major source of hazardous air pollutant (HAP) emissions. Your iron and steel foundry is a major source of HAP for purposes of this subpart if it emits or has the potential to emit any single HAP at a rate of 10 tons or more per year or any combination of HAP at a rate of 25 tons or more per year or if it is located at a facility that emits or has the potential to emit any single HAP at a rate of 10 tons or more per year or any combination of HAP at one per year as defined in §63.2.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7218, February 7, 2008]

§ 63.7682 What parts of my foundry does this subpart cover?

(a) The affected source is each new or existing iron and steel foundry.

(b) This subpart covers emissions from metal melting furnaces, scrap preheaters, pouring areas, pouring stations, automated conveyor and pallet cooling lines, automated shakeout lines, and mold and core making lines. This subpart also covers fugitive emissions from foundry operations.

(c) An affected source is existing if you commenced construction or reconstruction of the affected source before December 23, 2002.

(d) An affected source is new if you commenced construction or reconstruction of the affected source on or after December 23, 2002. An affected source is reconstructed if it meets the definition of "reconstruction" in §63.2.

§ 63.7683 When do I have to comply with this subpart?

(a) Except as specified in paragraph (b) of this section, if you have an existing affected source, you must comply with each emissions limitation, work practice standard, and operation and maintenance requirement in this subpart that applies to you no later than April 23, 2007. Major source status for existing affected sources must be determined no later than April 23, 2007.

(b) If you have an existing affected source, you must comply with the work practice standards in §63.7700(b) or (c), as applicable, no later than April 22, 2005.

(c) If you have a new affected source for which the initial startup date is on or before April 22, 2004, you must comply with each emissions limitation, work practice standard, and operation and maintenance requirement in this subpart that applies to you by April 22, 2004.

(d) If you have a new affected source for which the initial startup date is after April 22, 2004, you must comply with each emissions limitation, work practice standard, and operation and maintenance requirement in this subpart that applies to you upon initial startup.

(e) If your iron and steel foundry is an area source that becomes a major source of HAP, you must meet the requirements of 63.6(c)(5).

(f) You must meet the notification and schedule requirements in §63.7750. Note that several of these notifications must be submitted before the compliance date for your affected source.

Emissions Limitations

§ 63.7690 What emissions limitations must I meet?

(a) You must meet the emissions limits or standards in paragraphs (a)(1) through (11) of this section that apply to you. When alternative emissions limitations are provided for a given emissions source, you are not restricted in the selection of which applicable alternative emissions limitation is used to demonstrate compliance.

(1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for particulate matter (PM) in paragraph (a)(1)(i) of this section or, alternatively the limit for total metal HAP in paragraph (a)(1)(ii) of this section:

(i) 0.005 grains of PM per dry standard cubic foot (gr/dscf), or

(ii) 0.0004 gr/dscf of total metal HAP.

(2) For each cupola metal melting furnace at an existing iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for PM in paragraph (a)(2)(i) or (ii) of this section or, alternatively the limit for total metal HAP in paragraph (a)(2)(iii) or (iv) of this section:

- (i) 0.006 gr/dscf of PM; or
- (ii) 0.10 pound of PM per ton (lb/ton) of metal charged, or
- (iii) 0.0005 gr/dscf of total metal HAP; or
- (iv) 0.008 pound of total metal HAP per ton (lb/ton) of metal charged.

(3) For each cupola metal melting furnace or electric arc metal melting furnace at a new iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for PM in paragraph (a)(3)(i) of this section or, alternatively the limit for total metal HAP in paragraph (a)(3)(ii) of this section:

(i) 0.002 gr/dscf of PM, or

(ii) 0.0002 gr/dscf of total metal HAP.

(4) For each electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for PM in paragraph (a)(4)(i) of this section or, alternatively the limit for total metal HAP in paragraph (a)(4)(ii) of this section:

(i) 0.001 gr/dscf of PM, or

(ii) 0.00008 gr/dscf of total metal HAP.

(5) For each pouring station at an existing iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for PM in paragraph (a)(5)(i) of this section or, alternatively the limit for total metal HAP in paragraph (a)(5)(i) of this section:

(i) 0.010 gr/dscf of PM, or

(ii) 0.0008 gr/dscf of total metal HAP.

(6) For each pouring area or pouring station at a new iron and steel foundry, you must not discharge emissions through a conveyance to the atmosphere that exceed either the limit for PM in paragraph (a)(6)(i) of this section or, alternatively the limit for total metal HAP in paragraph (a)(6)(ii) of this section:

(i) 0.002 gr/dscf of PM, or

(ii) 0.0002 gr/dscf of total metal HAP.

(7) For each building or structure housing any iron and steel foundry emissions source at the iron and steel foundry, you must not discharge any fugitive emissions to the atmosphere from foundry operations that exhibit opacity greater than 20 percent (6-minute average), except for one 6-minute average per hour that does not exceed 27 percent opacity.

(8) For each cupola metal melting furnace at a new or existing iron and steel foundry, you must not discharge emissions of volatile organic hazardous air pollutants (VOHAP) through a conveyance to the atmosphere that exceed 20 parts per million by volume (ppmv) corrected to 10 percent oxygen.

(9) As an alternative to the work practice standard in §63.7700(e) for a scrap preheater at an existing iron and steel foundry or in §63.7700(f) for a scrap preheater at a new iron and steel foundry, you must not discharge emissions of VOHAP through a conveyance to the atmosphere that exceed 20 ppmv.

(10) For one or more automated conveyor and pallet cooling lines that use a sand mold system or automated shakeout lines that use a sand mold system at a new iron and steel foundry, you must not discharge emissions of VOHAP through a conveyance to the atmosphere that exceed a flow-weighted average of 20 ppmv.

(11) For each triethylamine (TEA) cold box mold or core making line at a new or existing iron and steel foundry, you must meet either the emissions limit in paragraph (a)(11)(i) of this section or, alternatively the emissions standard in paragraph (a)(11)(i) of this section:

(i) You must not discharge emissions of TEA through a conveyance to the atmosphere that exceed 1 ppmv, as determined according to theperformance test procedures in § 63.7732(g); or

(ii) You must reduce emissions of TEA from each TEA cold box mold or core making line by at least 99 percent, as determined according to the performance test procedures in § 63.7732(g).

(b) You must meet each operating limit in paragraphs (b)(1) through (5) of this section that applies to you.

(1) You must install, operate, and maintain a capture and collection system for all emissions sources subject to an emissions limit for VOHAP or TEA in paragraphs (a)(8) through (11) of this section.

(i) Each capture and collection system must meet accepted engineering standards, such as those published by the American Conference of Governmental Industrial Hygienists.

(ii) You must operate each capture system at or above the lowest value or settings established as operating limits in your operation and maintenance plan.

(2) You must operate each wet scrubber applied to emissions from a metal melting furnace, scrap preheater, pouring area, or pouring station subject to an emissions limit for PM or total metal HAP in paragraphs (a)(1) through (6) of this section such that the 3-hour average pressure drop and scrubber water flow rate does not fall below the minimum levels established during the initial or subsequent performance test.

(3) You must operate each combustion device applied to emissions from a cupola metal melting furnace subject to the emissions limit for VOHAP in paragraph (a)(8) of this section, such that the 15-minute average combustion zone temperature does not fall below 1,300 degrees Fahrenheit (°F). Periods when the cupola is off blast and for 15 minutes after going on blast from an off blast condition are not included in the 15-minute average.

(4) You must operate each combustion device applied to emissions from a scrap preheater subject to the emissions limit for VOHAP in paragraph (a)(9) of this section or from a TEA cold box mold or core making line subject to the emissions limit for TEA in paragraph (a)(11) of this section, such that the 3-hour average combustion zone temperature does not fall below the minimum level established during the initial or subsequent performance test.

(5) You must operate each wet acid scrubber applied to emissions from a TEA cold box mold or core making line subject to the emissions limit for TEA in paragraph (a)(11) of this section such that:

(i) The 3-hour average scrubbing liquid flow rate does not fall below the minimum level established during the initial or subsequent performance test; and

(ii) The 3-hour average pH of the scrubber blowdown, as measured by a continuous parameter monitoring system (CPMS), does not exceed 4.5 or the pH of the scrubber blowdown, as measured once every 8 hours during process operations, does not exceed 4.5.

(c) If you use a control device other than a baghouse, wet scrubber, wet acid scrubber, or combustion device, you must prepare and submit a monitoring plan containing the information listed in paragraphs (c)(1) through (5) of this section. The monitoring plan is subject to approval by the Administrator.

(1) A description of the device;

(2) Test results collected in accordance with §63.7732 verifying the performance of the device for reducing emissions of PM, total metal HAP, VOHAP, or TEA to the levels required by this subpart;

(3) A copy of the operation and maintenance plan required by §63.7710(b);

(4) A list of appropriate operating parameters that will be monitored to maintain continuous compliance with the applicable emissions limitation(s); and

(5) Operating parameter limits based on monitoring data collected during the performance test.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7218, February 7, 2008]

Work Practice Standards

§ 63.7700 What work practice standards must I meet?

(a) For each segregated scrap storage area, bin or pile, you must either comply with the certification requirements in paragraph (b) of this section, or prepare and implement a plan for the selection and inspection of scrap according to the requirements in paragraph (c) of this section. You may have certain scrap subject to paragraph (b) of this section and other scrap subject to paragraph (c) of this section at your facility provided the scrap remains segregated until charge make-up.

(b) You must prepare and operate at all times according to a written certification that the foundry purchases and uses only metal ingots, pig iron, slitter, or other materials that do not include post-consumer automotive body scrap, post-consumer engine blocks, post-consumer oil filters, oily turnings, lead components, mercury switches, plastics, or free organic liquids. For the purpose of this paragraph (b), "free organic liquids" is defined as material that fails the paint filter test by EPA Method 9095A, "Paint Filter Liquids Test" (Revision 1, December 1996), as published in EPA Publication SW–846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (incorporated by reference—see §63.14). Any post-consumer engine blocks, post-consumer oil filters, or oily turnings that are processed and/or cleaned to the extent practicable such that the materials do not include lead components, mercury switches, chlorinated plastics, or free organic liquids can be included in this certification.

(c) You must prepare and operate at all times according to a written plan for the selection and inspection of iron and steel scrap to minimize, to the extent practicable, the amount of organics and HAP metals in the charge materials used by the iron and steel foundry. This scrap selection and inspection plan is subject to approval by the Administrator. You must keep a copy of the plan onsite and readily available to all plant personnel with materials acquisition or inspection duties. You must provide a copy of the material specifications to each of your scrap vendors. Each plan must include the information specified in paragraphs (c)(1) through (3) of this section.

(1) A materials acquisition program to limit organic contaminants according to the requirements in paragraph (c)(1)(i) or (ii) of this section, as applicable.

(i) For scrap charged to a scrap preheater, electric arc metal melting furnace, or electric induction metal melting furnace, specifications for scrap materials to be depleted (to the extent practicable) of the presence of used oil filters, chlorinated plastic parts, organic liquids, and a program to ensure the scrap materials are drained of free liquids; or

(ii) For scrap charged to a cupola metal melting furnace, specifications for scrap materials to be depleted (to the extent practicable) of the presence of chlorinated plastic, and a program to ensure the scrap materials are drained of free liquids.

(2) A materials acquisition program specifying that the scrap supplier remove accessible mercury switches from the trunks and hoods of any automotive bodies contained in the scrap and remove accessible lead components such as batteries and wheel weights. You must either obtain and maintain onsite a copy of the procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing automobile bodies that have had mercury switches removed, as applicable, or document your attempts to obtain a copy of these procedures from the scrap suppliers servicing your area.

(3) Procedures for visual inspection of a representative portion, but not less than 10 percent, of all incoming scrap shipments to ensure the materials meet the specifications.

(i) The inspection procedures must identify the location(s) where inspections are to be performed for each type of shipment. Inspections may be performed at the scrap supplier's facility. The selected location(s) must provide a reasonable vantage point, considering worker safety, for visual inspection.

(ii) The inspection procedures must include recordkeeping requirements that document each visual inspection and the results.

(iii) The inspection procedures must include provisions for rejecting or returning entire or partial scrap shipments that do not meet specifications and limiting purchases from vendors whose shipments fail to meet specifications for more than three inspections in one calendar year.

(iv) If the inspections are performed at the scrap supplier's facility, the inspection procedures must include an explanation of how the periodic inspections ensure that not less than 10 percent of scrap purchased from each supplier is subject to inspection.

(d) For each furan warm box mold or core making line in a new or existing iron and steel foundry, you must use a binder chemical formulation that does not contain methanol as a specific ingredient of the catalyst formulation as determined by the Material Safety Data Sheet. This requirement does not apply to the resin portion of the binder system.

(e) For each scrap preheater at an existing iron and steel foundry, you must meet either the requirement in paragraph (e)(1) or (2) of this section. As an alternative to the requirement in paragraph (e)(1) or (2) of this section, you must meet the VOHAP emissions limit in §63.7690(a)(9).

(1) You must operate and maintain a gas-fired preheater where the flame directly contacts the scrap charged; or

(2) You must charge only material that is subject to and in compliance with the scrap certification requirement in paragraph (b) of this section.

(f) For each scrap preheater at a new iron and steel foundry, you must charge only material that is subject to and in compliance with the scrap certification requirement in paragraph (b) of this section. As an alternative to this requirement, you must meet the VOHAP emissions limit in §63.7690(a)(9).

[69 FR 21923, Apr. 22, 2004, as amended at 70 FR 29404, May 20, 2005; 73 FR 7218, February 7, 2008]

Operation and Maintenance Requirements

§ 63.7710 What are my operation and maintenance requirements?

(a) As required by §63.6(e)(1)(i), you must always operate and maintain your iron and steel foundry, including air pollution control and monitoring equipment, in a manner consistent with good air pollution control practices for minimizing emissions at least to the levels required by this subpart.

(b) You must prepare and operate at all times according to a written operation and maintenance plan for each capture and collection system and control device for an emissions source subject to a PM, metal HAP, TEA, or VOHAP emissions limit in §63.7690(a). Your operation and maintenance plan also must include procedures for igniting gases from mold vents in pouring areas and pouring stations that use a sand mold system. This operation and maintenance plan is subject to approval by the Administrator. Each plan must contain the elements described in paragraphs (b)(1) through (6) of this section.

(1) Monthly inspections of the equipment that is important to the performance of the total capture system (i.e., pressure sensors, dampers, and damper switches). This inspection must include observations of the physical appearance of the equipment (e.g., presence of holes in the ductwork or hoods, flow constrictions caused by dents or accumulated dust in the ductwork, and fan erosion). The operation and maintenance plan must also include requirements to repair the defect or deficiency as soon as practicable.

(2) Operating limits for each capture system for an emissions source subject to an emissions limit or standard for VOHAP or TEA in §63.7690(a)(8) through (11). You must establish the operating according to the requirements in paragraphs (b)(2)(i) through (iii) of this section.

(i) Select operating limit parameters appropriate for the capture system design that are representative and reliable indicators of the performance of the capture system. At a minimum, you must use appropriate operating limit parameters that indicate the level of the ventilation draft and damper position settings for the capture system when operating to collect emissions, including revised settings for seasonal variations. Appropriate operating limit parameters for ventilation draft include, but are not limited to: volumetric flow rate through each separately ducted hood, total volumetric flow rate at the inlet to the control device to which the capture system is vented, fan motor amperage, or static pressure. Any parameter for damper position setting may be used that indicates the duct damper position related to the fully open setting.

(ii) For each operating limit parameter selected in paragraph (b)(2)(i) of this section, designate the value or setting for the parameter at which the capture system operates during the process operation. If your operation allows for more than one process to be operating simultaneously, designate the value or setting for the parameter at which the capture system operates during each possible configuration that you may operate (i.e., the operating limits with one furnace melting, two melting, as applicable to your plant).

(iii) Include documentation in your plan to support your selection of the operating limits established for your capture system. This documentation must include a description of the capture system design, a description of the capture system operating during production, a description of each selected operating limit parameter, a rationale for why you chose the parameter, a description of the method used to monitor the parameter according to the requirements of §63.7740(a), and the data used to set the value or setting for the parameter for each of your process configurations.

(3) Preventative maintenance plan for each control device, including a preventative maintenance schedule that is consistent with the manufacturer's instructions for routine and long-term maintenance.

(4) A site-specific monitoring plan for each bag leak detection system. For each bag leak detection system that operates on the triboelectric effect, the monitoring plan must be consistent with the recommendations contained in the U.S. Environmental Protection Agency guidance document "Fabric Filter Bag Leak Detection Guidance" (EPA-454/R-98-015). This baghouse monitoring plan is subject to approval by the Administrator. The owner or operator shall operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. The plan must address all of the items identified in paragraphs (b)(4)(i) through (v) of this section.

(i) Installation of the bag leak detection system.

(ii) Initial and periodic adjustment of the bag leak detection system including how the alarm set-point will be established.

(iii) Operation of the bag leak detection system including quality assurance procedures.

(iv) How the bag leak detection system will be maintained including a routine maintenance schedule and spare parts inventory list.

(v) How the bag leak detection system output will be recorded and stored.

(5) Corrective action plan for each baghouse. The plan must include the requirement that, in the event a bag leak detection system alarm is triggered, you must initiate corrective action to determine the cause of the alarm within 1 hour of the alarm, initiate corrective action to correct the cause of the problem within 24 hours of the alarm, and complete the corrective action as soon as practicable. Corrective actions taken may include, but are not limited to:

(i) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in emissions.

(ii) Sealing off defective bags or filter media.

(iii) Replacing defective bags or filter media or otherwise repairing the control device.

(iv) Sealing off a defective baghouse compartment.

(v) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system.

(vi) Making process changes.

(vii) Shutting down the process producing the PM emissions.

(6) Procedures for providing an ignition source to mold vents of sand mold systems in each pouring area and pouring station unless you determine the mold vent gases either are not ignitable, ignite automatically, or cannot be ignited due to accessibility or safety issues. You must document and maintain records of this determination. The determination of ignitability, accessibility, and safety may encompass multiple casting patterns provided the castings utilize similar sand-to-metal ratios, binder formulations, and coating materials. The determination of ignitability must be based on observations of the mold vents within 5 minutes of pouring, and the flame must be present for at least 15 seconds for the mold vent to be considered ignited. For the purpose of this determination:

(i) Mold vents that ignite more than 75 percent of the time without the presence of an auxiliary ignition source are considered to ignite automatically; and

(ii) Mold vents that do not ignite automatically and cannot be ignited in the presence of an auxiliary ignition source more than 25 percent of the time are considered to be not ignitable.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7218, February 7, 2008]

General Compliance Requirements

§ 63.7720 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emissions limitations, work practice standards, and operation and maintenance requirements in this subpart at all times, except during periods of startup, shutdown, or malfunction.

(b) During the period between the compliance date specified for your iron and steel foundry in §63.7683 and the date when applicable operating limits have been established during the initial performance test, you must maintain a log detailing the operation and maintenance of the process and emissions control equipment.

(c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in §63.6(e)(3). The startup, shutdown, and malfunction plan also must specify what constitutes a shutdown of a cupola and how to determine that operating conditions are normal following startup of a cupola.

[69 FR 21923, Apr. 22, 2004, as amended at 71 FR 20468, Apr. 20, 2006]

Initial Compliance Requirements

§ 63.7730 By what date must I conduct performance tests or other initial compliance demonstrations?

(a) As required by §63.7(a)(2), you must conduct a performance test no later than 180 calendar days after the compliance date that is specified in §63.7683 for your iron and steel foundry to demonstrate initial compliance with each emissions limitation in §63.7690 that applies to you.

(b) For each work practice standard in §63.7700 and each operation and maintenance requirement in §63.7710 that applies to you where initial compliance is not demonstrated using a performance test, you must demonstrate initial compliance no later than 30 calendar days after the compliance date that is specified for your iron and steel foundry in §63.7683.

(c) If you commenced construction or reconstruction between December 23, 2002 and April 22, 2004, you must demonstrate initial compliance with either the proposed emissions limit or the promulgated emissions limit no later than October 19, 2004 or no later than 180 calendar days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) If you commenced construction or reconstruction between December 23, 2002 and April 22, 2004, and you chose to comply with the proposed emissions limit when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emissions limit by October 19, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

§ 63.7731 When must I conduct subsequent performance tests?

(a) You must conduct subsequent performance tests to demonstrate compliance with all applicable PM or total metal HAP, VOHAP, and TEA emissions limitations in §63.7690 for your iron and steel foundry no

less frequently than every 5 years and each time you elect to change an operating limit or to comply with a different alternative emissions limit, if applicable. The requirement to conduct performance tests every 5 years does not apply to an emissions source for which a continuous emissions monitoring system (CEMS) is used to demonstrate continuous compliance.

(b) You must conduct subsequent performance tests to demonstrate compliance with the opacity limit in §63.7690(a)(7) for your iron and steel foundry no less frequently than once every 6 months.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7219, February 7, 2008]

§ 63.7732 What test methods and other procedures must I use to demonstrate initial compliance with the emissions limitations?

(a) You must conduct each performance test that applies to your iron and steel foundry based on your selected compliance alternative, if applicable, according to the requirements in §63.7(e)(1) and the conditions specified in paragraphs (b) through (i) of this section.

(b) To determine compliance with the applicable emissions limit for PM in §63.7690(a)(1) through (6) for a metal melting furnace, scrap preheater, pouring station, or pouring area, follow the test methods and procedures in paragraphs (b)(1) through (6) of this section.

(1) Determine the concentration of PM according to the test methods in 40 CFR part 60, appendix A that are specified in paragraphs (b)(1)(i) through (v) of this section.

(i) Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. Sampling sites must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(ii) Method 2, 2A, 2C, 2D, 2F, or 2G to determine the volumetric flow rate of the stack gas.

(iii) Method 3, 3A, or 3B to determine the dry molecular weight of the stack gas.

(iv) Method 4 to determine the moisture content of the stack gas.

(v) Method 5, 5B, 5D, 5F, or 5I, as applicable, to determine the PM concentration. The PM concentration is determined using only the front-half (probe rinse and filter) of the PM catch.

(2) Collect a minimum sample volume of 60 dscf of gas during each PM sampling run. A minimum of three valid test runs are needed to comprise a performance test.

(3) For cupola metal melting furnaces, sample only during times when the cupola is on blast.

(4) For electric arc and electric induction metal melting furnaces, sample only during normal production conditions, which may include, but are not limited to the following cycles: Charging, melting, alloying, refining, slagging, and tapping.

(5) For scrap preheaters, sample only during normal production conditions, which may include, but are not limited to the following cycles: Charging, heating, and discharging.

(6) Determine the total mass of metal charged to the furnace or scrap preheater. For a cupola metal melting furnace at an existing iron and steel foundry that is subject to the PM emissions limit in §63.7690(a)(ii), calculate the PM emissions rate in pounds of PM per ton (lb/ton) of metal charged using Equation 1 of this section:

Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Josiah Balogun

$$\mathsf{EF}_{\mathsf{PM}} = \mathsf{C}_{\mathsf{PM}} \mathsf{x} \left(\frac{\mathsf{Q}}{\mathsf{M}_{\mathsf{charge}}} \right) \mathsf{x} \left(\frac{\mathsf{t}_{\mathsf{test}}}{7,000} \right) \tag{Eq. 1}$$

Where:

EF_{PM} = Mass emissions rate of PM, pounds of PM per ton (lb/ton) of metal charged;

C_{PM} = Concentration of PM measured during performance test run, gr/dscf;

Q = Volumetric flow rate of exhaust gas, dry standard cubic feet per minute (dscfm);

M_{charge} = Mass of metal charged during performance test run, tons;

 t_{test} = Duration of performance test run, minutes; and 7,000 = Unit conversion factor, grains per pound (gr/lb).

(c) To determine compliance with the applicable emissions limit for total metal HAP in § 63.7690(a)(1) through (6) for a metal melting furnace, scrap preheater, pouring station, or pouring area, follow the test methods and procedures in paragraphs (c)(1) through (6) of this section.

(1) Determine the concentration of total metal HAP according to the test methods in 40 CFR part 60, appendix A that are specified in paragraphs (c)(1)(i) through (v) of this section.

(i) Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. Sampling sites must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(ii) Method 2, 2A, 2C, 2D, 2F, or 2G to determine the volumetric flow rate of the stack gas.

(iii) Method 3, 3A, or 3B to determine the dry molecular weight of the stack gas.

- (iv) Method 4 to determine the moisture content of the stack gas.
- (v) Method 29 to determine the total metal HAP concentration.

(2) A minimum of three valid test runs are needed to comprise a performance test.

(3) For cupola metal melting furnaces, sample only during times when the cupola is on blast.

(4) For electric arc and electric induction metal melting furnaces, sample only during normal production conditions, which may include, but are not limited to the following cycles: Charging, melting, alloying, refining, slagging, and tapping.

(5) For scrap preheaters, sample only during normal production conditions, which may include, but are not limited to the following cycles: Charging, heating, and discharging.

(6) Determine the total mass of metal charged to the furnace or scrap preheater during each performance test run and calculate the total metal HAP emissions rate (pounds of total metal HAP per ton (lb/ton) of metal charged) using Equation 2 of this section:

Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Josiah Balogun

$$\mathsf{EF}_{\mathsf{TMHAP}} = \mathsf{C}_{\mathsf{TMHAP}} \mathsf{x} \left(\frac{\mathsf{Q}}{\mathsf{M}_{\mathsf{ch}\,\mathsf{arg}\,\mathsf{e}}} \right) \mathsf{x} \left(\frac{\mathsf{t}_{\mathsf{test}}}{7,000} \right) \tag{Eq. 2}$$

Where:

EF_{TMHAP} = Emissions rate of total metal HAP, pounds of total metal HAP per ton (lb/ton) of metal charged;

C_{TMHAP} = Concentration of total metal HAP measured during performance test run, gr/dscf;

Q = Volumetric flow rate of exhaust gas, dscfm;

M_{charge} = Mass of metal charged during performance test run, tons;

t_{test} = Duration of performance test run, minutes; and

7,000 = Unit conversion factor, gr/lb.

(d) To determine compliance with the opacity limit in 63.7690(a)(7) for fugitive emissions from buildings or structures housing any iron and steel foundry emissions source at the iron and steel foundry, follow the procedures in paragraphs (d)(1) and (2) of this section.

(1) Using a certified observer, conduct each opacity test according to the requirements in EPA Method 9 (40 CFR part 60, appendix A) and §63.6(h)(5). The certified observer may identify a limited number of openings or vents that appear to have the highest opacities and perform opacity observations on the identified openings or vents in lieu of performing observations for each opening or vent from the building or structure. Alternatively, a single opacity observation for the entire building or structure may be performed, if the fugitive release points afford such an observation.

(2) During testing intervals when PM performance tests, if applicable, are being conducted, conduct the opacity test such the opacity observations are recorded during the PM performance tests.

(e) To determine compliance with the applicable VOHAP emissions limit in 63.7690(a)(8) for a cupola metal melting furnace or in 63.7690(a)(9) for a scrap preheater, follow the test methods and procedures in paragraphs (e)(1) through (4) of this section.

(1) Determine the VOHAP concentration for each test run according to the test methods in 40 CFR part 60, appendix A that are specified in paragraphs (b)(1)(i) through (v) of this section.

(i) Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. Sampling sites must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(ii) Method 2, 2A, 2C, 2D, 2F, or 2G to determine the volumetric flow rate of the stack gas.

(iii) Method 3, 3A, or 3B to determine the dry molecular weight of the stack gas.

(iv) Method 4 to determine the moisture content of the stack gas.

(v) Method 18 to determine the VOHAP concentration. Alternatively, you may use Method 25 to determine the concentration of total gaseous nonmethane organics (TGNMO) or Method 25A to determine the concentration of total organic compounds (TOC), using hexane as the calibration gas.

(2) Determine the average VOHAP, TGNMO, or TOC concentration using a minimum of three valid test runs. Each test run must include a minimum of 60 continuous operating minutes.

(3) For a cupola metal melting furnace, correct the measured concentration of VOHAP, TGNMO, or TOC for oxygen content in the gas stream using Equation 3 of this section:

$$C_{\text{VOHAP},10\%O_2} = C_{\text{VOHAP}} \left(\frac{10.9\%}{20.9\% - \%O_2} \right)$$
 (Eq. 3)

Where:

 C_{VOHAP} = Concentration of VOHAP in ppmv as measured by Method 18 in 40 CFR part 60, appendix A or the concentration of TGNMO or TOC in ppmv as hexane as measured by Method 25 or 25A in 40 CFR part 60, appendix A; and

 $%O_2 = Oxygen$ concentration in gas stream, percent by volume (dry basis).

(4) For a cupola metal melting furnace, measure the combustion zone temperature of the combustion device with the CPMS required in §63.7740(d) during each sampling run in 15-minute intervals. Determine and record the 15-minute average of the three runs.

(f) Follow the applicable procedures in paragraphs (f)(1) through (3) of this section to determine compliance with the VOHAP emissions limit in 63.7690(a)(10) for automated pallet cooling lines or automated shakeout lines.

(1) Follow these procedures to demonstrate compliance by direct measurement of total hydrocarbons (a surrogate for VOHAP) using a volatile organic compound (VOC) CEMS.

(i) Using the VOC CEMS required in §63.7740(g), measure and record the concentration of total hydrocarbons (as hexane) for 180 continuous operating minutes. You must measure emissions at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(ii) Reduce the monitoring data to hourly averages as specified in §63.8(g)(2).

(iii) Compute and record the 3-hour average of the monitoring data.

(2) As an alternative to the procedures in paragraph (f)(1) of this section, you may demonstrate compliance with the VOHAP emissions limit in 63.7690(a)(10) by establishing a site-specific TOC emissions limit that is correlated to the VOHAP emissions limit according to the procedures in paragraph (f)(2)(i) through (ix) of this section.

(i) Determine the VOHAP concentration for each test run according to the test methods in 40 CFR part 60, appendix A that are specified in paragraph (f)(2)(ii) through (vi) of this section.

(ii) Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. Sampling sites must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(iii) Method 2, 2A, 2C, 2D, 2F, or 2G to determine the volumetric flow rate of the stack gas.

(iv) Method 3, 3A, or 3B to determine the dry molecular weight of the stack gas.

(v) Method 4 to determine the moisture content of the stack gas.

(vi) Method 18 to determine the VOHAP concentration. Alternatively, you may use Method 25 to determine the concentration of TGNMO using hexane as the calibration gas.

(vii) Using the CEMS required in §63.7740(g), measure and record the concentration of total hydrocarbons (as hexane) during each of the Method 18 (or Method 25) sampling runs. You must measure emissions at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(viii) Calculate the average VOHAP (or TGNMO) concentration for the source test as the arithmetic average of the concentrations measured for the individual test runs, and determine the average concentration of total hydrocarbon (as hexane) as measured by the CEMS during all test runs.

(ix) Calculate the site-specific VOC emissions limit using Equation 4 of this section:

$$VOC_{limit} = 20x \frac{C_{VOHAP,avg}}{C_{CEM}}$$
(Eq. 4)

Where:

 $C_{VOHAP,avg}$ = Average concentration of VOHAP for the source test in ppmv as measured by Method 18 in 40 CFR part 60, appendix A or the average concentration of TGNMO for the source test in ppmv as hexane as measured by Method 25 in 40 CFR part 60, appendix A; and

 C_{CEM} = Average concentration of total hydrocarbons in ppmv as hexane as measured using the CEMS during the source test.

(3) For two or more exhaust streams from one or more automated conveyor and pallet cooling lines or automated shakeout lines, compute the flow-weighted average concentration of VOHAP emissions for each combination of exhaust streams using Equation 5 of this section:

$$C_{W} = \frac{\sum_{i=1}^{n} C_{i}Q_{i}}{\sum_{i=1}^{n} Q_{i}}$$
 (Eq. 5)

Where:

 C_{W} = Flow-weighted concentration of VOHAP or VOC, ppmv (as hexane);

C_i = Concentration of VOHAP or VOC from exhaust stream "i", ppmv (as hexane);

n = Number of exhaust streams sampled; and

Q_i = Volumetric flow rate of effluent gas from exhaust stream "i,", dscfm.

(g) To determine compliance with the emissions limit or standard in 63.7690(a)(11) for a TEA cold box mold or core making line, follow the test methods in 40 CFR part 60, appendix A, specified in paragraphs (g)(1) through (4) of this section.

(1) Determine the TEA concentration for each test run according to the test methods in 40 CFR part 60, appendix A that are specified in paragraphs (g)(1)(i) through (v) of this section.

(i) Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. If you elect to meet the 99 percent reduction standard, sampling sites must be located both at the inlet to the control device and at the outlet of the control device prior to any releases to the atmosphere. If you elect to meet the concentration limit, the sampling site must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.

(ii) Method 2, 2A, 2C, 2D, 2F, or 2G to determine the volumetric flow rate of the stack gas.

(iii) Method 3, 3A, or 3B to determine the dry molecular weight of the stack gas.

(iv) Method 4 to determine the moisture content of the stack gas.

(v) Method 18 to determine the TEA concentration. Alternatively, you may use NIOSH Method 2010 (incorporated by reference—see §63.14) to determine the TEA concentration provided the performance requirements outlined in section 13.1 of EPA Method 18 are satisfied. The sampling option and time must be sufficiently long such that either the TEA concentration in the field sample is at least 5 times the limit of detection for the analytical method or the test results calculated using the laboratory's reported analytical detection limit for the specific field samples are less than 1/5 of the applicable emissions limit. When using Method 18, the adsorbent tube approach, as described in section 8.2.4 of Method 18, may be required to achieve the necessary analytical detection limits. The sampling time must be at least 1 hour in all cases.

(2) If you use a wet acid scrubber, conduct the test as soon as practicable after adding fresh acid solution and the system has reached normal operating conditions.

(3) If you use a wet acid scrubber that is subject to the operating limit in (3.7690)(b)(5)(ii) for pH level, determine the pH of the scrubber blowdown using the procedures in paragraph (g)(3)(i) or (ii) of this section.

(i) Measure the pH of the scrubber blowdown with the CPMS required in §63.7740(f)(2) during each TEA sampling run in intervals of no more than 15 minutes. Determine and record the 3-hour average; or

(ii) Measure and record the pH level using the probe and meter required in §63.7740(f)(2) once each sampling run. Determine and record the average pH level for the three runs.

(4) If you are subject to the 99 percent reduction standard, calculate the mass emissions reduction using Equation 6 of this section:

%reduction = $\frac{E_i - E_o}{E_i} \times 100\%$ (Eq. 6)

Where:

E_i = Mass emissions rate of TEA at control device inlet, kilograms per hour (kg/hr); and

 E_o = Mass emissions rate of TEA at control device outlet, kg/hr.

(h) To determine compliance with the PM or total metal HAP emissions limits in §63.7690(a)(1) through
(6) when one or more regulated emissions sources are combined with either another regulated emissions

source subject to a different emissions limit or other non-regulated emissions sources, you may demonstrate compliance using one of the procedures in paragraphs (h)(1) through (3) of this section.

(1) Meet the most stringent applicable emissions limit for the regulated emissions sources included in the combined emissions stream.

(2) Use the procedures in paragraphs (h)(2)(i) through (iii) of this section.

(i) Determine the volumetric flow rate of the individual regulated streams for which emissions limits apply.

(ii) Calculate the flow-weighted average emissions limit, considering only the regulated streams, using Equation 5 of this section, except C_w is the flow-weighted average emissions limit for PM or total metal HAP in the exhaust stream, gr/dscf; and C_i is the concentration of PM or total metal HAP in exhaust stream "i", gr/dscf.

(iii) Meet the calculated flow-weighted average emissions limit for the regulated emissions sources included in the combined emissions stream for the combined emissions stream.

(3) Use the procedures in paragraphs (h)(3)(i) through (iii) of this section.

(i) Determine the PM or total metal HAP concentration of each of the regulated streams prior to the combination with other exhaust streams or control device.

(ii) Measure the flow rate and PM or total metal HAP concentration of the combined exhaust stream both before and after the control device and calculate the mass removal efficiency of the control device using Equation 6 of this section, except E_i is the mass emissions rate of PM or total metal HAP at the control device outlet, lb/hr and E_o is the mass emissions rate of PM or total metal HAP at the control device outlet, lb/hr.

(iii) Meet the applicable emissions limit based on the calculated PM or total metal HAP concentration for the regulated emissions sources using Equation 7 of this section:

$C_{released} = C_i x \left(1 - C_i x \right)$	%reduction	(Eg. 7)
	100	(Eq. 7)

Where:

C_{released}= Calculated concentration of PM (or total metal HAP) predicted to be released to the atmosphere from the regulated emissions source, gr/dscf; and

C_i= Concentration of PM (or total metal HAP) in the uncontrolled regulated exhaust stream, gr/dscf.

(i) To determine compliance with an emissions limit for situations when multiple sources are controlled by a single control device, but only one source operates at a time, or other situations that are not expressly considered in paragraphs (b) through (h) of this section, a site-specific test plan should be submitted to the Administrator for approval according to the requirements in § 63.7(c)(2) and (3).

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7219, February 7, 2008]

§ 63.7733 What procedures must I use to establish operating limits?

(a) For each capture system subject to operating limits in 63.7690(b)(1)(ii), you must establish sitespecific operating limits in your operation and maintenance plan according to the procedures in paragraphs (a)(1) through (3) of this section.

(1) Concurrent with applicable emissions and opacity tests, measure and record values for each of the operating limit parameters in your capture system operation and maintenance plan according to the monitoring requirements in §63.7740(a).

(2) For any dampers that are manually set and remain at the same position at all times the capture system is operating, the damper position must be visually checked and recorded at the beginning and end of each run.

(3) Review and record the monitoring data. Identify and explain any times the capture system operated outside the applicable operating limits.

(b) For each wet scrubber subject to the operating limits in 63.7690(b)(2) for pressure drop and scrubber water flow rate, you must establish site-specific operating limits according to the procedures specified in paragraphs (b)(1) and (2) of this section.

(1) Using the CPMS required in §63.7740(c), measure and record the pressure drop and scrubber water flow rate in intervals of no more than 15 minutes during each PM test run.

(2) Compute and record the average pressure drop and average scrubber water flow rate for each valid sampling run in which the applicable emissions limit is met.

(c) For each combustion device applied to emissions from a scrap preheater or TEA cold box mold or core making line subject to the operating limit in §63.7690(b)(4) for combustion zone temperature, you must establish a site-specific operating limit according to the procedures specified in paragraphs (c)(1) and (2) of this section.

(1) Using the CPMS required in §63.7740(e), measure and record the combustion zone temperature during each sampling run in intervals of no more than 15 minutes.

(2) Compute and record the average combustion zone temperature for each valid sampling run in which the applicable emissions limit is met.

(d) For each acid wet scrubber subject to the operating limit in 63.7690(b)(5), you must establish a sitespecific operating limit for scrubbing liquid flow rate according to the procedures specified in paragraphs (d)(1) and (2) of this section.

(1) Using the CPMS required in §63.7740(f), measure and record the scrubbing liquid flow rate during each TEA sampling run in intervals of no more than 15 minutes.

(2) Compute and record the average scrubbing liquid flow rate for each valid sampling run in which the applicable emissions limit is met.

(e) You may change the operating limits for a capture system, wet scrubber, acid wet scrubber, or combustion device if you meet the requirements in paragraphs (e)(1) through (3) of this section.

(1) Submit a written notification to the Administrator of your request to conduct a new performance test to revise the operating limit.

(2) Conduct a performance test to demonstrate compliance with the applicable emissions limitation in §63.7690.

(3) Establish revised operating limits according to the applicable procedures in paragraphs (a) through (d) of this section.

(f) You may use a previous performance test (conducted since December 22, 2002) to establish an operating limit provided the test meets the requirements of this subpart.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7221, February 7, 2008]

§ 63.7734 How do I demonstrate initial compliance with the emissions limitations that apply to me?

(a) You have demonstrated initial compliance with the emissions limits in §63.7690(a) by meeting the applicable conditions in paragraphs (a)(1) through (11) of this section. When alternative emissions limitations are provided for a given emissions source, you are not restricted in the selection of which applicable alternative emissions limitation is used to demonstrate compliance.

(1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry,

(i) The average PM concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(b), did not exceed 0.005 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.0004 gr/dscf.

(2) For each cupola metal melting furnace at an existing iron and steel foundry,

(i) The average PM concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(b), did not exceed 0.006 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.0005 gr/dscf; or

(iii) The average PM mass emissions rate, determined according to the performance test procedures in §63.7732(b), did not exceed 0.10 pound of PM per ton (lb/ton) of metal charged; or

(iv) The average total metal HAP mass emissions rate, determined according to the performance test procedures in §63.7732(c), did not exceed 0.008 pound of total metal HAP per ton (lb/ton) of metal charged.

(3) For each cupola metal melting furnace or electric arc metal melting furnace at a new iron and steel foundry,

(i) The average PM concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(b), did not exceed 0.002 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.0002 gr/dscf.

(4) For each electric induction metal melting furnace or scrap preheater at a new iron and steel foundry,

(i) The average PM concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(b), did not exceed 0.001 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.00008 gr/dscf.

(5) For each pouring station at an existing iron and steel foundry,

(i) The average PM concentration in the exhaust stream, measured according to the performance test procedures in §63.7732(b), did not exceed 0.010 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.0008 gr/dscf.

(6) For each pouring area or pouring station at a new iron and steel foundry,

(i) The average PM concentration in the exhaust stream, measured according to the performance test procedures in §63.7732(b), did not exceed 0.002 gr/dscf; or

(ii) The average total metal HAP concentration in the exhaust stream, determined according to the performance test procedures in §63.7732(c), did not exceed 0.0002 gr/dscf.

(7) For each building or structure housing any iron and steel foundry emissions source at the iron and steel foundry, the opacity of fugitive emissions from foundry operations discharged to the atmosphere, determined according to the performance test procedures in §63.7732(d), did not exceed 20 percent (6-minute average), except for one 6-minute average per hour that did not exceed 27 percent opacity.

(8) For each cupola metal melting furnace at a new or existing iron and steel foundry, the average VOHAP concentration, determined according to the performance test procedures in §63.7732(e), did not exceed 20 ppmv corrected to 10 percent oxygen.

(9) For each scrap preheater at an existing iron and steel foundry that does not meet the work practice standards in §63.7700(e)(1) or (2) and for each scrap preheater at a new iron and steel foundry that does not meet the work practice standard in §63.7700(f), the average VOHAP concentration determined according to the performance test procedures in §63.7732(e), did not exceed 20 ppmv.

(10) For one or more automated conveyor and pallet cooling lines that use a sand mold system or automated shakeout lines that use a sand mold system at a new foundry,

(i) You have reduced the data from the CEMS to 3-hour averages according to the performance test procedures in 63.7732(f)(1) or (2); and

(ii) The 3-hour flow-weighted average VOHAP concentration, measured according to the performance test procedures in §63.7332(f)(1) or (2), did not exceed 20 ppmv.

(11) For each TEA cold box mold or core making line in a new or existing iron and steel foundry, the average TEA concentration, determined according to the performance test procedures in §63.7732(g), did not exceed 1 ppmv or was reduced by 99 percent.

(b) You have demonstrated initial compliance with the operating limits in §63.7690(b) if:

(1) For each capture system subject to the operating limit in §63.7690(b)(1)(ii),

(i) You have established appropriate site-specific operating limits in your operation and maintenance plan according to the requirements in §63.7710(b); and

(ii) You have a record of the operating parameter data measured during the performance test in accordance with §63.7733(a); and

(2) For each wet scrubber subject to the operating limits in 63.7690(b)(2) for pressure drop and scrubber water flow rate, you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in accordance with 63.7733(b).

(3) For each combustion device subject to the operating limit in 63.7690(b)(3) for combustion zone temperature, you have a record of the combustion zone temperature measured during the performance test in accordance with 63.7732(e)(4).

(4) For each combustion device subject to the operating limit in §63.7690(b)(4) for combustion zone temperature, you have established appropriate site-specific operating limits and have a record of the combustion zone temperature measured during the performance test in accordance with §63.7733(c).

(5) For each acid wet scrubber subject to the operating limits in §63.7690(b)(5) for scrubbing liquid flow rate and scrubber blowdown pH,

(i) You have established appropriate site-specific operating limits for the scrubbing liquid flow rate and have a record of the scrubbing liquid flow rate measured during the performance test in accordance with §63.7733(d); and

(ii) You have a record of the pH of the scrubbing liquid blowdown measured during the performance test in accordance with 63.7732(g)(3).

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7221, February 7, 2008]

§ 63.7735 How do I demonstrate initial compliance with the work practice standards that apply to me?

(a) For each iron and steel foundry subject to the certification requirement in §63.7700(b), you have demonstrated initial compliance if you have certified in your notification of compliance status that: "At all times, your foundry will purchase and use only metal ingots, pig iron, slitter, or other materials that do not include post-consumer automotive body scrap, post-consumer engine blocks, post-consumer oil filters, oily turnings, lead components, mercury switches, plastics, or free organic liquids."

(b) For each iron and steel foundry subject to the requirements in §63.7700(c) for a scrap inspection and selection plan, you have demonstrated initial compliance if you have certified in your notification of compliance status that:

(1) You have submitted a written plan to the Administrator for approval according to the requirements in §63.7700(c); and

(2) You will operate at all times according to the plan requirements.

(c) For each furan warm box mold or core making line in a new or existing foundry subject to the work practice standard in §63.7700(d), you have demonstrated initial compliance if you have certified in your notification of compliance status that:

(1) You will meet the no methanol requirement for the catalyst portion of each binder chemical formulation; and

(2) You have records documenting your certification of compliance, such as a material safety data sheet (provided that it contains appropriate information), a certified product data sheet, or a manufacturer's hazardous air pollutant data sheet, onsite and available for inspection.

(d) For each scrap preheater at an existing iron and steel foundry subject to the work practice standard in §63.7700(e)(1) or (2), you have demonstrated initial compliance if you have certified in your notification of compliance status that:

(1) You have installed a gas-fired preheater where the flame directly contacts the scrap charged, you will operate and maintain each gas-fired scrap preheater such that the flame directly contacts the scrap charged, and you have records documenting your certification of compliance that are onsite and available for inspection; or

(2) You will charge only material that is subject to and in compliance with the scrap certification requirements in §63.7700(b) and you have records documenting your certification of compliance that are onsite and available for inspection.

(e) For each scrap preheater at a new iron and steel foundry subject to the work practice standard in §63.7700(f), you have demonstrated initial compliance if you have certified in your notification of compliance status that you will charge only material that is subject to and in compliance with the scrap certification requirements in §63.7700(b) and you have records documenting your certification of compliance that are onsite and available for inspection.

[69 FR 21923, Apr. 22, 2004, as amended at 70 FR 29404, May 20, 2005]

§ 63.7736 How do I demonstrate initial compliance with the operation and maintenance requirements that apply to me?

(a) For each capture system subject to an operating limit in §63.7690(b), you have demonstrated initial compliance if you have met the conditions in paragraphs (a)(1) and (2) of this section.

(1) You have certified in your notification of compliance status that:

(i) You have submitted the capture system operation and maintenance plan to the Administrator for approval according to the requirements of §63.7710(b); and

(ii) You will inspect, operate, and maintain each capture system according to the procedures in the plan.

(2) You have certified in your performance test report that the system operated during the test at the operating limits established in your operation and maintenance plan.

(b) For each control device subject to an operating limit in §63.7690(b), you have demonstrated initial compliance if you have certified in your notification of compliance status that:

(1) You have submitted the control device operation and maintenance plan to the Administrator for approval according to the requirements of §63.7710(b); and

(2) You will inspect, operate, and maintain each control device according to the procedures in the plan.

(c) For each bag leak detection system, you have demonstrated initial compliance if you have certified in your notification of compliance status that:

(1) You have submitted the bag leak detection system monitoring information to the Administrator within the written O&M plan for approval according to the requirements of §63.7710(b);

(2) You will inspect, operate, and maintain each bag leak detection system according to the procedures in the plan; and

(3) You will follow the corrective action procedures for bag leak detection system alarms according to the requirements in the plan.

(d) For each pouring area and pouring station in a new or existing foundry, you have demonstrated initial compliance if you have certified in your notification of compliance status report that:

(1) You have submitted the mold vent ignition plan to the Administrator for approval according to the requirements in §63.7710(b); and

(2) You will follow the procedures for igniting mold vent gases according to the requirements in the plan.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7221, February 7, 2008]

Continuous Compliance Requirements

§ 63.7740 What are my monitoring requirements?

(a) For each capture system subject to an operating limit in 63.7690(b)(1), you must install, operate, and maintain a CPMS according to the requirements in 63.7741(a) and the requirements in paragraphs (a)(1) and (2) of this section.

(1) If you use a flow measurement device to monitor the operating limit parameter, you must at all times monitor the hourly average rate (e.g., the hourly average actual volumetric flow rate through each separately ducted hood or the average hourly total volumetric flow rate at the inlet to the control device).

(2) Dampers that are manually set and remain in the same position are exempt from the requirement to install and operate a CPMS. If dampers are not manually set and remain in the same position, you must make a visual check at least once every 24 hours to verify that each damper for the capture system is in the same position as during the initial performance test.

(b) For each negative pressure baghouse or positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP emissions limitation in this subpart, you must at all times monitor the relative change in PM loadings using a bag leak detection system according to the requirements in § 63.7741(b).

(c) For each baghouse, regardless of type, that is applied to meet any PM or total metal HAP emissions limitation in this subpart, you must conduct inspections at their specified frequencies according to the requirements specified in paragraphs (c)(1) through (8) of this section.

(1) Monitor the pressure drop across each baghouse cell each day to ensure pressure drop is within the normal operating range identified in the manual.

(2) Confirm that dust is being removed from hoppers through weekly visual inspections or other means of ensuring the proper functioning of removal mechanisms.

(3) Check the compressed air supply for pulse-jet baghouses each day.

(4) Monitor cleaning cycles to ensure proper operation using an appropriate methodology.

(5) Check bag cleaning mechanisms for proper functioning through monthly visual inspections or equivalent means.

(6) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to ensure that bags are not kinked (kneed or bent) or lying on their sides. You do not have to make this check for shaker-type baghouses using self-tensioning (spring-loaded) devices.

(7) Confirm the physical integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks.

(8) Inspect fans for wear, material buildup, and corrosion through quarterly visual inspections, vibration detectors, or equivalent means.

(d) For each wet scrubber subject to the operating limits in §63.7690(b)(2), you must at all times monitor the 3-hour average pressure drop and scrubber water flow rate using CPMS according to the requirements in §63.7741(c).

(e) For each combustion device subject to the operating limit in §63.7690(b)(3), you must at all times monitor the 15-minute average combustion zone temperature using a CPMS according to the requirements of §63.7741(d).

(f) For each combustion device subject to the operating limit in 63.7690(b)(4), you must at all times monitor the 3-hour average combustion zone temperature using CPMS according to the requirements in 63.7741(d).

(g) For each wet acid scrubber subject to the operating limits in §63.7690(b)(5),

(1) You must at all times monitor the 3-hour average scrubbing liquid flow rate using CPMS according to the requirements of §63.7741(e)(1); and

(2) You must at all times monitor the 3-hour average pH of the scrubber blowdown using CPMS according to the requirements in §63.7741(e)(2) or measure and record the pH of the scrubber blowdown once per production cycle using a pH probe and meter according to the requirements in §63.7741(e)(3).

(h) For one or more automated conveyor and pallet cooling lines and automated shakeout lines at a new iron and steel foundry subject to the VOHAP emissions limit in §63.7690(a)(10), you must at all times monitor the 3-hour average VOHAP concentration using a CEMS according to the requirements of §63.7741(g).

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7221, February 7, 2008]

§ 63.7741 What are the installation, operation, and maintenance requirements for my monitors?

(a) For each capture system subject to an operating limit in 63.7690(b)(1), you must install, operate, and maintain each CPMS according to the requirements in paragraphs (a)(1) through (3) of this section.

(1) If you use a flow measurement device to monitor an operating limit parameter for a capture system, you must meet the requirements in paragraphs (a)(1)(i) through (iv) of this section.

(i) Locate the flow sensor and other necessary equipment such as straightening vanes in a position that provides a representative flow and that reduces swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

(ii) Use a flow sensor with a minimum measurement sensitivity of 2 percent of the flow rate.

(iii) Conduct a flow sensor calibration check at least semiannually.

(iv) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(2) If you use a pressure measurement device to monitor the operating limit parameter for a capture system, you must meet the requirements in paragraphs (a)(2)(i) through (vi) of this section.

(i) Locate the pressure sensor(s) in or as close as possible to a position that provides a representative measurement of the pressure and that minimizes or eliminates pulsating pressure, vibration, and internal and external corrosion.

(ii) Use a gauge with a minimum measurement sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the pressure range.

(iii) Check the pressure tap for pluggage daily. If a "non-clogging" pressure tap is used, check for pluggage monthly.

(iv) Using a manometer or equivalent device such as a magnahelic or other pressure indicating transmitter, check gauge and transducer calibration quarterly.

(v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor.

(vi) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(3) Record the results of each inspection, calibration, and validation check.

(b) For each negative pressure baghouse or positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP emissions limitation in this subpart, you must install, operate, and maintain a bag leak detection system according to the requirements in paragraphs (b)(1) through (7) of this section.

(1) The system must be certified by the manufacturer to be capable of detecting emissions of particulate matter at concentrations of 10 milligrams per actual cubic meter (0.0044 grains per actual cubic foot) or less.

(2) The bag leak detection system sensor must provide output of relative particulate matter loadings and the owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger).

(3) The system must be equipped with an alarm that will sound when an increase in relative particulate loadings is detected over the alarm set point established in the operation and maintenance plan, and the alarm must be located such that it can be heard by the appropriate plant personnel.

(4) The initial adjustment of the system must, at minimum, consist of establishing the baseline output by adjusting the sensitivity (range) and the averaging period of the device, and establishing the alarm set points and the alarm delay time (if applicable).

(5) Following the initial adjustment, do not adjust the sensitivity or range, averaging period, alarm set point, or alarm delay time without approval from the Administrator. Except, once per quarter, you may adjust the sensitivity of the bag leak detection system to account for seasonable effects including temperature and humidity according to the procedures in the operation and maintenance plan required by §63.7710(b).

(6) For negative pressure, induced air baghouses, and positive pressure baghouses that are discharged to the atmosphere through a stack, the bag leak detector sensor must be installed downstream of the baghouse and upstream of any wet scrubber.

(7) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.

(c) For each wet scrubber subject to the operating limits in 63.7690(b)(2), you must install and maintain CPMS to measure and record the pressure drop and scrubber water flow rate according to the requirements in paragraphs (c)(1) and (2) of this section.

(1) For each CPMS for pressure drop you must:

(i) Locate the pressure sensor in or as close as possible to a position that provides a representative measurement of the pressure drop and that minimizes or eliminates pulsating pressure, vibration, and internal and external corrosion.

(ii) Use a gauge with a minimum measurement sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the pressure range.

(iii) Check the pressure tap for pluggage daily. If a "non-clogging" pressure tap is used, check for pluggage monthly

(iv) Using a manometer or equivalent device such as a magnahelic or other pressure indicating transmitter, check gauge and transducer calibration quarterly.

(v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor.

(vi) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(2) For each CPMS for scrubber liquid flow rate, you must:

(i) Locate the flow sensor and other necessary equipment in a position that provides a representative flow and that reduces swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

(ii) Use a flow sensor with a minimum measurement sensitivity of 2 percent of the flow rate.

(iii) Conduct a flow sensor calibration check at least semiannually according to the manufacturer's instructions.

(iv) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(d) For each combustion device subject to the operating limit in 63.7690(b)(3) or (4), you must install and maintain a CPMS to measure and record the combustion zone temperature according to the requirements in paragraphs (d)(1) through (8) of this section.

(1) Locate the temperature sensor in a position that provides a representative temperature.

(2) For a noncryogenic temperature range, use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger.

(3) For a cryogenic temperature range, use a temperature sensor with a minimum tolerance of 2.2 °C or 2 percent of the temperature value, whichever is larger.

(4) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.

(5) If you use a chart recorder, it must have a sensitivity in the minor division of at least 20 °F.

(6) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, conduct a temperature sensor validation check, in which a second or redundant temperature sensor placed nearby the process temperature sensor must yield a reading within 16.7 °C of the process temperature sensor's reading.

(7) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range, or install a new temperature sensor.

(8) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(e) For each wet acid scrubber subject to the operating limits in §63.7690(b)(5), you must:

(1) Install and maintain CPMS to measure and record the scrubbing liquid flow rate according to the requirements in paragraph (c)(2) of this section; and

(2) Install and maintain CPMS to measure and record the pH of the scrubber blowdown according to the requirements in paragraph (e)(2)(i) through (iv) of this section.

(i) Locate the pH sensor in a position that provides a representative measurement of the pH and that minimizes or eliminates internal and external corrosion.

(ii) Use a gauge with a minimum measurement sensitivity of 0.1 pH or a transducer with a minimum measurement sensitivity of 5 percent of the pH range.

(iii) Check gauge calibration quarterly and transducer calibration monthly using a manual pH gauge.

(iv) At least monthly, visually inspect all components, including all electrical and mechanical connections, for proper functioning.

(3) As an alternative to the CPMS required in paragraph (e)(2) of this section, you may use a pH probe to extract a sample for analysis by a pH meter that meets the requirements in paragraphs (e)(3)(i) through (iii) of this section.

(i) The pH meter must have a range of at least 1 to 5 or more;

(ii) The pH meter must have an accuracy of ± 0.1 ; and

(iii) The pH meter must have a resolution of at least 0.1 pH.

(f) You must operate each CPMS used to meet the requirements of this subpart according to the requirements specified in paragraphs (f)(1) through (3) of this section.

(1) Each CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of three of the required four data points to constitute a valid hour of data.

(2) Each CPMS must have valid hourly data for 100 percent of every averaging period.

(3) Each CPMS must determine and record the hourly average of all recorded readings and the 3-hour average of all recorded readings.

(g) For each automated conveyor and pallet cooling line and automated shakeout line at a new iron and steel foundry subject to the VOHAP emissions limit in 63.7690(a)(10), you must install, operate, and maintain a CEMS to measure and record the concentration of VOHAP emissions according to the requirements in paragraphs (g)(1) through (3) of this section.

(1) You must install, operate, and maintain each CEMS according to Performance Specification 8 in 40 CFR part 60, appendix B.

(2) You must conduct a performance evaluation of each CEMS according to the requirements of §63.8 and Performance Specification 8 in 40 CFR part 60, appendix B.

(3) You must operate each CEMS according to the requirements specified in paragraph (g)(3)(i) through (iv) of this section.

(i) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period.

(ii) You must reduce CEMS data as specified in §63.8(g)(2).

(iii) Each CEMS must determine and record the 3-hour average emissions using all the hourly averages collected for periods during which the CEMS is not out-of-control.

(iv) Record the results of each inspection, calibration, and validation check.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7221, February 7, 2008]

§ 63.7742 How do I monitor and collect data to demonstrate continuous compliance?

(a) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities (including as applicable, calibration checks and required zero and span adjustments), you must monitor continuously (or collect data at all required intervals) any time a source of emissions is operating.

(b) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emissions or operating levels or to fulfill a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing compliance.

(c) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

§ 63.7743 How do I demonstrate continuous compliance with the emissions limitations that apply to me?

(a) You must demonstrate continuous compliance by meeting the applicable conditions in paragraphs (a)(1) through (12) of this section. When alternative emissions limitations are provided for a given emissions source, you must comply with the alternative emissions limitation most recently selected as your compliance alternative.

(1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry,

(i) Maintaining the average PM concentration in the exhaust stream at or below 0.005 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0004 gr/dscf.

(2) For each cupola metal melting furnace at an existing iron and steel foundry,

(i) Maintaining the average PM concentration in the exhaust stream at or below 0.006 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0005 gr/dscf; or

(iii) Maintaining the average PM mass emissions rate at or below 0.10 pound of PM per ton (lb/ton) of metal charged; or

(iv) Maintaining the average total metal HAP mass emissions rate at or below 0.008 pound of total metal HAP per ton (lb/ton) of metal charged.

(3) For each cupola metal melting furnace or electric arc metal melting furnace at new iron and steel foundry, (i) Maintaining the average PM concentration in the exhaust stream at or below 0.002 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0002 gr/dscf.

(4) For each electric induction metal melting furnace or scrap preheater at a new iron and steel foundry,

(i) Maintaining the average PM concentration in the exhaust stream at or below 0.001 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.00008 gr/dscf.

(5) For each pouring station at an existing iron and steel foundry,

(i) Maintaining the average PM concentration in the exhaust stream at or below 0.010 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0008 gr/dscf.

(6) For each pouring area or pouring station at a new iron and steel foundry,

(i) Maintaining the average PM concentration in the exhaust stream at or below 0.002 gr/dscf; or

(ii) Maintaining the average total metal HAP concentration in the exhaust stream at or below 0.0002 gr/dscf.

(7) For each building or structure housing any iron and steel foundry emissions source at the iron and steel foundry, maintaining the opacity of any fugitive emissions from foundry operations discharged to the atmosphere at or below 20 percent opacity (6-minute average), except for one 6-minute average per hour that does not exceed 27 percent opacity.

(8) For each cupola metal melting furnace at a new or existing iron and steel foundry, maintaining the average VOHAP concentration in the exhaust stream at or below 20 ppmv corrected to 10 percent oxygen.

(9) For each scrap preheater at an existing new iron and steel foundry that does not comply with the work practice standard in §63.7700(e)(1) or (2) and for each scrap preheater at a new iron and steel foundry that does not comply with the work practice standard in §63.7700(f), maintaining the average VOHAP concentration in the exhaust stream at or below 20 ppmv.

(10) For one or more automated conveyor and pallet cooling lines or automated shakeout lines that use a sand mold system at a new iron and steel foundry,

(i) Maintaining the 3-hour flow-weighted average VOHAP concentration in the exhaust stream at or below 20 ppmv;

(ii) Inspecting and maintaining each CEMS according to the requirements of §63.7741(g) and recording all information needed to document conformance with these requirements; and

(iii) Collecting and reducing monitoring data for according to the requirements of §63.7741(g) and recording all information needed to document conformance with these requirements.

(11) For each TEA cold box mold or core making line at a new or existing iron and steel foundry, maintaining a 99 percent reduction in the VOHAP concentration in the exhaust stream or maintaining the average VOHAP concentration in the exhaust stream at or below 1 ppmv.

(12) Conducting subsequent performance tests at least every 5 years for each emissions source subject to an emissions limit for PM, total metal HAP, VOHAP, or TEA in §63.7690(a) and subsequent

performance tests at least every 6 months for each building or structure subject to the opacity limit in §63.7690(a)(7).

(b) You must demonstrate continuous compliance for each capture system subject to an operating limit in (63.7690(b)(1)) by meeting the requirements in paragraphs (b)(1) and (2) of this section.

(1) Operating the capture system at or above the lowest values or settings established for the operating limits in your operation and maintenance plan; and

(2) Monitoring the capture system according to the requirements in §63.7740(a) and collecting, reducing, and recording the monitoring data for each of the operating limit parameters according to the applicable requirements in this subpart.

(c) For each baghouse,

(1) Inspecting and maintaining each baghouse according to the requirements of §63.7740(c)(1) through
 (8) and recording all information needed to document conformance with these requirements; and

(2) If the baghouse is equipped with a bag leak detection system, maintaining records of the times the bag leak detection system sounded, and for each valid alarm, the time you initiated corrective action, the corrective action taken, and the date on which corrective action was completed.

(d) For each wet scrubber that is subject to the operating limits in §63.7690(b)(2), you must demonstrate continuous compliance by:

(1) Maintaining the 3-hour average pressure drop and 3-hour average scrubber water flow rate at levels no lower than those established during the initial or subsequent performance test;

(2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(c) and recording all information needed to document conformance with these requirements; and

(3) Collecting and reducing monitoring data for pressure drop and scrubber water flow rate according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements.

(e) For each combustion device that is subject to the operating limit in §63.7690(b)(3), you must demonstrate continuous compliance by:

(1) Maintaining the 15-minute average combustion zone temperature at a level no lower than 1,300 °F;

(2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(d) and recording all information needed to document conformance with these requirements; and

(3) Collecting and reducing monitoring data for combustion zone temperature according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements.

(f) For each combustion device that is subject to the operating limit in §63.7690(b)(4), you must demonstrate continuous compliance by:

(1) Maintaining the 3-hour average combustion zone temperature at a level no lower that established during the initial or subsequent performance test;

(2) Inspecting and maintaining each CPMS according to the requirements of §63.7741(d) and recording all information needed to document conformance with these requirements; and

(3) Collecting and reducing monitoring data for combustion zone temperature according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements.

(g) For each acid wet scrubber subject to the operating limits in §63.7690(b)(5), you must demonstrate continuous compliance by:

(1) Maintaining the 3-hour average scrubbing liquid flow rate at a level no lower than the level established during the initial or subsequent performance test;

(2) Maintaining the 3-hour average pH of the scrubber blowdown at a level no higher than 4.5 (if measured by a CPMS) or maintaining the pH level of the scrubber blowdown during each production shift no higher than 4.5;

(3) Inspecting and maintaining each CPMS according to the requirements of §63.7741(e) and recording all information needed to document conformance with these requirements; and

(4) Collecting and reducing monitoring data for scrubbing liquid flow rate and scrubber blowdown pH according to the requirements of §63.7741(f) and recording all information needed to document conformance with these requirements. If the pH level of the scrubber blowdown is measured by a probe and meter, you must demonstrate continuous compliance by maintaining records that document the date, time, and results of each sample taken for each production shift.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7222, February 7, 2008]

§ 63.7744 How do I demonstrate continuous compliance with the work practice standards that apply to me?

(a) You must maintain records that document continuous compliance with the certification requirements in §63.7700(b) or with the procedures in your scrap selection and inspection plan required in §63.7700(c). Your records documenting compliance with the scrap selection and inspection plan must include a copy (kept onsite) of the procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing automobile bodies that have had mercury switches removed, as applicable.

(b) You must keep records of the chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making line at a new or existing iron and steel foundry to demonstrate continuous compliance with the requirements in §63.7700(d).

(c) For a scrap preheater at an existing iron and steel foundry, you must operate and maintain each gasfired preheater such that the flame directly contacts the scrap charged to demonstrate continuous compliance with the requirement §63.7700(e)(1). If you choose to meet the work practice standard in §63.7700(e)(2), you must keep records to document that the scrap preheater charges only material that is subject to and in compliance with the scrap certification requirements in §63.7700(b).

(d) For a scrap preheater at a new iron and steel foundry, you must keep records to document that each scrap preheater charges only material that is subject to and in compliance with the scrap certification requirements in §63.7700(b) to demonstrate continuous compliance with the requirement in §63.7700(f).

§ 63.7745 How do I demonstrate continuous compliance with the operation and maintenance requirements that apply to me?

(a) For each capture system and control device for an emissions source subject to an emissions limit in §63.7690(a), you must demonstrate continuous compliance with the operation and maintenance requirements of §63.7710 by:

(1) Making monthly inspections of capture systems and initiating corrective action according to §63.7710(b)(1) and recording all information needed to document conformance with these requirements;

(2) Performing preventative maintenance for each control device according to the preventive maintenance plan required by §63.7710(b)(3) and recording all information needed to document conformance with these requirements;

(3) Operating and maintaining each bag leak detection system according to the site-specific monitoring plan required by §63.7710(b)(4) and recording all information needed to demonstrate conformance with these requirements;

(4) Initiating and completing corrective action for a bag leak detection system alarm according to the corrective action plan required by §63.7710(b)(5) and recording all information needed to document conformance with these requirements; and

(5) Igniting gases from mold vents according to the procedures in the plan required by §63.7710(b)(6). (Any instance where you fail to follow the procedures is a deviation that must be included in your semiannual compliance report.)

(b) You must maintain a current copy of the operation and maintenance plans required by §63.7710(b) onsite and available for inspection upon request. You must keep the plans for the life of the iron and steel foundry or until the iron and steel foundry is no longer subject to the requirements of this subpart.

§ 63.7746 What other requirements must I meet to demonstrate continuous compliance?

(a) Deviations. You must report each instance in which you did not meet each emissions limitation in §63.7690 (including each operating limit) that applies to you. This requirement includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did not meet each work practice standard in §63.7700 and each operation and maintenance requirement of §63.7710 that applies to you. These instances are deviations from the emissions limitations, work practice standards, and operation and maintenance requirements in this subpart. These deviations must be reported according to the requirements of §63.7751.

(b) Startups, shutdowns, and malfunctions. (1) Consistent with the requirements of \$ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with \$ 63.6(e)(1).

(2) The Administrator will determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations according to the provisions in §63.6(e).

[69 FR 21923, Apr. 22, 2004, as amended at 71 FR 20468, Apr. 20, 2006]

§ 63.7747 How do I apply for alternative monitoring requirements for a continuous emissions monitoring system?

(a) You may request an alternative monitoring method to demonstrate compliance with the VOHAP emissions limits in §63.7690(a)(10) for automated pallet cooling lines or automated shakeout lines at a new iron and steel foundry according to the procedures in this section.

(b) You can request approval to use an alternative monitoring method in the notification of construction or reconstruction for new sources, or at any time.

(c) You must submit a monitoring plan that includes a description of the control technique or pollution prevention technique, a description of the continuous monitoring system or method including appropriate operating parameters that will be monitored, test results demonstrating compliance with the emissions limit, operating limit(s) (if applicable) determined according to the test results, and the frequency of measuring and recording to establish continuous compliance. If applicable, you must also include operation and maintenance requirements for the monitors.

(d) The monitoring plan is subject to approval by the Administrator. Use of the alternative monitoring method must not begin until approval is granted by the Administrator.

Notifications, Reports, and Records

§ 63.7750 What notifications must I submit and when?

(a) You must submit all of the notifications required by $\S63.6(h)(4)$ and (5), 63.7(b) and (c); 63.8(e); 63.8(f)(4) and (6); 63.9(b) through (h) that apply to you by the specified dates.

(b) As specified in §63.9(b)(2), if you start up your iron and steel foundry before April 22, 2004, you must submit your initial notification no later than August 20, 2004.

(c) If you start up your new iron and steel foundry on or after April 22, 2004, you must submit your initial notification no later than 120 calendar days after you become subject to this subpart.

(d) If you are required to conduct a performance test, you must submit a notification of intent to conduct a performance test at least 60 calendar days before the performance test is scheduled to begin as required by §63.7(b)(1).

(e) If you are required to conduct a performance test or other initial compliance demonstration, you must submit a notification of compliance status according to the requirements of (0,1)(2)(i). For opacity performance tests, the notification of compliance status may be submitted with the semiannual compliance report in (0,1)(2)(i) and (b) or the semiannual part 70 monitoring report in (0,1)(2)(i).

(1) For each initial compliance demonstration that does not include a performance test, you must submit the notification of compliance status before the close of business on the 30th calendar day following completion of the initial compliance demonstration.

(2) For each initial compliance demonstration that does include a performance test, you must submit the notification of compliance status, including the performance test results, before the close of business on the 60th calendar day following the completion of the performance test according to the requirement specified in §63.10(d)(2).

§ 63.7751 What reports must I submit and when?

(a) Compliance report due dates. Unless the Administrator has approved a different schedule, you must submit a semiannual compliance report to your permitting authority according to the requirements specified in paragraphs (a)(1) through (5) of this section.

(1) The first compliance report must cover the period beginning on the compliance date that is specified for your iron and steel foundry by §63.7683 and ending on June 30 or December 31, whichever date comes first after the compliance date that is specified for your iron and steel foundry.

(2) The first compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date comes first after your first compliance report is due.

(3) Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) Each subsequent compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date comes first after the end of the semiannual reporting period.

(5) For each iron and steel foundry that is subject to permitting regulations pursuant to 40 CFR part 70 or 40 CFR part 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of the dates specified in paragraphs (a)(1) through (4) of this section.

(b) Compliance report contents. Each compliance report must include the information specified in paragraphs (b)(1) through (3) of this section and, as applicable, paragraphs (b)(4) through (8) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a startup, shutdown, or malfunction during the reporting period and you took action consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information in (3.10(d))(5)(i).

(5) If there were no deviations from any emissions limitations (including operating limit), work practice standards, or operation and maintenance requirements, a statement that there were no deviations from the emissions limitations, work practice standards, or operation and maintenance requirements during the reporting period.

(6) If there were no periods during which a continuous monitoring system (including a CPMS or CEMS) was out-of-control as specified by §63.8(c)(7), a statement that there were no periods during which the CPMS was out-of-control during the reporting period.

(7) For each deviation from an emissions limitation (including an operating limit) that occurs at an iron and steel foundry for which you are not using a continuous monitoring system (including a CPMS or CEMS) to comply with an emissions limitation or work practice standard required in this subpart, the compliance

report must contain the information specified in paragraphs (b)(1) through (4) and (b)(7)(i) and (ii) of this section. This requirement includes periods of startup, shutdown, and malfunction.

(i) The total operating time of each emissions source during the reporting period.

(ii) Information on the number, duration, and cause of deviations (including unknown cause) as applicable and the corrective action taken.

(8) For each deviation from an emissions limitation (including an operating limit) or work practice standard occurring at an iron and steel foundry where you are using a continuous monitoring system (including a CPMS or CEMS) to comply with the emissions limitation or work practice standard in this subpart, you must include the information specified in paragraphs (b)(1) through (4) and (b)(8)(i) through (xi) of this section. This requirement includes periods of startup, shutdown, and malfunction.

(i) The date and time that each malfunction started and stopped.

(ii) The date and time that each continuous monitoring system was inoperative, except for zero (low-level) and high-level checks.

(iii) The date, time, and duration that each continuous monitoring system was out-of-control, including the information in §63.8(c)(8).

(iv) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of startup, shutdown, or malfunction or during another period.

(v) A summary of the total duration of the deviations during the reporting period and the total duration as a percent of the total source operating time during that reporting period.

(vi) A breakdown of the total duration of the deviations during the reporting period into those that are due to startup, shutdown, control equipment problems, process problems, other known causes, and unknown causes.

(vii) A summary of the total duration of continuous monitoring system downtime during the reporting period and the total duration of continuous monitoring system downtime as a percent of the total source operating time during the reporting period.

(viii) A brief description of the process units.

(ix) A brief description of the continuous monitoring system.

(x) The date of the latest continuous monitoring system certification or audit.

(xi) A description of any changes in continuous monitoring systems, processes, or controls since the last reporting period.

(c) Immediate startup, shutdown, and malfunction report. If you had a startup, shutdown, or malfunction during the semiannual reporting period that was not consistent with your startup, shutdown, and malfunction plan and the source exceeds any applicable emissions limitation in § 63.7690, you must submit an immediate startup, shutdown, and malfunction report according to the requirements of §63.10(d)(5)(ii).

(d) Part 70 monitoring report. If you have obtained a title V operating permit for an iron and steel foundry pursuant to 40 CFR part 70 or 40 CFR part 71, you must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If you submit a compliance report for an iron and steel foundry along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If you submit a compliance report for an iron and steel foundry along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the compliance report includes all the required information concerning deviations from any emissions limitation or operation and maintenance requirement in this subpart, submission of the compliance report satisfies any obligation to report the same deviations in the semiannual monitoring report. However, submission of a compliance report does not otherwise affect any obligation you may have to report deviations from permit requirements for an iron and steel foundry to your permitting authority.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7222, February 7, 2008]

§ 63.7752 What records must I keep?

(a) You must keep the records specified in paragraphs (a)(1) through (4) of this section:

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any initial notification or notification of compliance status that you submitted, according to the requirements of §63.10(b)(2)(xiv).

(2) The records specified in §63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.

(3) Records of performance tests and performance evaluations as required by §63.10(b)(2)(viii).

(4) Records of the annual quantity of each chemical binder or coating material used to coat or make molds and cores, the Material Data Safety Sheet or other documentation that provides the chemical composition of each component, and the annual quantity of HAP used in these chemical binder or coating materials at the foundry as calculated from the recorded quantities and chemical compositions (from Material Data Safety Sheets or other documentation).

(b) You must keep the following records for each CEMS.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Request for alternatives to relative accuracy tests for CEMS as required in §63.8(f)(6)(i).

(4) Records of the date and time that each deviation started and stopped, and whether the deviation occurred during a period of startup, shutdown, or malfunction or during another period.

(c) You must keep the records required by §§63.7743, 63.7744, and 63.7745 to show continuous compliance with each emissions limitation, work practice standard, and operation and maintenance requirement that applies to you.

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7222, February 7, 2008]

§ 63.7753 In what form and for how long must I keep my records?

(a) You must keep your records in a form suitable and readily available for expeditious review, according to the requirements of §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record according to the requirements in §63.10(b)(1). You can keep the records for the previous 3 years offsite.

Other Requirements and Information

§ 63.7760 What parts of the General Provisions apply to me?

Table 1 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you.

§ 63.7761 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by us, the U.S. Environmental Protection Agency (EPA), or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that cannot be delegated to State, local, or tribal agencies are specified in paragraphs (c)(1) through (4) of this section.

(1) Approval of alternatives to non-opacity emissions limitations in §63.7690 and work practice standards in §63.7700 under §63.6(g).

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

Definitions

§ 63.7765 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA), in §63.2, and in this section.

Automated conveyor and pallet cooling line means any dedicated conveyor line or area used for cooling molds received from pouring stations.

Automated shakeout line means any mechanical process unit designed for and dedicated to separating a casting from a mold. These mechanical processes include, but are not limited to, shaker decks, rotary separators, and high-frequency vibration units. Automated shakeout lines do not include manual

processes for separating a casting from a mold, such as personnel using a hammer, chisel, pick ax, sledge hammer, or jackhammer.

Bag leak detection system means a system that is capable of continuously monitoring relative particulate matter (dust) loadings in the exhaust of a baghouse to detect bag leaks and other upset conditions. A bag leak detection system includes, but is not limited to, an instrument that operates on triboelectric, electrodynamic, light scattering, light transmittance, or other effect to continuously monitor relative particulate matter loadings.

Binder chemical means a component of a system of chemicals used to bind sand together into molds, mold sections, and cores through chemical reaction as opposed to pressure.

Capture system means the collection of components used to capture gases and fumes released from one or more emissions points and then convey the captured gas stream to a control device or to the atmosphere. A capture system may include, but is not limited to, the following components as applicable to a given capture system design: duct intake devices, hoods, enclosures, ductwork, dampers, manifolds, plenums, and fans.

Cold box mold or core making line means a mold or core making line in which the formed aggregate is hardened by catalysis with a gas.

Combustion device means an afterburner, thermal incinerator, or scrap preheater.

Conveyance means the system of equipment that is designed to capture pollutants at the source, convey them through ductwork, and exhaust them using forced ventilation. A conveyance may, but does not necessarily include, control equipment designed to reduce emissions of the pollutants. Emissions that are released through windows, vents, or other general building ventilation or exhaust systems are not considered to be discharged through a conveyance.

Cooling means the process of molten metal solidification within the mold and subsequent temperature reduction prior to shakeout.

Cupola means a vertical cylindrical shaft furnace that uses coke and forms of iron and steel such as scrap and foundry returns as the primary charge components and melts the iron and steel through combustion of the coke by a forced upward flow of heated air.

Deviation means any instance in which an affected source or an owner or operator of such an affected source:

(1) Fails to meet any requirement or obligation established by this subpart including, but not limited to, any emissions limitation (including operating limits), work practice standard, or operation and maintenance requirement;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any iron and steel foundry required to obtain such a permit; or

(3) Fails to meet any emissions limitation (including operating limits) or work practice standard in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart. A deviation is not always a violation. The determination of whether a deviation constitutes a violation of the standard is up to the discretion of the entity responsible for enforcement of the standards.

Electric arc furnace means a vessel in which forms of iron and steel such as scrap and foundry returns are melted through resistance heating by an electric current flowing through the arcs formed between the electrodes and the surface of the metal and also flowing through the metal between the arc paths.

Electric induction furnace means a vessel in which forms of iron and steel such as scrap and foundry returns are melted though resistance heating by an electric current that is induced in the metal by passing an alternating current through a coil surrounding the metal charge or surrounding a pool of molten metal at the bottom of the vessel.

Emissions limitation means any emissions limit or operating limit.

Exhaust stream means gases emitted from a process through a conveyance as defined in this subpart.

Free organic liquids means material that fails the paint filter test by EPA Method 9095A (incorporated by reference—see §63.14). That is, if any portion of the material passes through and drops from the filter within the 5-minute test period, the material contains free liquids.

Fresh acid solution means a sulfuric acid solution used for the control of triethylamine emissions that has a pH of 2.0 or less.

Fugitive emissions means any pollutant released to the atmosphere that is not discharged through a conveyance as defined in this subpart.

Furan warm box mold or core making line means a mold or core making line in which the binder chemical system used is that system commonly designated as a furan warm box system by the foundry industry.

Hazardous air pollutant means any substance on the list originally established in 112(b)(1) of the CAA and subsequently amended as published in the Code of Federal Regulations.

Iron and steel foundry means a facility or portion of a facility that melts scrap, ingot, and/or other forms of iron and/or steel and pours the resulting molten metal into molds to produce final or near final shape products for introduction into commerce. Research and development facilities and operations that only produce non-commercial castings are not included in this definition.

Metal melting furnace means a cupola, electric arc furnace, or electric induction furnace that converts scrap, foundry returns, and/or other solid forms of iron and/or steel to a liquid state. This definition does not include a holding furnace, an argon oxygen decarburization vessel, or ladle that receives molten metal from a metal melting furnace, to which metal ingots or other material may be added to adjust the metal chemistry.

Mold or core making line means the collection of equipment that is used to mix an aggregate of sand and binder chemicals, form the aggregate into final shape, and harden the formed aggregate. This definition does not include a line for making green sand molds or cores.

Mold vent means an intentional opening in a mold through which gases containing pyrolysis products of organic mold and core constituents produced by contact with or proximity to molten metal normally escape the mold during and after metal pouring.

Off blast means those periods of cupola operation when the cupola is not actively being used to produce molten metal. Off blast conditions include cupola startup when air is introduced to the cupola to preheat the sand bed and other cupola startup procedures as defined in the startup, shutdown, and malfunction plan. Off blast conditions also include idling conditions when the blast air is turned off or down to the point that the cupola does not produce additional molten metal.

On blast means those periods of cupola operation when combustion (blast) air is introduced to the cupola furnace and the furnace is capable of producing molten metal. On blast conditions are characterized by both blast air introduction and molten metal production.

Pouring area means an area, generally associated with floor and pit molding operations, in which molten metal is brought to each individual mold. Pouring areas include all pouring operations that do not meet the definition of a pouring station.

Pouring station means the fixed location to which molds are brought in a continuous or semicontinuous manner to receive molten metal, after which the molds are moved to a cooling area.

Responsible official means responsible official as defined in §63.2.

Scrap preheater means a vessel or other piece of equipment in which metal scrap that is to be used as melting furnace feed is heated to a temperature high enough to eliminate volatile impurities or other tramp materials by direct flame heating or similar means of heating. Scrap dryers, which solely remove moisture from metal scrap, are not considered to be scrap preheaters for purposes of this subpart.

Scrubber blowdown means liquor or slurry discharged from a wet scrubber that is either removed as a waste stream or processed to remove impurities or adjust its composition or pH before being returned to the scrubber.

Total metal HAP means, for the purposes of this subpart, the sum of the concentrations of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium as measured by EPA Method 29 (40 CFR part 60, appendix A). Only the measured concentration of the listed analytes that are present at concentrations exceeding one-half the quantitation limit of the analytical method are to be used in the sum. If any of the analytes are not detected or are detected at concentrations less than one-half the quantitation limit of the analytical method, the concentration of those analytes will be assumed to be zero for the purposes of calculating the total metal HAP for this subpart.

Work practice standard means any design, equipment, work practice, or operational standard, or combination thereof, that is promulgated pursuant to section 112(h) of the CAA.

[69 FR 21923, Apr. 22, 2004, as amended at 70 FR 29404, May 20, 2005; 73 FR 7222, February 7, 2008]

Table 1 to Subpart EEEEE of Part 63—Applicability of General Provisions to Subpart EEEEE

Citation	Subject	Applies to Subpart EEEEE?	Explanation
63.1	Applicability	Yes	
63.2	Definitions	Yes	
63.3	Units and abbreviations	Yes	
63.4	Prohibited activities	Yes	
63.5	Construction/reconstruction	Yes	

[As stated in §63.7760, you must meet each requirement in the following table that applies to you.]

	-			
63.6(a)–(g)	Compliance with standards and maintenance requirements	Yes		
63.6(h)	Opacity and visible emissions standards	Yes		
63.6(i)–(j)	Compliance extension and Presidential compliance exemption	Yes		
63.7(a)(1)–(a)(2)	Applicability and performance test dates	No	Subpart EEEEE specifies applicability and performance test dates.	
63.7(a)(3), (b)–(h)	Performance testing requirements	Yes		
63.8(a)(1)–(a)(3), (b), (c)(1)–(c)(3), (c)(6)–(c)(8), (d), (e), (f)(1)–(f)(6), (g)(1)– (g)(4)	Monitoring requirements	Yes	Subpart EEEEE specifies requirements for alternative monitoring systems.	
63.8(a)(4)	Additional monitoring requirements for control devices in §63.11	No	Subpart EEEEE does not require flares.	
63.8(c)(4)	Continuous monitoring system (CMS) No Subpart EEEEE sp requirements CMS and CEMS.			
63.8(c)(5)	Continuous opacity monitoring system No (COMS) Minimum Procedures		Subpart EEEEE does not require COMS.	
63.8(g)(5)	Data reduction	No	Subpart EEEEE specifies data reduction requirements	
63.9	Notification requirements	Yes	Except: for opacity performance tests, Subpart EEEEE allows the notification of compliance status to be submitted with the semiannual compliance report or the semiannual part 70 monitoring report.	
	requirements §63.10(c)(1)–(6)		Additional records for CMS in §63.10(c)(1)–(6), (9)–(15) apply only to CEMS.	
63.10(c)(7)–(8)			Subpart EEEEE specifies records requirements.	
63.10(d)(3)	Reporting opacity or visible emissions observations	Yes		
63.10(e)(3)	Excess emissions reports	No	Subpart EEEEE specifies reporting requirements.	
63.10(e)(4)	Reporting COMS data	No	Subpart EEEEE data does	

			not require COMS.
63.11	Control device requirements	No	Subpart EEEEE does not require flares.
63.12	State authority and delegations	Yes	
63.13–63.15	Addresses of State air pollution control agencies and EPA regional offices. Incorporation by reference. Availability of information and confidentiality	Yes	

[69 FR 21923, Apr. 22, 2004, as amended at 73 FR 7223, February 7, 2008]

Indiana Department of Environmental Management Office of Air Quality

Technical Support Document (TSD) for a Part 70 Significant Source and Significant Permit Modification.

Source Description and Location

Source Name:

Source Location: County: SIC Code: Operation Permit No.: Operation Permit Issuance Date: Significant Source Modification No.: Significant Permit Modification No.: Permit Reviewer: Dalton Corporation, Warsaw Manufacturing Facility 1900 E. Jefferson Street, Warsaw, IN 46580 Kosciusko 3321 T 085-6708-00003 May 9, 2007 085-25816-00003 085-25836-00003 Josiah Balogun/ Mehul Sura

Existing Approvals

The source was issued Part 70 Operating Permit No. T085-6708-00003 on May 9, 2007. The source has not received any approval after May 9, 2007:

County Attainment Status

The source is located in Kosciusko County.

Pollutant	Designation
SO ₂	Better than national standards.
CO	Unclassifiable or attainment effective November 15, 1990.
O ₃	Unclassifiable or attainment as of June 15, 2004, for the 8-hour ozone standard. ¹
PM ₁₀	Unclassifiable effective November 15, 1990.
NO ₂	Cannot be classified or better than national standards.
Pb	Not designated.
¹ Unclassifiable	or attainment effective October 18, 2000, for the 1-hour ozone standard which

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005.

- (a) Ozone Standards
 - (1) On October 25, 2006, the Indiana Air Pollution Control Board finalized a rule revision to 326 IAC 1-4-1 revoking the one-hour ozone standard in Indiana.
 - (2) Volatile organic compounds (VOC) and Nitrogen Oxides (NOx) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOx emissions are considered when evaluating the rule applicability relating to ozone. Kosciusko County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

- (b) PM2.5 Kosciusko County has been classified as attainment for PM2.5. U.S. EPA has not yet established the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2 for PM2.5 emissions. Therefore, until the U.S. EPA adopts specific provisions for PSD review for PM2.5 emissions, it has directed states to regulate PM10 emissions as a surrogate for PM2.5 emissions.
- (c) Other Criteria Pollutants Kosciusko County has been classified as attainment or unclassifiable in Indiana for all other pollutant. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.
- (d) Fugitive Emissions Since this type of operation is in one of the twenty-eight (28) listed source categories under 326 IAC 2-2, fugitive emissions are counted toward the determination of PSD and applicability.

Source Status

The table below summarizes the potential to emit of the entire source, prior to the proposed modification, after consideration of all enforceable limits established in the effective permits:

Pollutant	Emissions (tons/year)
PM	greater than 100
PM10	greater than 100
SO ₂	greater than 100
VOC	greater than 100
CO	greater than 100
NO _x	less than 100

- (a) This existing source is a major stationary source, under PSD (326 IAC 2-2), because a regulated pollutant is emitted at a rate of 100 tons per year or more, and it is one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(gg)(1).
- (b) These emissions are based upon Part 70 Operating Permit No. T085-6708-00003 issued on May 9, 2007

The table below summarizes the potential to emit HAPs for the entire source, after consideration of all enforceable limits established in the effective permits:

HAPs	Potential To Emit (ton/yr)
Single HAP	greater than 10
Total HAPs	greater than 25

This existing source is a major source of HAPs, as defined in 40 CFR 63.41, because HAP emissions are greater than ten (10) tons per year for a single HAP and greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

Description of Proposed Modification

On August 11, 2006 IDEM, issued a letter to the Indiana Cast Metal Association stating that IDEM had been made aware of certain previously unknown or unidentified carbon monoxide (CO) emissions, which are generated by pouring, cooling and shakeout operations at the foundries. The letter offered an opportunity (consistent with IDEM's Self-Disclosure and Environmental Audit Policy) to the foundry facilities to identify and disclose potential violations related to CO emissions from pouring, cooling and shakeout operations. The letter also stated that IDEM would not seek any either gravity -based or economic benefit of non-compliance based civil penalties against such sources. After December 31, 2007, IDEM would resume its normal compliance and enforcement activities related to the foundry sector.

Dalton Corporation, Warsaw Manufacturing Facility evaluated CO emissions from its Pouring, Cooling and Shakeout (PCS) operations at the source and submitted an application on December 31, 2007 to IDEM which indicated that CO emissions from its PCS operations exceed the significant level for CO.

IDEM reviewed the application and determined that the Pouring, Cooling and Shakeout operations from the Herman 3 Mold Line are subject to the requirements of 326 IAC 2-2 (PSD), because these PCS operations were constructed in the year 1991 which is after August 1977, the applicability date for PSD and the increase in CO emissions from the project exceeded the significant level for PSD. The remaining PCS operations at the source were constructed before the effective date of the PSD regulation and were not modified after the effective date of the PSD rule; therefore 326 IAC 2-2 (PSD) requirements are not applicable to PCS operations.

Through this modification:

- (a) the CO emissions from the Pouring, Cooling and Shakeout operations at the Herman 3 Mold Line will be reviewed pursuant to 326 IAC 2-2 (PSD), and
- (b) the existing operating conditions of the Pouring, Cooling and Shakeout operations of the Herman 3 Mold Line in the Part 70 Operating Permit will be modified

Enforcement Issues

There are no pending enforcement actions related to this modification.

Emission Calculations

See Appendix A of this document for detailed emission calculations.

Permit Level Determination – Part 70

Pursuant to 326 IAC 2-1.1-1(16), Potential to Emit is defined as "the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency."

The following table is used to determine the appropriate permit level under 326 IAC 2-7-10.5. This table reflects the PTE before controls. Control equipment is not considered federally enforceable until it has been required in a federally enforceable permit.

Pollutant	Potential To Emit (tons/year)
PM	371.7
PM10	258.93
SO ₂	0
VOC	539.33
CO	5072.04
NO _x	0

The modification is subject to PSD review for CO emissions from Pouring, Cooling and Shakeout operations because the uncontrolled CO emissions from pouring, cooling and shakeout operations at Herman 3 Mold Line exceeds one hundred (100) tons per year. Therefore, this source modification shall be processed as PSD/Significant Source Modification pursuant to 326 IAC 2-7-10.5(f)(1) and (7). Additionally, the modification will be incorporated into the Part 70 Operating Permit through a significant permit modification issued pursuant to 326 IAC 2-7-12(d), because modifying the existing operating conditions of the Pouring, Cooling and Shakeout operations of the Herman 3 Mold Line in the Part 70 Operating Permit requires a case-by-case determination of an emission limitation in Part 70 Operating Permit.

Permit Level Determination – PSD

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of this Part 70 permit modification, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

Process/Emission Unit	PM (tons/yr)	PM10 (tons/yr)	SO ₂ (tons/yr)	VOC (tons/yr)	CO (tons/yr)	NO _X (tons/yr)
Herman 3 Mold Line Pouring	5.33	2.37	0	7.38	81.58	0
Herman 3 Mold Line Cooling	13.05	8.87	0	16.30	130.43	0
Herman 3 Mold Line Shakeout	1.54	2.63	0	5.21	59.8	0
Total for Modification	19.91	13.87	0	28.89	271.73	0
Significant Level	25	15	40	40	100	40

This modification to an existing major stationary source is major because the emissions increase of CO is greater than the PSD significant level. Therefore, pursuant to 326 IAC 2-2, the PSD requirements will apply.

There are no other significant increases in emissions of other pollutants from Herman 3 Mold Line Pouring, Cooling and Shakeout operations.

Federal Rule Applicability Determination

- (a) There are no New Source Performance Standards (NSPS)(326 IAC 12 and 40 CFR Part 60) applicable to this proposed modification.
- (b) There are no National Emission Standards for Hazardous Air Pollutants (NESHAPs) (326 IAC 14, 326 IAC 20 and 40 CFR Part 63) applicable to this proposed modification.
- (c) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to new or modified emission units that involve a pollutant-specific emission unit and meet the following criteria:
 - (1) has a potential to emit before controls equal to or greater than the major source threshold for the pollutant involved;
 - (2) is subject to an emission limitation or standard for that pollutant; and
 - (3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

The following table is used to identify the applicability of each of the criteria, under 40 CFR 64.1, to each new or modified emission unit involved:

Emission Unit	Control Device Used	Emission Limitation (Y/N)	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	Major Source Threshold (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)
Herman 3 Mold Line Pouring (CO)	Ν	Y	81.52	81.52	100	N	N
Herman 3 Mold Line Cooling (CO)	Ν	Y	130.43	130.43	100	N	N
Herman 3 Mold Line Shakeout (CO)	Ν	Y	59.8	59.8	100	N	N

Based on this evaluation, the requirements of 40 CFR Part 64, CAM are not applicable to Herman 3 Mold Line - Pouring, Cooling and Shaking operations as part of this modification.

State Rule Applicability Determination

The following state rules are applicable to the source due to the modification:

326 IAC 2-2 (PSD)

PSD applicability is discussed under the Permit Level Determination - PSD section.

326 IAC 2-2-3 (PSD BACT: Control Technology Review Requirements)

Pursuant to 326 IAC 2-2-3 (Prevention of Significant Deterioration (PSD)), the following is determined as Best Available Control Technology (BACT) for carbon monoxide (CO) for the Herman 3 Mold Line pouring, cooling and shakeout operation:

Operation	CO Emission Limits
Pouring	1.8 lb/ton iron
Cooling	2.88 lb/ton iron
Shakeout	1.32 lb/ton iron

326 IAC 2-2-4 (Air Quality Analysis Requirements)

Section (4)(a) of this rule, requires that the PSD application shall contain an analysis of ambient air quality in the area that the major stationary source would affect for pollutants that are emitted at major levels or significant amount. Dalton Corporation, Warsaw Manufacturing Facility has submitted air quality analysis, which has been evaluated by IDEM, OAQ.

NAAQS modeling for the appropriate time-averaging periods for CO was conducted and compared to the respective NAAQs limit. OAQ modeling results are shown in Table 5. All maximum-modeled concentrations were compared to the respective NAAQS limit. All maximum-modeled concentrations during the five years were below the NAAQS limits and further modeling was not required.

326 IAC 2-2-5 (Air Quality Impact Requirements)

326 IAC 2-2-5(e)(1) of this rule, requires that the air quality impact analysis required by this section shall be conducted in accordance with the following provisions:

- (1) Any estimates of ambient air concentrations used in the demonstration processes required by this section shall be based upon the applicable air quality models, data bases, and other requirements specified in 40 CFR Part 51, Appendix W (Requirements for Preparation, Adoption, and Submittal of Implementation Plans, Guideline on Air Quality Models)*.
- (2) Where an air quality impact model specified in the guidelines cited in subdivision (1) is inappropriate, a model may be modified or another model substituted provided that all applicable guidelines are satisfied.
- (3) Modifications or substitution of any model may only be done in accordance with guideline documents and with written approval from U.S. EPA and shall be subject to public comment procedures set forth in 326 IAC 2-1.1-6.

Economic Growth

The purpose of the growth analysis is to quantify project associated growth and estimate the air quality impacts from this growth either quantitatively or qualitatively.

No new construction is part of this application. No commercial growth is anticipated to occur. Since the area is predominately rural, it is not expected the growth impacts will cause a violation of the NAAQS.

Soils and Vegetation Analysis

A list of soil types present in the general area was determined. Soil types include the following: Sandy and Loamy Lacustrine deposits and Eolian sand, Alluvial and Outwash deposits, Eolian sand deposits.

Due to the agricultural nature of the land, crops in the Kosciusko County area consist mainly of corn, sorghum, wheat, soybeans, and oats (2002 Agricultural Census for Kosciusko County). The maximum modeled concentrations for Dalton are well below the threshold limits necessary to have adverse impacts on the surrounding vegetation such as autumn bent, nimblewill, barnyard grass, bishopscap and horsetail, and milkweed (Flora of Indiana – Charles Deam). Livestock in Kosciusko County consist mainly of hogs, cattle, and sheep (2002 Agricultural Census for Kosciusko County) and will not be adversely impacted from the facility. Trees in the area are mainly hardwoods. These are hardy trees and no significant adverse impacts are expected due to modeled concentrations.

Federal and State Endangered Species Analysis

Federal and state endangered or threatened species are listed by the U.S. Fish and Wildlife Service; Division of Endangered Species for Indiana and includes 5 amphibians, 27 birds, 10 fishes, 7 mammals, 15 mollusks, and 15 reptiles. Of the federal and state endangered species on the list, 2 amphibians, 7 reptiles, 16 mollusks, 7 fish, 18 birds, and 4 mammals have habitat within Kosciusko County. The mollusks, fish, amphibians and certain species of birds and mammals are found along rivers and lakes while the other species of birds and mammals are found in forested areas. The facility is not expected to have any additional adverse effects on the habitats of the species than what has already occurred from the industrial, farming, and residential activities in the area. Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Mehul Sura /Josiah Balogun

Federal and state endangered or threatened plants are listed by the U.S. Fish and Wildlife Service, Division of Endangered Species for Indiana. They list 22 state significant species of plants. At this time no federally endangered plant species are found in Kosciusko County. The endangered plants do not thrive in industrialized and residential areas. The facility is not expected to adversely affect any plant on the endangered species list.

326 IAC 2-2-7 (Additional Analysis, Requirements)

326 IAC 2-2-7(a) requires an analysis of the impairment to visibility, soils and vegetation. An analysis of the air quality impact projected for the area as a result of general commercial, residential, industrial, and other growth associated with the source.

The results of the additional impact analysis conclude the operation of the facility will have no significant impact on economic growth, soils or vegetation in the immediate vicinity or on any Class I area. CO is not a pollutant that affects visibility, the visibility analysis was not necessary for this application.

326IAC 2-2-10 (Source Information)

The Permittee has submitted all information necessary to perform analysis or make the determination required under this rule.

326 IAC 2-2-12 (Permit Rescission)

The permit issued under this rule shall remain in effect unless and until it is rescinded, modified, revoked, or it expires in accordance with 326 IAC 2-1.1.-9.5 or section 8 of this rule.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to ensure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source's failure to take the appropriate corrective actions within a specific time period.

There are no Compliance Determination and Monitoring Requirements applicable to this modification at this time:

Proposed Changes

The changes listed below have been made to Part 70 Operating Permit No. 085-6708-00003. Deleted language appears as strikethroughs and new language appears in **bold**:

Change 1 The citation for Condition D.4.1 has been revised. The sand handling sand throughput limit for Herman 1, 2 and 3 has been deleted from Condition D.4.1 and the CO BACT has been added to Condition D.4.1.

SECTION D.4

FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.4.1 VOC and CO PSD and BACT Requirements [326 IAC 2-2-3] [326 IAC 8-1-6] [326 IAC 2-7-6(3)] [326 IAC 2-7-15]
 - (a) Pursuant to SSM 085-18009-00003, issued on December 9, 2003, and the requirements of 326 IAC 2-2-3 (PSD) and 326 IAC 8-1-6 (General Reduction Requirements for New Facilities), the Best Available Control Technology (BACT) shall consist of the following:
 - (a1) Metal Throughput Limit The amount of metal throughput to the Herman 3 Mold Line shall not exceed 90,578 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of metal throughput is the same as the metal throughput limit specified in Condition D.4.2 – PM, PM_{10} , and Lead PSD Minor Limits.

- (**b2**) Sand Throughput Limits:
- (1) The amount of sand throughput to the Herman 3 Mold Line shall not exceed 543,470 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of sand throughput is the same as the sand throughput limit specified in Condition D.4.2 – PM, PM_{10} , and Lead PSD Minor Limits.

- (2) The combined amount of core and mold sand handled for the:
 - (A) Herman 1 Sand Handling,
 - (B) Herman 2 Sand Handling, and
 - (C) Herman 3 Sand Handling

shall be limited to 1,127,516 tons of sand per twelve (12) consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This core and mold sand limitation is for the Herman 1, Herman 2, and Herman 3 Sand Handling combined.

- (c3) VOC Limits and Standards
 - (4A) The VOC emissions from the Herman 3 Pouring Station shall not exceed 0.163 pounds per ton of metal.
 - (2B) The VOC emissions from the Herman 3 Castings Cooling process shall not exceed 0.36 pounds per ton of metal. The Department may revise this permit to adjust the VOC limitation based upon the results of the stack test required in Condition D.4.76. The Department will provide an opportunity for public notice and comment prior to finalizing any permit revision. IC 13-15-7-3 (Revocation or Modification of a Permit: Appeal to Board) shall apply to this permit condition.
 - (**3C**) The combined VOC emissions from the Herman 3 Shakeout and Herman 3 Sand Handling operations shall not exceed 0.115 pounds per ton of metal and sand total.

This VOC limitation is for the Herman 3 Shakeout and Herman 3 Sand Handling combined.

- (4D) The VOC emissions from the Herman 3 Mold Line shall be reduced through the continuous use of the Sonoperoxone[®] system or an equivalent system, sand system optimization, low VOC core resin binder materials, and automatic mold vent-off gas ignition.
- (b) Pursuant to PSD/SSM 085-25816-00003 and 326 IAC 2-2-3 (PSD), Best Available Control Technology (BACT for Herman 3 Pouring, Cooling and Shakeout), the Permittee shall comply with the following:

Emission Units	CO Limits (Pounds per ton metal)
Herman 3 Mold Pouring	1.80
Herman 3 Casting Cooling	2.88
Herman 3 Shakeout	1.32

- Change 2 The citation for Condition D.4.2 has been revised. The existing sand handling sand throughput limit for Herman 1, 2 and 3 has been updated in Condition D.4.2.
- D.4.2 PM, PM₁₀, and Lead PSD Minor Limits [326 IAC 2-2]
 - (a) Pursuant to SSM 085-18009-00003, issued on December 9, 2003, and in order to render the requirements of 326 IAC 2-2 (PSD) not applicable for PM, PM₁₀, and lead emissions, the following conditions shall apply:
 - (a1) Metal Throughput Limit The amount of metal throughput to the Herman 3 Mold Line shall not exceed 90,578 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of metal throughput is the same as the metal throughput limit specified in Condition D.4.1 – VOC and CO PSD and BACT Requirements.

- (**b2**) Sand Throughput Limits:
 - (1) The amount of sand throughput to the Herman 3 Mold Line shall not exceed 543,470 tons per 12 consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This limitation on the amount of sand throughput is the same as the sand throughput limit specified in Condition D.4.1 – VOC and CO PSD and BACT Requirements.

(g3) Herman 3 Mold Line Lead Emissions

The combined lead emissions from the Herman 3 Mold Line shall not exceed 0.013 pounds per ton of metal throughput.

(b) Pursuant to SSM 085-14027-00003, issued on February 22, 2002:

(1) Sand Throughput Limits:

- (2A) The combined amount of core and mold sand handled for the:
 - (A1) Herman 1 Sand Handling,
 - (B2) Herman 2 Sand Handling, and
 - (C3) Herman 3 Sand Handling

shall be limited to 1,127,516 tons of sand per twelve (12) consecutive month period, rolled on a monthly basis, with compliance determined at the end of each month.

This core and mold sand limitation is for the Herman 1, Herman 2, and Herman 3 Sand Handling combined.

- (e2) Herman 3 Pouring (V-10)
 - (1A) The PM emissions from the Herman 3 Pouring Station shall not exceed 0.1176 pounds per ton of metal throughput.
 - (2B) The PM₁₀ emissions from the Herman 3 Pouring Station shall not exceed 0.0524 pounds per ton of metal throughput.
- (d3) Herman 3 Castings Cooling (V-12)
 - (1A) The PM emissions from the Herman 3 Castings Cooling process shall not exceed 0.2881 pounds per ton of metal throughput.
 - (2B) The PM₁₀ emissions from the Herman 3 Castings Cooling process shall not exceed 0.1959 pounds per ton of metal throughput.
- (e4) Herman 3 Shakeout (Stack E and Stack W)
 - (**1A**) The PM emissions from the Herman 3 Shakeout process shall not exceed 0.034 pounds per ton of metal and sand throughput.

This PM limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Mehul Sura /Josiah Balogun

(2B) The PM₁₀ emissions from the Herman 3 Shakeout process shall not exceed 0.058 pounds per ton of metal and sand throughput.

This PM_{10} limitation for the Herman 3 Shakeout is for Stack E and Stack W combined.

- (**f5**) Herman 3 Sand Handling (Stack D and Stack W)
 - (4A) The PM emissions from the Herman 3 Sand Handling process shall not exceed 0.034 pounds per ton of metal and sand throughput.

This PM limitation for the Herman 3 Sand Handling is for Stack D and Stack W combined.

(2B) The PM₁₀ emissions from the Herman 3 Sand Handling process shall not exceed 0.058 pounds per ton of metal and sand throughput.

This PM₁₀ limitation for the Herman 3 Sand Handling is for Stack D and Stack W combined.

The conditions of this permit shall supersede the requirements of Operation Conditions #5 and #7 of CP 085-2141-00003, issued on December 12, 1991.

Change 3 Condition D.4.3 - CO Emissions has been deleted from the permit. Subsequent conditions have been renumbered.

D.4.3 CO Emissions [326 IAC 2-2] [326 IAC 2-7-6(3)] [326 IAC 2-7-15]

The IDEM, OAQ has information that indicates that the following emission units:

(1) Herman 3 Pouring Station,

(2) Herman 3 Castings Cooling,

(3) Herman 3 Shakeout

are subject to the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) for CO emissions. Therefore, the Permit Shield provided by Condition B.12 – Permit Shield of this permit does not apply to these emission units with regards to 326 IAC 2-2 (PSD) for CO emissions.

On or before December 31, 2007, the Permittee shall submit a complete PSD application for CO emissions from pouring, cooling, and shakeout operations. Once the application has been submitted, IDEM, OAQ will promptly reopen this permit to include detailed requirements necessary to comply with 326 IAC 2-2 (PSD) and a schedule for achieving compliance with such requirements.

Other Changes

Upon further review IDEM, OAQ has made the following changes to the Title V permit T085-6708-00003. (deleted language appears as strikout and the new language **bolded**):

Change 1 The particulate emission limitation in Condition D.4.4 (now D.4.3) has been revised.

D.4.43 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]

Change 2 IDEM has deleted all specific details related to Condition D.4.5 (now D.4.4) - Preventive Maintenance plan.

D.4.54 Preventive Maintenance Plan [326 IAC 2-7-5(13)]

A Preventive Maintenance Plan, in accordance with Section B – Preventive Maintenance Plan, of this permit, is required for the these facilities and their control devices.

(a) Herman 3 Pouring,

- (b) Herman 3 Castings Cooling,
- (c) Herman 3 Shakeout,
- (d) Herman 3 Sand Handling,
- (e) Sonoperoxone[®] system or an equivalent system,
- (f) Wet Collector #1,
- (g) Wet Collector #4, and
- (h) Baghouse #11.
- Change 3 Previous Condition D.4.6 has been renumbered to D.4.5. All other conditions in the permit have been renumbered.

D.4.65 Emission Controls Operation

D.4.76 Testing Requirements [326 IAC 2-7-6(1),(6)]

(a)	VOC	Testing
		using methods as approved by the Commissioner, in order to demonstrate compliance with Condition D.4.1 – VOC and CO PSD and BACT Requirements.
	(2)	During the VOC tests, the Permittee shall monitor and record those parameters required to be measured by D.4.1 5 4– Parametric Monitoring of Sonoperoxone [®] System or Equivalent System.
(b)	PM ar	nd PM ₁₀ Testing
		(B) Herman 3 Sand Handling
		using methods as approved by the Commissioner, in order to demonstrate compliance with Conditions D.4.2 – PM, PM₁₀, and Lead PSD Minor Limits, and D.4.3 – Particulate Emission Limitation s for Manufacturing Process .
	(2)	During the PM and PM_{10} tests, the Permittee shall monitor and record those parameters required to be measured and monitored by Conditions D.4.87 – Continuous Opacity Monitoring, D.4.140 – Wet Collector Parametric Monitoring, and D.4.132 – Baghouse Parametric Monitoring.

Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Mehul Sura /Josiah Balogun

(C)	Lead	Testing
		using methods as approved by the Commissioner, in order to demonstrate compliance with Condition D.4.2 – PM , PM_{40} , and Lead PSD Minor Limits.
	(2)	During the lead tests, the Permittee shall monitor and record those parameters required to be measured by Conditions D.4.87 – Continuous Opacity Monitoring, D.4.140 – Wet Collector Parametric Monitoring, and D.4.132 – Baghouse Parametric Monitoring.
D.4. 8 7 Conti	nuous O	pacity Monitoring [326 IAC 3-5] [326 IAC 2-2-3]
*****	*******	******************

- D.4.98 Maintenance of Continuous Opacity Monitoring Equipment [326 IAC 2-7-5(3)(A)(iii)]
- D.4.109 Visible Emissions Notations
- D.4.140 Wet Collector Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.121 Wet Collector Failure Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.1**32** Baghouse Parametric Monitoring [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D4.143 Broken or Failed Bag Detection [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]
- D.4.154 Parametric Monitoring of Sonoperoxone® System or Equivalent System [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.4.165 Record Keeping Requirements

- (a) To document compliance with Conditions D.4.1 VOC and CO PSD and BACT Requirements, and D.4.2 – PM, PM₁₀, and Lead PSD Minor Limits, the Permittee shall maintain records of the amounts of metal and sand throughputs to the Herman 3 Mold Line.
- (b) To document compliance with Conditions D.4.1 VOC and CO PSD and BACT Requirements, and D.4.2 – PM, PM₁₀, and Lead PSD Minor Limits, the Permittee shall maintain records of the combined amount of core and mold sand handled for the:
- (c) To document compliance with Condition D.4.87 Continuous Opacity Monitoring and Section C – Opacity, the Permittee shall maintain records of opacity from the continuous opacity monitor on the Herman 3 Castings Cooling vent (V-12), including raw data and supporting information, for a minimum of five (5) years, and make such records available upon request to IDEM, OAQ.

Dalton Corporation, Warsaw Manufacturing Facility Warsaw, Indiana Permit Reviewer: Mehul Sura /Josiah Balogun

(g) To document compliance with Condition D.4.154 – Parametric Monitoring of Sonoperoxone[®] System or Equivalent System, the Permittee shall maintain records of the:

.....

D.4.176 Reporting Requirements

(a) A quarterly summary of the information to document compliance with Conditions D.4.1 – VOC and CO PSD and BACT Requirements, and D.4.2 – PM, PM₄₀, and Lead PSD Minor Limits, shall be submitted to the address listed in Section C – General Reporting Requirements, using the reporting forms located at the end of this permit, or the equivalent, within thirty (30) days after the end of the quarter being reported.

Conclusion and Recommendation

The construction and operation of this proposed modification shall be subject to the conditions of the attached proposed Part 70 Significant Source Modification No. 085-25816-00003 and Significant Permit Modification No. 085-25836-00003. The staff recommends to the Commissioner that this Part 70 Significant Source and Significant Permit Modification be approved.

Page 1of 2 TSD App A

Appendix A: Emissions Calculations **Emission Summary** Source Name: Dalton Corporation, Warsaw Manufacturing Facility Source Location: 1900 East jefferson Street, Warsaw, IN 46581 Permit Number: SSM085-25816-00003 Permit Reviewer: Josiah Balogun Date: 11-Mar-08

Uncontrolled Potential Emissions

	PM	PM ₁₀	SO ₂	VOC	NOx	CO	HAPs
		10	-				ПАГЗ
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Emission Unit							
Herman 3 Mold Line							
Herman 3 Mold Line Pouring	99.41	44.3	0	137.79	0	1521.61	
Herman 3 Mold Line Cooling	243.54	165.6	0	304.32	0	2434.58	Single >10
Herman 3 Mold Line Shakeout	28.74	49.03	0	97.21	0	1115.85	and Total >25
							Single >10 and Total
Total Emissions	371.69	258.93	0	539.32	0	5072.0	>25

Limited Potential Emissions

	PM	PM ₁₀	SO ₂	VOC	NOx	СО	HAPs
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Emission Unit							
Herman 3 Mold Line							
Herman 3 Mold Line Pouring	5.33	2.37	0	7.38	0	81.52	
Herman 3 Mold Line Cooling	13.05	8.87	0	16.3	0	130.43	Single >10
							and Total
Herman 3 Mold Line Shakeout	1.54	2.63	0	5.21	0	59.78	>25
							Single >10
							and Total
Total Emissions	19.92	13.87	0	28.89	0	271.73	>25

Appendix A: Emission Calculations Herman 3 Mold Line Cooling

Page 2 of 2 TSD App A

Company Name: Dalton Corporation, Warsaw Manufacturing Facility Source Location: 1900 East jefferson Street, Warsaw, IN 46581 Permit Number SSM085-25816-00003

Permit Reviewer: Josiah Balogun

Date 11-Mar-08

Limited Capacity:	90,578 tons per year of metal throughput 543,470 tons per year of sand throughput
Maximum Capacity:	245,280 tons per year of metal throughput 1,445,400 tons per year of sand throughput 28 tons per hour of metal 165 tons per hour of sand

Pollutant	Emission Factors	Uncontrolled PTE	Uncontrolled PTE	Limited PTE (ton/yr)
	(lb/ton)	(lb/hr)	(ton/yr)	
Pouring				
PM	0.1176	22.70	99.41	5.33
PM ₁₀	0.0524	10.11	44.30	2.37
VOC	0.163	31.46	137.79	7.38
CO	1.800	347.40	1521.61	81.52
HAP - Lead (Pb)	0.013	2.51	10.99	0.59
HAP: Metals	0.118	22.70	99.41	5.33

Casting/Cooling

PM	0.2881	55.60	243.54	13.05
PM ₁₀	0.1959	37.81	165.60	8.87
VOC	0.36	69.48	304.32	16.30
CO	2.880	555.84	2434.58	130.43
HAP - Lead (Pb)	NA	Counted Above *	Counted Above *	Counted Above *
HAP: Metals	0.29	55.60	243.54	13.05

Shakeout

PM	0.034	6.56	28.74	1.54
PM ₁₀	0.058	11.19	49.03	2.63
VOC	0.115	22.20	97.21	5.21
CO	1.320	254.76	1115.85	59.78
HAP - Lead (Pb)	NA	Counted Above *	Counted Above *	Counted Above *
HAP: Metals	0.034	6.56	28.74	10.78

Total Emissions:	Uncontrolled PTE	Uncontrolled PTE	Limited PTE (ton/yr)
	(lb/hr)	(ton/yr)	
PM	84.86	371.70	19.91
PM ₁₀	59.12	258.93	13.87
VOC	123.13	539.33	28.89
CO	1158.00	5072.04	271.73
HAP - Lead (Pb)	2.51	10.99	0.59
HAP: Metals	84.86	371.70	29.15

Emission factors for PM, PM10 and VOC are from site specific stack test

Calculation Methodology

Pouring & Casting/Cooling & Shakeout:

Limited PTE (lb/hr) = Max Capacity ((ton sand + metal)/hour) x Emission Factor (lb/(ton sand + metal)) Limited PTE (ton/yr) = Limited PTE (lb/hr) x 8760 hr/yr / 2000 lb/ton

Limited PTE (ton/yr) = Limited Capacity ((ton sand + metal)/year) x Emission Factor (lb/(ton sand + metal)) x 1 ton/2000 lb

Page 1 of 4 TSD App D Recuperative Thermal Oxidizer Cost

Natural Gas Consumption	ughput 'Q' (SCFM) = (cubic feet/year) = onsumption (kW/hr)=		Pouring 26951		Cooling		Shakeout		Shakeout
Natural Gas Consumption Energy Co <u>Direct Costs</u>	(cubic feet/year) =		26951		41460				
Energy Co					41163		33778		33225
Direct Costs	onsumption (kW/hr)=		117,734,400		157,680,000		203,564,880		187,113,600
			864,882		1,278,960		1,086,240		1,024,920
Purchased equipment	Formula								
costs									
Incinerator + auxiliary		~	050 170			•		•	
equipment	A	\$	352,478	\$	391,845	\$	372,946	\$	371,411
Instrumentation	0.1A	\$	35,248	\$	39,185	\$	37,295	\$	37,141
Sales Tax Freight	0.03A 0.05A	\$ \$	10,574 17,624	\$ \$	11,755 19,592	\$ \$	11,188 18,647	\$ \$	11,142 18,571
Purchased Equipment									
Costs	В	\$	415,924	\$	462,378	\$	440,077	\$	438,264
Direct installation costs									
Foundations & Supports	0.08B	\$	33,274	\$	36,990	\$	35,206	\$	35,061
Handling & erection	0.14B	\$	58,229	\$	64,733	\$	61,611	\$	61,357
Electrical	0.04B	\$	16,637	\$	18,495	\$	17,603	\$	17,531
Piping	0.02B	\$	8,318	\$	9,248	\$	8,802	\$	8,765
Insulation for Ductwork	0.01B	\$	4,159	\$	4,624	\$	4,401	\$	4,383
Painting	0.01B	\$	4,159	\$	4,624	\$	4,401	\$	4,383
Direct installation costs	С	\$	124,777	\$	138,713	\$	132,023	\$	131,479
Total Direct Cost	(B+C)	\$	540,701	\$	601,091	\$	572,100	\$	569,744
Indirect Costs									
Engineering	0.10B	\$	41,592	\$	46,238	\$	44,008	\$	43,826
Construction & field	0.05B	\$	20,796	\$	23,119	\$	22,004	\$	21,913
expenses									
Contractor fees Start-up	0.1B 0.02B	\$ \$	41,592 8,318	\$ \$	46,238 9,248	\$ \$	44,008 8,802	\$ \$	43,826 8,765
Performance Test	0.02B	э \$	4,159	գ Տ	4,624	э \$	4,401	ф \$	4,383
Contingencies	0.03B	\$	12,478	\$	13,871	\$	13,202	\$	13,148
Total Indirect Cost	D	\$	128,936	\$	143,337	\$	136,424	\$	135,862
TOTAL CAPITAL INVESTMENT	(B+C+D)	\$	669,637	\$	744,428	\$	708,524	\$	705,606
Direct Annual Costs									
Operating labor - Operator	E	\$	9,139	\$	9,139	\$	9,139	\$	9,139
Operating labor - Supervisor	F = 0.15C	\$	1,371	\$	1,371	\$	1,371	\$	1,371
Maintenance - Labor	G	\$	10,550	\$	10,550	\$	10,550	\$	10,550
Maintenance - Material	н	\$	10,550	\$	10,550	\$	10,550	\$	10,550
Utilities - Natural gas	I	\$	1,183,231	\$	1,584,684	\$	2,045,827	\$	1,880,492
Utilities - Electricity	J	\$	48,563	\$	71,814	\$	60,992	\$	57,549
Total Direct Annual Cost	К	\$	1,263,404	\$	1,688,108	\$	2,138,430	\$	1,969,651
Indirect Annual Costs									
Overhead	0.6(E+F+G+H)	\$	18,966	\$	18,966	\$	18,966	\$	18,966
Administrative Charges	0.02(B+C+D)	\$	13,393	\$	14,889	\$	14,170	\$	14,112
Property taxes	0.01(B+C+D)	\$	6,696	\$	7,444	\$	7,085	\$	7,056
Insurance	0.01(B+C+D)	\$	6,696	\$	7,444	\$	7,085	\$	7,056
Capital recovery	0.1428(B+C+D)	\$	95,624	\$	106,304	\$	101,177	\$	100,761
Total Indirect Annual Cost	L	\$	141,376	\$	155,047	\$	148,484	\$	147,951
TOTAL ANNUAL COST	(K+L)	\$	1,404,780	\$	1,843,155	\$	2,286,914	\$	2,117,602

1.) Costs are CPI adjusted from 6/99 to 11/07 at a ratio of 1.289 2.) Natural gas cost of \$ 0.01005 per cubic foot 3.) Electricity costs of \$ 0.05615 per kilowatt hour 4.) Interest rate of 7% for 10 years 5.) Control efficiency of 98 %

 $\begin{array}{l} A = 1.289^*21,342^*Q0.25 \ (For \ Recuperative \ Thermal \ Oxidizer) \\ E = 0.5 \ (hr/shift)^*3(shift/day)^*365 \ (days/yr)^*12.95(\$/hr)^*1.289(CPI) \\ G = 0.5 \ (hr/shift)^*3(shift/day)^*365 \ (days/yr)^*14.95(\$/hr)^*1.289(CPI) \end{array}$

Natural gas cost of \$ 0.01005 per cubic foot

Page 2 of 4 TSD App D Regenerative Thermal Oxidizer Cost

Volumetric Throughput 'Q' (SCFM) Energy Consumption (WMH) Energy Consumpt						Recuperative The	rma	I Oxidizer		
Natural Case Consumption (kbt/hypher) 14,191,200 7,043,040 72,007,200 68,751,200 Direct Coats Formula Formula<				Pouring		-				Shakeout
Energy Consumption (WMH) 884.882 1,278,960 1,086,200 1,024,200 Direct Costs Formula Purchased equipment costs S 696,036 S 897,989 S 777,855 S 777,960 Instrumentation 0.1A S 696,036 S 897,998 S 778,755 S 777,960 States Tax 0.03A S 20,804 S 20,804 S 23,833 S 33,833 S 33,835 S 33,833 S 398,933 S 32,844 S 32,2344 S 32,2345 S 32,2355 S 32,2355 S 32,333 S 12,335 S 12,335 S 12,335 S 12,335 S 12,3	Volumetric Thr	oughput 'Q' (SCFM) =		26951		41163		33778		33225
Direct Costs Formula Purchased equipment instrumentation 0.1A \$ 686,036 \$ 997,989 \$ 787,852 \$ 779,600 Sales Tax 0.03A \$ 20,031 \$ 26,840 \$ 22,846 \$ 21,833 \$ 14,843 \$ 10,815 \$ 12,877 \$ 34,757 \$ 34,757 \$ 34,757 \$ 34,757 \$ 34,757 \$ 34,757 \$ 34,757 \$ 34,757	Natural Gas Consumptio	n (cubic feet/year) =		14,191,200		7,043,040		72,007,200		66,751,200
L	Energy C	Consumption (kW/hr)=		864,882		1,278,960		1,086,240		1,024,920
costs Inclument A S 686,006 S 897,893 S 778,852 S 779,662 S 779,673 S <t< td=""><td>Direct Costs</td><td>Formula</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Direct Costs	Formula								
costs Inclument A S 686,006 S 897,893 S 778,852 S 779,662 S 779,673 S <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
equipment A S beb/06 S be/0789 S 1/4/62/S 1/4/62/S 1/7/68 Instrumentation 0.1A \$ 68,064 \$ 89,795 \$ 77,66 \$ 77,66 \$ 77,66 \$ 77,66 \$ 77,66 \$ 77,66 \$ 77,66 \$ 23,865 \$ 23,865 \$ 23,865 \$ 23,865 \$ 23,865 \$ 23,865 \$ 73,655 \$										
equipment instrumentation 0.1A S 68,004 S B9,799 S 77,785 S 77,785 S 77,785 S 77,785 S 77,985 S 23,033 S 38,032 S 38,032 S 38,032 S 38,032 S 38,033 S 38,035 S 39,393 S 38,035 S 37,050 S 73,050 S 73,050 S 74,373 S 73,050 S 73,050 S 74,373 S 73,050 S 73,050 S 74,073 S 73,050 S 74,073 S 73,	Incinerator + auxiliary	٨	e	696 026	¢	907 090	¢	707 050	¢	770 604
Sales Tax 0.03A \$ 20,681 \$ 26,400 \$ 23,636 \$ 23,333 \$ 33,335 \$ 34,335 35,357 35,377	equipment	A		000,030	Ф	097,909	Ф	101,002	Ф	779,604
Freight Costs 0.05A \$ 34,302 \$ 44,899 \$ 39,393 \$ 38,88 Purchased Equipment Costs B \$ 809,522 \$ 1,059,628 \$ 929,665 \$ 919,32 Direct installation costs Costs Feight Electrical 0.08B \$ 64,762 \$ 94,770 \$ 74,373 \$ 73,55 Handing & arection Direct installation for Ductwork 0.018 \$ 64,762 \$ 94,770 \$ 74,373 \$ 73,55 Paining 0.028 \$ 113,333 \$ 148,348 \$ 130,593 \$ 120,77 \$ 91,163 Painting 0.01B \$ 8,095 \$ 10,596 \$ 9,277 \$ 91,163 Direct installation costs C \$ 242,857 \$ 317,368 \$ 9,296 \$ 1,959,91 Indirect Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 91,93 \$ 92,966 \$ 91,93										77,960
Purchased Equipment Costs B \$ 809,522 \$ 1,059,628 \$ 929,655 \$ 919,32 Foundations & Supports 0.088 \$ 64,762 \$ 84,770 \$ 74,373 \$ 73,555 Handling & erection 0.148 \$ 113,333 \$ 148,346 \$ 30,153 \$ 128,77 Piping 0.028 \$ 16,190 \$ 21,193 \$ 10,596 \$ 9,297 \$ 9,116 Painting 0.018 \$ 8,095 \$ 10,596 \$ 9,297 \$ 9,116 Direct installation costs C \$ 242,857 \$ 317,888 278,899 \$ 275,96 Construction & field 0.058 \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,999 Indirect Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 9,198										23,388
Costs Direct installation costs B S 009,522 S 94,950 S 94,970 S 74,373 S 73,555 Handling & erection 0.14B S 113,333 S 148,348 S 130,153 S 128,75 S 71,975 36,77 S 71,556 S 128,77 S 158,38 16,159 S 10,596 S 92,975 S 151,559 S 16,159 S 128,975 S 13,77,516 S 12,28,564 S 1,195,97 Indirect Cost (B+C) S 1,052,379 S 1,377,516 S 1,208,564 S 1,959,97 S 1,377,516 S 1,208,564 S 1,959,97 S 1,376 S 1,92,97 S 1,91,93 S 92,966 <td>-</td> <td>0.05A</td> <td>\$</td> <td>34,302</td> <td>\$</td> <td>44,899</td> <td>\$</td> <td>39,393</td> <td>\$</td> <td>38,980</td>	-	0.05A	\$	34,302	\$	44,899	\$	39,393	\$	38,980
costs Foundations & Supports 0.08B \$ 64,762 \$ 84,770 \$ 74,373 \$ 73,55 Handling & erection 0.14B \$ 113,333 \$ 148,348 \$ 130,153 \$ 128,75 Piping 0.02B \$ 16,190 \$ 21,193 \$ 16,593 \$ 16,393 <		В	\$	809,522	\$	1,059,628	\$	929,665	\$	919,933
Handling & erection 0.14B \$ 113,333 143,348 130,153 126,74 Peling 0.04B 32,341 42,345 37,147 36,75 36,75 16,503 16,503 16,503 13,303 10,156 10,156 10,157 10,157										
Electrical 0.04B \$ 32,381 \$ 42,385 \$ 37,187 \$ 66,767 Piping 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 19,591 Direct installation costs C \$ 242,857 \$ 11,377,516 \$ 1,208,564 \$ 11,95,91 Indirect Cost (B+C) \$ 1,052,379 \$ 13,377,516 \$ 12,08,564 \$ 19,95 Construction & field 0.05B \$ 40,475 \$ 5,2,981 \$ 46,483 \$ 46,483 \$ 19,95 Start-up 0.02B \$ 16,190 \$ 21,193 \$ 9,133	Foundations & Supports	0.08B	\$	64,762	\$	84,770	\$	74,373	\$	73,595
Electrical 0.04B \$ 32,381 \$ 42,385 \$ 37,187 \$ 66,75 Piping 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 19,595 Direct installation costs C \$ 242,857 \$ 317,888 \$ 229,76 \$ 1,195,91 Indirect Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,195,91 Indirect Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,99 Construction & field 0.10B \$ 80,952 \$ 105,963 \$ 9,297 \$ 9,16 Contracor fre	Handling & erection	0.14B	\$	113,333	\$	148.348	\$	130,153	\$	128,791
Piping 0.02B \$ 16,190 \$ 21,133 \$ 18,593 \$ 18,333 Insulation for Ductwork 0.01B \$ 8,095 \$ 10,596 \$ 9,297 \$ 9,16 Painting 0.01B \$ 8,095 \$ 10,596 \$ 9,297 \$ 9,16 Direct installation costs C \$ 242,857 \$ 317,888 \$ 278,899 \$ 275,96 Total Direct Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,95,91 Indirect Costs (B+C) \$ 1,052,379 \$ 105,963 \$ 92,966 \$ 91,99 Construction & field 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 45,98 Performance Test 0.01B \$ 8,0952 \$ 105,963 \$ 9,2966 \$ 91,99 Performance Test 0										36,797
Painting 0.01B \$ 8.095 \$ 1.0596 \$ 9.297 \$ 9.15 Direct installation costs C \$ 242,857 \$ 317,888 \$ 278,899 \$ 275,92 Total Direct Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,195,91 Indirect Costs Engineering 0.10B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,99 Construction & field 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 45,993 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393										18,399
Direct installation costs C \$ 242,857 \$ 317,888 \$ 278,899 \$ 275,96 Total Direct Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,195,91 Indirect Costs Engineering 0.10B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,995 Construction & field 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 46,593 \$ 18,333 \$	Insulation for Ductwork	0.01B	\$	8,095	\$	10,596	\$	9,297	\$	9,199
Total Direct Cost (B+C) \$ 1,052,379 \$ 1,377,516 \$ 1,208,564 \$ 1,195,97 Indirect Costs Engineering 0.10B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,99 Construction & field expenses 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 45,99 Contractor fees 0.1B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,99 Contingencies 0.02B \$ 16,190 \$ 21,193 \$ 92,976 \$ 91,593 \$ 18,333 \$ 18,333 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 \$ 18,33 18,33 18,33 18,33 18,33 18,33 12,33 \$ 27,690 <td>Painting</td> <td>0.01B</td> <td>\$</td> <td>8,095</td> <td>\$</td> <td>10,596</td> <td>\$</td> <td>9,297</td> <td>\$</td> <td>9,199</td>	Painting	0.01B	\$	8,095	\$	10,596	\$	9,297	\$	9,199
Indirect Costs Engineering 0.10B \$ $80,952$ \$ $105,963$ \$ $92,966$ \$ $91,96$ Construction & field 0.05B \$ $40,476$ \$ $52,981$ \$ $46,483$ \$ $45,996$ Contractor fees 0.1B \$ $80,952$ \$ $105,963$ \$ $92,966$ \$ $91,996$ Start-up 0.02B \$ $16,190$ \$ $21,193$ \$ $18,593$ \$ $18,323$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,523$ \$ $18,525$ \$ $19,550$ \$ $19,550$ \$ $19,550$ \$ $14,61,60$ \$ $14,96,760$ \$ $14,481,66$ \$ $19,550$ \$ $10,550$ \$ <td>Direct installation costs</td> <td>С</td> <td>\$</td> <td>242,857</td> <td>\$</td> <td>317,888</td> <td>\$</td> <td>278,899</td> <td>\$</td> <td>275,980</td>	Direct installation costs	С	\$	242,857	\$	317,888	\$	278,899	\$	275,980
Engineering Construction & field expenses0.10B\$80,952\$105,963\$92,966\$91,96Construction & field expenses0.05B\$40,476\$52,981\$46,483\$45,99Contractor fees0.1B\$80,952\$105,963\$92,966\$91,99Start-up0.02B\$16,190\$21,193\$92,966\$91,93Performance Test0.01B\$8,0952\$105,966\$92,976\$91,95Contingencies0.03B\$24,286\$31,789\$27,890\$27,55Total Indirect CostD\$250,952\$328,485\$288,196\$285,17TotAL CAPITAL INVESTMENT(B+C+D)\$1,303,330\$1,706,000\$1,496,760\$1,481,05Direct Annual Costs Operating labor - OperatorE\$9,139\$9,139\$9,139\$9,139Operating labor - OperatorF = 0.15C\$1,371\$1,371\$1,371\$1,371\$1,371Maintenance - LaborG\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$10,550\$<	Total Direct Cost	(B+C)	\$	1,052,379	\$	1,377,516	\$	1,208,564	\$	1,195,913
Construction & field expenses 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 45,993 Contractor fees 0.1B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,993 Start-up 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,333 Performance Test 0.01B \$ 8,095 \$ 10,596 \$ 9,297 \$ 9,173 Contingencies 0.03B \$ 24,286 \$ 31,799 \$ 27,690 \$ 27,597 Total Indirect Cost D \$ 250,952 \$ 328,485 \$ 288,196 \$ 285,177 Total CAPITAL INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,481,097 Direct Annual Costs Operating labor - E \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ <td>Indirect Costs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Indirect Costs									
Construction & field expenses 0.05B \$ 40,476 \$ 52,981 \$ 46,483 \$ 45,995 Contractor fees 0.1B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,995 Start-up 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,333 Performance Test 0.01B \$ 8,095 \$ 10,566 \$ 9,297 \$ 9,139 Contingencies 0.03B \$ 24,266 \$ 31,799 \$ 27,590 \$ 27,557 Total Indirect Cost D \$ 250,952 \$ 328,485 \$ 288,196 \$ 285,173 Total CAPITAL INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,481,09 Direct Annual Costs Operating labor - E \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$	Engineering	0.10B	\$	80 952	\$	105 963	\$	92 966	\$	91 993
expenses 0.055 5 40,476 5 52,981 5 46,433 5 45,98 Contractor fees 0.1B \$ 80,952 \$ 105,963 \$ 92,966 \$ 91,99 Start-up 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 18,593 \$ 27,58 27,890 \$ 27,55 \$ 28,485 \$ 288,196 \$ 28,517 TOTAL CAPITAL INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,481,09 Direct Annual Costs Operating labor - E \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,13										
Start-up 0.02B \$ 16,190 \$ 21,193 \$ 18,593 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 18,393 \$ 19,393 \$ 19,277 \$ 9,139 \$ 227,550 \$ 328,485 \$ 288,196 \$ 227,570 \$ 1,496,760 \$ 1,481,057 Direct Annual Costs Operating labor - E \$ 9,139 \$ <td></td> <td>0.05B</td> <td>\$</td> <td>40,476</td> <td>\$</td> <td>52,981</td> <td>\$</td> <td>46,483</td> <td>\$</td> <td>45,997</td>		0.05B	\$	40,476	\$	52,981	\$	46,483	\$	45,997
Performance Test 0.01B \$ 8,095 \$ 10,596 \$ 9,297 \$ 9,195 Contingencies 0.03B \$ 24,286 \$ 31,789 \$ 27,680 \$ 27,55 Total Indirect Cost D \$ 250,952 \$ 328,485 \$ 288,196 \$ 285,17 TOTAL CAPITAL INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,481,057 Direct Annual Costs Operating labor - Operating labor - Supervisor E \$ 9,139 \$ 9,139 \$ 9,139 \$ 9,137 \$ 1,471 \$ 1,481,057 Operating labor - Operating labor - Supervisor E \$ 9,139 \$ 9,139 \$ 9,137 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,375 \$ 1,0550 \$	Contractor fees	0.1B		80,952	\$	105,963	\$	92,966	\$	91,993
Contingencies 0.03B \$ 24,286 \$ 31,789 \$ 27,890 \$ 27,565 Total Indirect Cost D \$ 250,952 \$ 328,485 \$ 288,196 \$ 1481,057 \$ 1,496,760 \$ 1,481,057 \$ 1,481,057 \$ 1,431,057 \$ 1,431,057 \$ 1,431,057 \$ 1,431,057 \$ 1,437,057 \$ 1,437,057 \$ 1,437,057 \$ 1,437,057 \$ 1,435,05										18,399
Total Indirect Cost D \$ 250,952 \$ 328,485 \$ 288,196 \$ 288,177 TOTAL CAPITAL INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,481,067 Direct Annual Costs Operating labor - Operator E \$ 9,139 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,375 \$ 10,550 \$ 10,550 \$ 10,550 \$ 10,550										9,199
INVESTMENT (B+C+D) \$ 1,303,330 \$ 1,706,000 \$ 1,496,760 \$ 1,303< \$ 1,3071 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,373 \$ 1,375 \$ 1,3050 \$ 10,550										27,598 285,179
Direct Annual Costs Operating labor - E \$ 9,139 \$ 9,130 \$ 9,130 \$ 9,130 \$ 9,130 \$ 13,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,373 \$ 1,373 \$	TOTAL CAPITAL									
Operating labor - Operator E \$ 9,139 \$ 9,137 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,373 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,373 \$ 1,373 \$ 1,373 \$ 1,373 \$ 1,373 \$ 1,373 \$ 1,373 \$ 1,373 <td></td> <td>(B+C+D)</td> <td>\$</td> <td>1,303,330</td> <td>\$</td> <td>1,706,000</td> <td>\$</td> <td>1,496,760</td> <td>\$</td> <td>1,481,092</td>		(B+C+D)	\$	1,303,330	\$	1,706,000	\$	1,496,760	\$	1,481,092
Operator E S 9,139 S 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,371 \$ 1,373 \$ 10,550 \$ </td <td>Direct Annual Costs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Direct Annual Costs									
Operating labor - Supervisor F = 0.15C \$ 1,371 \$ 1,373 \$ <th< td=""><td></td><td>Е</td><td>\$</td><td>9,139</td><td>\$</td><td>9,139</td><td>\$</td><td>9,139</td><td>\$</td><td>9,139</td></th<>		Е	\$	9,139	\$	9,139	\$	9,139	\$	9,139
Supervisor G \$ 1,371 1,351 <		5 0.450		I					I	4 074
Maintenance - Material H \$ 10,550 <td>Supervisor</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Supervisor									
Utilities - Natural gas I \$ 142,622 \$ 70,783 \$ 723,672 \$ 670,863 Utilities - Electricity J \$ 48,663 \$ 71,814 \$ 60,992 \$ 57,544 Total Direct Annual Cost K \$ 222,795 \$ 174,206 \$ 816,275 \$ 760,004 Indirect Annual Costs Overhead 0.6(E+F+G+H) \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 18,966 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ <td< td=""><td>Maintenance - Labor</td><td>G</td><td>\$</td><td>10,550</td><td>\$</td><td>10,550</td><td>\$</td><td>10,550</td><td>\$</td><td>10,550</td></td<>	Maintenance - Labor	G	\$	10,550	\$	10,550	\$	10,550	\$	10,550
Utilities - Electricity J \$ 48,563 \$ 71,814 \$ 60,992 \$ 57,54 Total Direct Annual Cost K \$ 222,795 \$ 174,206 \$ 816,275 \$ 760,00 Indirect Annual Costs Overhead 0.6(E+F+G+H) \$ 18,966 \$ 14,968 \$ 14,968 \$ 14,861 \$ 14,861 \$ 14,861 \$ 14,968 \$ 14,861 \$ 14,968 \$ 14,861 \$ 14,968 \$ 14,861 \$ 213,737 \$ 211,507 \$ 230,823 \$ 292,574 \$ 289,714	Maintenance - Material	н	\$	10,550	\$	10,550	\$	10,550	\$	10,550
Total Direct Annual Cost K \$ 222,795 \$ 174,206 \$ 816,275 \$ 760,00 Indirect Annual Costs Overhead 0.6(E+F+G+H) \$ 18,966 \$ 14,968 \$ 14,866 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,968 \$										670,850
Cost K \$ 222,795 \$ 174,206 \$ 816,275 \$ 760,00 Indirect Annual Costs Overhead 0.6(E+F+G+H) \$ 18,966 \$ 14,968 \$ 14,896 \$ 14,896 \$ 14,896 \$ 14,968 \$ 14,896 \$ 14,896 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ 14,968 \$ <		J	\$	48,563	\$	71,814	\$	60,992	\$	57,549
Overhead 0.6(E+F+G+H) \$ 18,966 \$ 12,937 \$ 29,935 \$ 29,936 \$ 14,867 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,867 \$ 14,868 \$ 14,867 \$ 121,373 \$ 211,507 \$ 213,737 \$ 211,507 211,507 211,507 211,507		к	\$	222,795	\$	174,206	\$	816,275	\$	760,009
Overhead 0.6(E+F+G+H) \$ 18,966 \$ 12,937 \$ 29,935 \$ 29,936 \$ 14,867 \$ 14,868 \$ 14,868 \$ 14,868 \$ 14,867 \$ 14,868 \$ 14,867 \$ 121,373 \$ 211,507 \$ 213,737 \$ 211,507 211,507 211,507 211,507	Indianat Annual Casta									
Administrative Charges 0.02(B+C+D) \$ 26,067 \$ 34,120 \$ 29,935 \$ 29,62 Property taxes 0.01(B+C+D) \$ 13,033 \$ 17,060 \$ 14,968 \$ 14,818 Insurance 0.01(B+C+D) \$ 13,033 \$ 17,060 \$ 14,968 \$ 14,818 Capital recovery 0.1428(B+C+D) \$ 186,116 \$ 243,617 \$ 213,737 \$ 211,55 Total Indirect Annual Cost L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,74		0.6(F+F+C+H)	\$	18 066	\$	18 066	¢	18 066	¢	18 066
Property taxes 0.01(B+C+D) \$ 13,033 \$ 17,060 \$ 14,968 \$ 14,818 Insurance 0.01(B+C+D) \$ 13,033 \$ 17,060 \$ 14,968 \$ 14,818 Capital recovery 0.1428(B+C+D) \$ 186,116 \$ 243,617 \$ 213,737 \$ 211,50 Total Indirect Annual Cost L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,74		· · · ·					•		•	
Insurance 0.01(B+C+D) \$ 13,033 \$ 17,060 \$ 14,968 \$ 14,816 Capital recovery 0.1428(B+C+D) \$ 186,116 \$ 243,617 \$ 213,737 \$ 211,57 Total Indirect Annual L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,71	Administrative Charges	0.02(B+C+D)		26,067	\$	34,120	\$	29,935	\$	29,622
Capital recovery 0.1428(B+C+D) \$ 186,116 \$ 243,617 \$ 213,737 \$ 211,507 Total Indirect Annual Cost L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,717										14,811
Total Indirect Annual L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,71 Cost										14,811
Cost L \$ 257,215 \$ 330,823 \$ 292,574 \$ 289,71		0.1428(B+C+D)	\$	186,116	\$	243,617	\$	213,737	\$	211,500
TOTAL ANNUAL COST (K+L) \$ 480,010 \$ 505,029 \$ 1,108,849 \$ 1,049,71		L	\$	257,215	\$	330,823	\$	292,574	\$	289,710
	TOTAL ANNUAL COST	(K+L)	\$	480,010	\$	505,029	\$	1,108,849	\$	1,049,719

1.) Costs are CPI adjusted from 6/99 to 11/07 at a ratio of 1.289 2.) Natural gas cost of \$ 0.01005 per cubic foot 3.) Electricity costs of \$ 0.05615 per kilowatt hour 4.) Interest rate of 7% for 10 years 5.) Control efficiency of 98 %

 $\begin{array}{l} A=(2.204^*105+11.57^*Q)^*1.289 \mbox{ (For Regenerative Thermal Oxidizer)} \\ E=0.5 \mbox{ (hr/shift)^*3(shift/day)^*365 \mbox{ (days/yr)^*12.95($/hr)^*1.289(CPI)} \\ G=0.5 \mbox{ (hr/shift)^*3(shift/day)^*365 \mbox{ (days/yr)^*14.95($/hr)^*1.289(CPI)} \\ \end{array}$

Natural gas cost of \$ 0.01005 per cubic foot

Baghouse

Page 3 of 4 TSD App D

	Formula		Pouring		Cooling		Shakeout
Direct Costs							
Purchased equipment costs							
Fabric filter + bags + auxiliary equipment	А	\$	191,354	\$	222,104	\$	188,631
Instrumentation	0.1A	\$	19,135	\$	22,210	\$	18,863
Sales Tax	0.03A	\$	5,741	\$	6,663	\$	5,659
Freight	0.05A	\$	9,568	\$	11,105	\$	9,432
Purchased Equipment Costs	В	\$	225,798	\$	262,083	\$	222,585
Direct installation costs							
Foundations & Supports	0.04B	\$	9,032	\$	10.483	\$	8,903
Handling & erection	0.04B	э \$	112,899	գ Տ	131,041	э \$	111,292
Electrical	0.08B	э \$	18,064	գ Տ	20,967	э \$	17,807
Piping	0.00B	\$	2,258	\$	2,621	Ψ \$	2,226
Insulation for Ductwork	0.07B	э \$	15,806	գ Տ	18,346	э \$	15,581
Painting	0.07B	э \$	4,516	ֆ Տ	5,242	φ \$	4,452
Direct installation costs	0.04B C	Ф \$	4,510 162,574	ф \$	188,700	φ \$	4,452 160,261
Direct installation costs	C	φ	102,574	φ	100,700	φ	100,201
Total Direct Cost	(B+C)	\$	388,372	\$	450,782	\$	382,845
Indirect Costs							
Engineering	0.1B	\$	22,580	\$	26,208	\$	22,258
Construction & field expenses	0.2B	\$	45,160	\$	52,417	\$	44,517
Contractor fees	0.1B	\$	22,580	\$	26,208	\$	22,258
Start-up	0.01B	\$	2,258	\$	2,621	\$	2,226
Performance Test	0.01B	\$	2,258	\$	2,621	\$	2,226
Contingencies	0.03B	\$	6,774	\$	7,862	\$	6,678
Total Indirect Cost	D	\$	101,609	\$	117,937	\$	100,163
TOTAL CAPITAL INVESTMENT	(B+C+D)	\$	489,981	\$	568,720	\$	483,009
Direct Annual Costs							
Operating labor - Operator	Е	\$	39,420	\$	39,420	\$	39,420
Operating labor - Supervisor	F	\$	5,913	\$	5,913	\$	5,913
Maintenance Labor	G	\$	14,454	\$	14,454	\$	14,454
Maintenance Material	н	\$	14,454	\$	14,454	\$	14,454
Replacement Parts (Bags)		\$	3,089	\$	10,553	\$	10,553
Utilities - Electricity		\$	23,648	\$	36,647	\$	30,072
Utilities - Compressed Air		\$	9,130	\$	13,944	\$	11,442
Utilities - Waste Disposal		\$	13,155	\$	3,402	\$	10,037
Total Direct Annual Cost	J	\$	123,263	\$	138,787	\$	136,345
Indirect Annual Costs							
Overhead	0.6(E+F+G+H)	\$	44,545	\$	44,545	\$	44,545
Administrative Charges	0.02 (B+C+D)	\$	9,800	\$	11,374	\$	9,660
Property taxes	0.01 (B+C+D)	\$	4,900	\$	5,687	\$	4,830
Insurance	0.01 (B+C+D)	\$	4,900	\$	5,687	\$	4,830
Capital recovery	0.1428 (B+C+D)	\$	69,969	\$	81,213	\$	68,974
Total Indirect Annual Cost	K	\$	134,113	\$	148,507		132,839
TOTAL ANNUAL COST	(J+K)	\$	257,376	\$	287,294	\$	269,184

Notes:

10 year capital life at 7% interest Electricity at \$ 0.05615 per kilowatt hour

Page 4 of 4 TSD App D Dalton Corporation, Warsaw Manufacturing Facility Significant Source Modification No.: 085-25816-00003 Permit Reviewer: Mehul Sura/Josiah Balogun

Estimated Annual Carbon Monoxide Control Cost

Herman 3 Mold Line

Thermal Recuperative Oxidizer

Operation	Ва	ghouse Cost	Th	ermal Recuperative Oxidizer Cost	CO Controlled (tons/yr)	С	Cost/Ton ontrolled - Thermal ecuperative
Pouring	\$	257,376	\$	1,404,780			
Cooling	\$	287,294	\$	1,843,155	266.33	¢	22.202
Shakeout	\$	269,184	\$	2,117,602	200.33	\$ 23,202	
Total	\$	813,854	\$	5,365,537			

Estimated Annual Carbon Monoxide Control Cost

Herman 3 Mold Line

Thermal Regenerative Oxidizer

Operation	Ва	ghouse Cost	Th	ermal Regenerative Oxidizer Cost	CO Controlled (tons/yr)	C	Cost/Ton controlled - Thermal egenerative
Pouring	\$	257,376	\$	480,010			
Cooling	\$	287,294	\$	505,029	266.33	\$	10.696
Shakeout	\$	269,184	\$	1,049,719	200.33	φ 10,090	
Total	\$	813,854	\$	2,034,757			

Indiana Department of Environmental Management Office of Air Quality

Appendix B – BACT Analyses Technical Support Document (TSD) Prevention of Significant Deterioration (PSD) Significant Source Modification (SSM) of a Part 70 Source Significant Permit Modification (SPM) of Part 70 Operating Permit

Source Background and Description

Source Name:		Dalton Corporation, Warsaw Manufacturing Facility
Source Location:		1900 E. Jefferson Street, Warsaw, Indiana 46580
County:		Kosciusko
SIC Code:		3321
Operation Permit N	0.:	T085-6708-00003
Operation Permit Is	suance Date:	May 9, 2007
Significant Source	Modification No.:	085-25816-00003
Significant Permit N	Iodification No.:	085-25836-00003
Permit Reviewer:		Josiah Balogun/ Mehul Sura

Proposed Expansion

On August 11, 2006 IDEM notified the foundry facilities in Indiana that it must evaluate its Potential to Emit for CO which is generated by the pouring, cooling and shakeout operations and determine whether the requirements of PSD rules may apply as a result of the CO PTE. If it is determined that a PSD permit is required for past modifications for the facility, the source shall submit a complete PSD application for the modification(s) by December 31, 2007.

Dalton Corporation, Warsaw Manufacturing Facility located at 1900 E. Jefferson Street, Warsaw, Indiana 46580 determined that past modification at Herman 3 Mold Line was subject to PSD requirements, and therefore, submitted a PSD application to IDEM on December 31, 2007.

Requirement for Best Available Control Technology (BACT)

326 IAC 2-2 requires a best available control technology (BACT) review to be performed on the modification because the modification has the potential to emit of Carbon monoxide (CO) emissions greater than 100 tons per year which exceeds the significant level for CO.

Emission Units Subject to BACT Requirements for CO:

The following modified emission units have the potential to emit carbon monoxide (CO); therefore, a Best Available Control Technology analyses for CO was performed for these units:

- (a) One (1) Herman 3 Pouring Station, constructed in 1991, with a nominal throughput of 28 tons of iron per hour and 165 tons of mold and core sand per hour.
- (b) One (1) Herman 3 Castings Cooling process, constructed in 1991, and modified in 2004, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

(c) One (1) Herman 3 Shakeout process, constructed in 1991, with a nominal throughput of 28 tons of iron per hour, and 165 tons of mold and core sand per hour.

Requirement for CO BACT

The pouring, cooling and shakeout operations at the Herman 3 Mold Line have a limited potential to emit carbon monoxide (CO) of 271.73 tons per year; therefore, Best Available Control Technology analysis for CO was performed for pouring, cooling and shakeout operations at the Herman 3 Mold Line.

See Appendix A – Emission Calculations – of this TSD for detailed Potential to Emit (PTE) calculations.

Summary of the Best Available Control Technology (BACT) Process

BACT is a mass emission limitation based on the maximum degree of pollution reduction of emissions, which is achievable on a case-by-case basis. BACT analysis takes into account the energy, environmental, and economic impacts on the source. These reductions may be determined through the application of available control techniques, process design, work practices, and operational limitations. Such reductions are necessary to demonstrate that the emissions remaining after application of BACT will not cause or contribute to isolation of NAAQS, thereby protecting public health and the environment.

Federal guidance on BACT requires an evaluation that follows a "top down" process. In this approach, the applicant identifies the best-controlled similar source on the basis of controls required by regulation or permit, or controls achieved in practice. The highest level of control is then evaluated for technical feasibility.

The five (5) basic steps of a top-down BACT analysis are listed below:

Step 1: Identify Potential Control Technologies

The first step is to identify potentially "available" control options for each emission unit and for each pollutant under review. Available options should consist of a comprehensive list of those technologies with a potentially practical application to the emissions unit in question. The list should include lowest achievable emission rate (LAER) technologies, innovative technologies, and controls applied to similar source categories. There is no requirement in the State or Federal regulations to require innovative control to be used as BACT.

Step 2: Eliminate Technically Infeasible Options

The second step is to eliminate technically infeasible options from further consideration. To be considered feasible, a technology must be both available and applicable. It is important in this step that any presentation of a technical argument for eliminating a technology from further consideration be clearly documented based on physical, chemical, engineering, and source-specific factors related to safe and successful use of the controls. Innovative control means a control that has not been demonstrated in a commercial application on similar units. Innovative controls are normally given a waiver from the BACT requirements due to the uncertainty of actual control efficiency. Only available and proven control technologies are evaluated. A control technology is considered available when there are sufficient data indicating that the technology results in a reduction in emissions of regulated pollutants.

Step 3: Rank the Remaining Control Technologies by Control Effectiveness

The third step is to rank the technologies not eliminated in Step 2 in order of descending control effectiveness for each pollutant of concern. The ranked alternatives are reviewed in terms of environmental, energy, and economic impacts specific to the proposed modification. If the analysis determines that the evaluated alternative is not appropriate as BACT due to any of the impacts, then the next most effective control is evaluated. This process is repeated until a control alternative is chosen as BACT. If the highest ranked technology is proposed as BACT, it is not necessary to perform any further technical or economic evaluation, except for the environmental analyses.

Step 4: Evaluate the Most Effective Controls and Document the Results

The fourth step entails an evaluation of energy, environmental, and economic impacts for determining a final level of control. The evaluation begins with the most stringent control option and continues until a technology under consideration cannot be eliminated based on adverse energy, environmental, or economic impacts.

Step 5: Select BACT

The fifth and final step is to select as BACT the most effective of the remaining technologies under consideration for each pollutant of concern. For the technologies determined to be feasible, there may be several different limits that have been set as BACT for the same control technology. The permitting agency has to choose the most stringent limit as BACT unless the applicant demonstrates in a convincing manner why that limit is not feasible. The final BACT determination would be the technology with the most stringent corresponding limit that is economically feasible. BACT must, at a minimum, be no less stringent than the level of control required by any applicable New Source Performance Standard (NSPS) and National Emissions Standard for Hazardous Air Pollutants (NESHAP).

The Office of Air Quality (OAQ) makes BACT determinations by following the five steps identified above.

Carbon Monoxide (CO) BACT – Herman 3 Mold Line

Step 1: Identify Potential Control Technologies

- (1) Recuperative Thermal Oxidizer
- (2) Regenerative Thermal Oxidizer
- (3) Catalytic Oxidizer
- (4) No control
- Step 2: Eliminate Technically Infeasible Options

Thermal Oxidizers

The thermal oxidizer is a nozzle-stabilized flame maintained by a combination of auxiliary fuel, waste gas compounds, and supplemental air added when necessary. This technology is typically applied for destruction of organic vapors, nevertheless it is also considered as a technology for controlling CO emissions. Upon passing through the flame, the waste gas from PCS operations containing CO is heated from its inlet temperature to its ignition temperature (It is the temperature at which the combustion reaction rate (and consequently the energy production rate) exceeds the rate of heat losses, thereby raising the temperature of the gases to some higher value). Thus, any

CO/air mixture will ignite if its temperature is raised to a sufficiently high level. The CO-containing mixture ignites at some temperature between the preheat temperature and the reaction temperature. The ignition occurs at some point during the heating of a waste stream as it passes through the nozzle-stabilized flame regardless of its concentration. The mixture continues to react as it flows through the combustion chamber.

The required level of CO destruction of the waste gas that must be achieved within the time that it spends in the thermal combustion chamber dictates the reactor temperature. The shorter the residence time, the higher the reactor temperature must be. Most thermal units are designed to provide no more than 1 second of residence time to the waste gas with typical temperatures of 1,200 to 2,000°F. Once the unit is designed and built, the residence time is not easily changed, so that the required reaction temperature becomes a function of the particular gaseous species and the desired level of control.

(a) Recuperative Thermal Oxidizer

The Recuperative Thermal Oxidizer is comprised of the combustion chamber and heat exchanger. After leaving the combustion chamber, the exhaust gas enters a heat exchanger where it transfers heat to the waste gas through connection. The waste gas is thus preheated.

Considerable fuel savings can be achieved by using the exhaust gas to preheat the incoming waste gas, combustion air, or both via a heat exchanger. These heat exchangers can recover up to 70% of the energy (enthalpy) in the product gas. Most heat exchangers are not designed to withstand high temperatures, so that most of the energy needed to reach ignition is supplied by the combustion of fuel in the combustion chamber and only moderate preheat temperatures are sought in practice (<1200°F).

Based on the information reviewed for this BACT determination, IDEM, OAQ has determined that the use of a recuperative thermal oxidizer is a technically feasible option for the Herman 3 Mold Line at this source.

(b) Regenerative Thermal Oxidizer

Regenerative Thermal Oxidizer consists of direct contact heat exchangers constructed of a ceramic material that can tolerate the high temperatures needed to achieve ignition of the waste stream.

The inlet gas first passes through a hot ceramic bed thereby heating the stream (and cooling the bed) to its ignition temperature. The hot gases then react (releasing energy) in the combustion chamber and while passing through another ceramic bed, thereby heating it to the combustion chamber outlet temperature. The process flows are then switched, now feeding the inlet stream to the hot bed. This cyclic process affords very high energy recovery (up to 95%). The higher capital costs associated with these high-performance heat exchangers and combustion chambers may be offset by the increased auxiliary fuel savings to make such a system economical.

Based on the information reviewed for this BACT determination, IDEM, OAQ has determined that the use of a regenerative thermal oxidizer is a technically feasible option for the Herman 3 Mold Line at this source.

(c) Catalytic Oxidizers

Catalytic oxidation is also a widely used control technology to control pollutants where the waste gas is passed through a flame area and then through a catalyst bed for complete combustion of the waste in the gas. This technology is typically applied for destruction of organic vapors, nevertheless it is considered as a technology for controlling CO emissions. A catalyst is an element or compound that speeds up a reaction at lower temperatures compared to thermal oxidation without undergoing change itself. Catalytic oxidizers operate at 650°F to 1000°F and approximately require 1.5 to 2.0 ft³ of catalyst per 1000 standard ft³ per gas flow rate.

Application of catalytic oxidation to control CO emissions from the Herman 3 Mold Line PCS operation poses a major problem which is the failure of the catalyst. Emissions from PCS operation contain significant amount of particulates and iron oxides. These particulates and iron oxides can poison the catalyst resulting in the failure of the catalytic oxidizer. In addition, the gas stream from the PCS operation comes out at high temperatures of about 1500°F which can speed up the poisoning of the catalyst. Additionally, the auto ignition temperature of CO is about 1150 - 1250°F and the presence of a catalyst would not provide any additional CO reduction.

Based on the information reviewed for this BACT determination, IDEM, OAQ has determined that the use of a catalytic oxidizer is not a technically feasible option for the Herman 3 Mold Line at this source.

The emission streams from the Herman 3 Mold Line have significant levels of particulate matter. Therefore, the exhaust intended for the oxidizer would need to be preconditioned with a particulate matter control device (baghouse). A high level of control efficiency is required for introduction to an oxidizer. Therefore, the further evaluation of thermal oxidizer controls will necessarily include preconditioning of the waste gas by a baghouse control.

Step 3: Rank the Remaining Control Technologies by Control Effectiveness

- (1) Recuperative Thermal Oxidizer 98 % destruction efficiency
- (2) Regenerative Thermal Oxidizer 98 % destruction efficiency

Step 4: Evaluate the Most Effective Controls and Document the Results

Average Cost Effectiveness for the Recuperative Thermal Oxidizer = \$23,202

Average Cost Effectiveness for the Regenerative Thermal Oxidizer = \$10,696

Detailed estimates are contained in Appendix D. The result of these assessments yields dollarper-ton controlled cost above the levels considered economically infeasible.

The following table lists the CO BACT determinations operations. All data in the table is based on the information obtained from the permit application submitted by Dalton Corporation, the U.S. EPA RACT/BACT/LAER Clearinghouse (RBLC), and electronic versions of permits available at the websites of other permitting agencies.

Table 1:	Table 1: Existing CO BACT Limits				
Company Name / Operation	CO Limit	Year of BACT Determination	Control Technology		
PROPOSED BACT FOR HERMAN 3 M					
Dalton Corporation, Warsaw Manufacturing Facility - Warsaw, IN (Proposed Permit 25816) Herman 3 Line (Pouring, Cooling and Shakeout) Capacity 28 tons/hr	Pouring 1.88 Ib/ton Cooling 2.88 Ib/ton and Shakeout 1.32 Ib/ton	Proposed date, 2008	No Control		
COMPARABLE BACT DETERMINATION	ONS (List in Top-D	Down Order by Contr	ol Efficiency)		
Thyssen Krupp Plant #1- WI - 0238 Pouring/Cooling	5.0 lb/ton metal	01/12/2006	No Control		
Thyssen Krupp Plant #2- WI - 0237 Pouring/Cooling	5.0 lb/ton metal	12/05/2005	No Control		
Waupaca Foundry, Inc plant 1 - WI - 0190 Pouring/Mold Cooling disa Line 4	5.0 lb/ton metal 35.0 lb/hr	06/11/02	No Control		
Ardmore Foundry, Inc - OK - 0077 Pouring and Cooling	82.34 lb/hr	09/04/2001	No Control		
Ardmore Foundry, Inc - OK - 0039 Pouring and Cooling	156.76 lb/hr	05/22/2000	No Control		
Waupaca Foundry, Inc plant 3 - WI - 0160 Pouring/Mold Cooling P54 S68 Line 2	5.0 lb/ton metal 80.0 lb/hr	12/22/1999	No Control		
Waupaca Foundry, Inc plant 3 - WI - 0155 Pouring/Mold Cooling P53 S68 Line 1	5.0 lb/ton metal 80.0 lb/hr from S68	12/23/1998	No Control		

Table 1:	Existing CO BA	CT Limits	
Company Name / Operation	CO Limit	Year of BACT Determination	Control Technology
Aarrow Cast - WI - 0161 Pouring, Cooling and Shakeout P25 &P26,S22	5.0 lb/ton metal	10/01/1998	Sand System Optimization
Waupaca Foundry, Inc plant 1 - WI - 0179 disa Line 2 Pouring/Mold Cooling	5.0 lb/ton metal 40.0 lb/hr	07/01/1998	No Control
Waupaca Foundry, Inc plant 1 - WI - 0078 Pouring/Cooling Process Line 7 Phase II	5.0 lb/ton iron 150.0 lb/hr	02/04/1998	No Control
Waupaca Foundry, Inc plant 1 - WI - 0078 Pouring/Cooling Process Line 5 Phase II	5.0 lb/ton iron 125.0 lb/hr	02/04/1998	No Control
Waupaca Foundry, Inc plant 1 - WI - 0078 Pouring/Cooling Process Line 6 & 8 Phase II	5.0 lb/ton iron 90.0 lb/hr	02/04/1998	No Control
Waupaca Foundry, Inc plant 1 - WI - 0078 Pouring/Cooling Process, Existing	5.0 lb/ton iron 125.0 lb/hr	02/04/1998	No Control
Thyssen Krupp Plant #1- WI - 0238 Shakeout	1.0 lb/ton metal	01/12/2006	No Control
Thyssen Krupp Plant #2 & #3- WI - 0239 Shakeout	1.0 lb/ton metal	01/12/2006	No Control
Thyssen Krupp Plant #2- WI - 0237 Shakeout	1.0 lb/ton metal	12/05/2005	No Control
Waupaca Foundry, Inc plant 1 - WI - 0190 Shakeout disa Line 4	1.0 lb/ton metal 14.0 lb/hr	06/11/2002	No Control
Ardmore Foundry, Inc - OK - 0077 Shakeout	26.7 lb/hr	09/04/2001	No Control
Waupaca Foundry, Inc plant 6 - TN - 0131 Phase I Mold Cooling & Shakeout Lines 1 & 2	35.0 lb/month (each line) 96.0 lb/hr (Each Line)	08/24/2001	No Control
Waupaca Foundry, Inc plant 6 - TN - 0131 Phase I Mold Cooling & Shakeout Lines 3 & 4	65.70 lb/month (each line) 180.0 lb/hr (Each Line)	08/24/2001	No Control

Table 1:	Existing CO BA	CT Limits	
Company Name / Operation	CO Limit	Year of BACT Determination	Control Technology
Waupaca Foundry, Inc - TN - 0063 Mold Cooling & Shakeout, Cast handling and Finishing	465.0 lb/hr	04/29/2000	Incineration System and Rereouting not Considered technically viable.
Ravenna Casting Center, Inc - MI - 0274 Molding, Shakeout	98.5 lb/hr 270 tons/yr	04/14/2000	Exhaust through Fabric filter Equivalent to 4.1 lb/ton of iron cast. Sand used limited to 500,000 ton/yr.
Waupaca Foundry, Inc Plant 3 - WI - 0160 Shakeout P60, S56 Line 2	0.1lb/ton metal 16.0 lb/hr from	12/22/1999	No Control
Waupaca Foundry, Inc Plant 3 - WI - 0160 Shakeout Line 1 P59, S53	S56 0.1lb/ton metal 16.0 lb/hr	12/22/1999	No Control
Waupaca Foundry, Inc Plant 1 - WI - 0184 P33B - S25 disa Line 3 Shakeout	1.0 lb/ton 10.0 lb/hr	05/27/1999	No Control
Waupaca Foundry, Inc Plant 1 - WI - 0184 P33A - S25 disa Line 2 Shakeout	1.0 lb/ton 16.0 lb/hr	05/27/1999	No Control
Waupaca Foundry, Inc Plant 3 - WI - 0155 Shakeout P59, S53 - disa Line 1	1.0 lb/ton metal 16.0 lb/hr from S56	12/23/1998	No Control
Waupaca Foundry, Inc Plant 1 - WI - 0179	1.0 lb/ton metal	07/01/1998	No Control
DISA Line 3, Shakeout P33 B Waupaca Foundry, Inc Plant 1 - WI - 0179	1.0 lb/ton metal	07/01/1998	No Control
DISA Line 2, Shakeout P33 Waupaca Foundry, Inc - IN - 0078 Shakeout Line 7 Phase II	1.0 lb/ton iron 3.0 lb/hr	02/04/1998	No Control
Waupaca Foundry, Inc - IN - 0078 Shakeout, Line 1, Existing	1.0 lb/ton iron	02/04/1998	No Control
Waupaca Foundry, Inc - IN - 0078 Shakeout, Line 8, Phase II	1.0 lb/ton iron 18.0 lb/hr	02/04/1998	No Control
Waupaca Foundry, Inc - IN - 0078 Shakeout, Line 6, Phase II	1.0 lb/ton iron 18.0 lb/hr	02/04/1998	No Control

Table 1:	Existing CO B	ACT Limits	
Company Name / Operation	CO Limit	Year of BACT Determination	Control Technology
Waupaca Foundry, Inc - IN - 0078	1.0 lb/ton iron	02/04/1998	No Control
Shakeout, Line 5, Phase II	25.0 lb/hr		

The BACT limits proposed by Dalton Corporation, Warsaw Manufacturing Facility for pouring and mold cooling are 1.88 and 2.88, respectively. These limits combined are equal to 4.76 lb/ton, which is more stringent than the comparable combined lb/ton BACT limitations referenced in the table above. While it is clear that Dalton's proposed limit for shakeout of 1.32 lb/ton is not as stringent as the limits referenced above for Waupaca and Thyssen Krupp plants (1 lb/ton), the limit for Dalton is based on stack testing conducted at Dalton's Warsaw plant and more accurately reflect the normal emission rate from the shakeout operations at this plant. In addition, these other comparable BACT emission limitations are uncontrolled units, based on a determination by the permitting authority that controls are not feasible for these types of operations. Therefore, given that the proposed limit is not significantly higher than other comparable limits, and given that the materials produced at these facilities vary significantly, which affects the emission characteristic of the shakeout operations, it is reasonable to conclude that Dalton's proposed limit should be considered BACT for the Herman 3 Line.

Step 5: Select BACT

Recuperative Thermal Oxidizer and Regenerative Thermal Oxidizer combined with baghouse are not economically feasible due to high operating cost of these equipments.

Pursuant to 326 IAC 2-2-3 (Prevention of Significant Deterioration (PSD)), IDEM has established the following as BACT for carbon monoxide (CO) for the Herman 3 Mold Line pouring, cooling and shaking operation.

Operation	CO Emission Limit
Pouring	1.8 lb/ton iron
Cooling	2.88 lb/ton iron
Shakeout	1.32 lb/ton iron

Air Quality Analysis

Dalton Corporation Warsaw Manufacturing Facility

Warsaw, Indiana (Kosciusko County)

Tracking and Plant ID: 085-25816-00003

Proposed Project

Dalton Corporation Warsaw Manufacturing Facility has submitted a request for a Prevention of Significant Deterioration (PSD) permit for Carbon Monoxide (CO) emissions from the foundry. This application was made after constructions when it was determined extra CO emissions were present at foundries. Dalton was required to complete the application by December 31, 2007.

Rickun Consultants, prepared the permit application for Dalton. The Modeling Section in the Office of Air Quality (QAQ) received the modeling data January 29, 2008. This technical support document provides the air quality analysis review of the permit application.

Analysis Summary

Based on the emissions after controls, a PSD air quality analysis was triggered for CO. The significant impact analysis for CO determined that modeling concentrations exceeded the significant impact levels. A refined analysis was required and showed no violation of the NAAQS. (Preconstruction monitoring requirements are not necessary since nearby monitoring was available from Allen County.) An additional impact analysis was conducted and showed no significant impact.

Air Quality Impact Objectives

The purpose of the air quality impact analysis in the permit application is to accomplish the following objectives. Each objective is individually addressed in this document in each section outlined below.

- A. Establish which pollutants require an air quality analysis based on PSD significant emission rates.
- B. Provide analyses of actual stack heights with respect to Good Engineering Practice (GEP), the meteorological data used, a description of the model used in the analysis, and the receptor grid utilized for the analyses.
- C. Determine the significant impact level, the area impacted by the source's emissions and background air quality levels.
- D. Demonstrate that the source will not cause or contribute to a violation of the National Ambient Air Quality Standard (NAAQS) if the applicant exceeds significant impact levels.
- E. Perform a qualitative analysis of the source's impact on general growth, soils and vegetation in the impact area with emphasis on any Class I areas. The nearest Class I area is Kentucky's Mammoth Cave National Park.
- F. Summarize the Air Quality Analysis

Dalton Corp. Warsaw Manufacturing Facility Warsaw, Indiana Permit Writer: Jeffery Stoakes Page 2 of 7 SSM No. 085-25816-00003 SPM No. 085-25836-00003

Section A - Pollutants Analyzed for Air Quality Impact

Applicability

The PSD requirements, 326 IAC 2-2, apply in attainment and unclassifiable areas and require an air quality impact analysis of each regulated pollutant emitted in significant amounts by a major stationary source or modification. Significant emission levels for each pollutant are defined in 326 IAC 2-2-1 and in the Code of Federal Regulations (CFR) 52.21(b) (23) (i).

Proposed Project Emissions

Carbon Monoxide is the pollutant that will be emitted from Dalton. The emissions for this project are summarized below in Table 1. CO potential emissions after controls exceed the PSD significant emission rates and will require an air quality analysis. Since the emissions for the project for all pollutants will be above the significant emission rate, they will be included in the air quality analysis.

Significant Emission Rates for PSD					
POLLUTANT	SOURCE	SIGNIFICANT	PRELIMINARY		
	EMISSION	EMISSION	AIR QUALITY		
	RATE	RATE	ANALYSIS		
	(tpy)	(tpy)	REQUIRED?		
CO	271.73	100	Yes		

TABLE 1 Significant Emission Rates for PSF

These are emission rates that are taken from their air quality impact analysis. These are also the emission rates that were modeled. Worst-case emission rates for were modeled for comparison with short-term impact standards.

Section B – Good Engineering Practice (GEP), Met Data, Model Used, Receptor Grid and Terrain

Stack Height Compliance with Good Engineering Practice (GEP)

Applicability

Stacks should comply with GEP requirements established in 326 IAC 1-7-4. If stacks are lower than GEP, excessive ambient concentrations due to aerodynamic downwash may occur. Dispersion modeling credit for stacks taller than 65 meters (213 feet) are limited to GEP for the purpose of establishing emission limitations. The GEP stack height takes into account the distance and dimensions of nearby structures, which would affect the downwind wake of the stack. The downwind wake is considered to extend five times the lesser of the structure's height or width. A GEP stack height is determined for each nearby structure by the following formula:

Hg = H + 1.5L

Where:Hg is the GEP stack heightH is the structure heightL is the structure's lesser dimension (height or width)

Dalton Corp. Warsaw Manufacturing Facility Warsaw, Indiana Permit Writer: Jeffery Stoakes Page 3 of 7 SSM No. 085-25816-00003 SPM No. 085-25836-00003

New Stacks

Since the new stack heights for Dalton are below GEP stack height, the effect of aerodynamic downwash will be accounted for in the air quality analysis for the project.

Meteorological Data

The meteorological data used in AERMOD consisted of 1988 through 1992 surface data from the Fort Wayne, Indiana and upper air measurements taken at Dayton, OH. The meteorological data was downloaded from Lakes Environmental and preprocessed using AERMET.

Model Description

Rickun Consultants used AERMOD, Version 07026. OAQ used the same model version to determine maximum off-property concentrations or impacts for each pollutant. All regulatory default options were utilized in the U.S. EPA approved model, as listed in the 40 Code of Federal Register Part 51, Appendix W "Guideline on Air Quality Models".

Receptor Grid

OAQ modeling used the same receptor grids generated by Rickun Consultants. The receptor grid contains 1704 individual receptors.

- 100 meter spacing along the facility's property boundary,
- 100 meter spacing from 0 to 1,000 meters from the facility,
- 250 meters spacing from 1,000 to 3,000 meters from the facility,
- 500 meters spacing from 3,000 to 10,000 meters from the facility.

Treatment of Terrain

Receptor terrain elevation inputs were interpolated from DEM (Digital Elevation Model) data obtained from the USGS. DEM terrain data was preprocessed using AERMAP.

Section C - Significant Impact Level/Area (SIA) and Background Air Quality Levels

A significant impact analysis was conducted to determine if the source would exceed the PSD significant impact levels (concentrations). If the source's concentrations would exceed these levels, further air quality analysis is required. Refined modeling for CO was required because the results did exceed significant impact levels. Significant impact levels are defined by the following time periods in Table 2 below with all maximum-modeled concentrations from the worst case operating scenarios.

Page 4 of 7 SSM No. 085-25816-00003 SPM No. 085-25836-00003

TABLE 2 Significant Impact Analysis

POLLUTANT	TIME AVERAGING PERIOD	MAXIMUM MODELED IMPACTS (ug/m ³)	SIGNIFICANT IMPACT LEVEL (ug/m ³)	REFINED AQ ANALYSIS REQUIRED
со	1 hour*	8420	2000	Yes
со	8 hour*	4156	500	Yes

*First highest values per EPA NSR manual October 1990. Impacts are from the Dalton only.

Pre-construction Monitoring Analysis

Applicability

The PSD rule, 326 IAC 2-2-4, requires an air quality analysis of the new source or the major modification to determine if the pre-construction monitoring threshold is triggered. In most cases, monitoring data taken from a similar geographic location can satisfy this requirement if the pre-construction monitoring threshold has been exceeded. Also, post construction monitoring could be required if the air quality in that area could be adversely impacted by applicant's emissions.

Modeling Results

A comparison of the modeling results was compared to the PSD preconstruction monitoring thresholds. The results are shown in the table below.

TABLE 3 Preconstruction Monitoring Analysis

POLLUTANT	TIME AVERAGING PERIOD	MAXIMUM MODELED IMPACTS (ug/m ³)	DEMINIMIS LEVEL (ug/m3)	ABOVE DE MINIMIS LEVEL
СО	8 hour*	4156	575	Yes

*First highest values per EPA NSR manual October 1990. Maximum modeled impacts are from Dalton only.

CO did trigger the preconstruction monitoring threshold level. Dalton can satisfy the preconstruction monitoring requirement since there is air quality monitoring data representative of the area in Allen County.

Background Concentrations

Applicability

EPA's "Ambient Monitoring Guidelines for Prevention of Significant Deterioration" (EPA-450/4-87-007) Section 2.4.1 is cited for approval of the monitoring sites for this area.

Dalton Corp. Warsaw Manufacturing Facility Warsaw, Indiana Permit Writer: Jeffery Stoakes

Background Monitors

Background data was taken from the closest monitoring stations from Dalton. The closest CO monitor is located in Allen County.

For all 24-hour background concentrations, the averaged second highest monitoring values were used. Annual background concentrations were taken from the maximum annual values.

TABLE 4
Existing Monitoring Data Used For Background Concentrations *

Pollutant	Monitoring Site	Averaging Period	Concentration (ug/m3)	
СО	18-003-0011/Allen County	1 hour	3091	
со	18-003-0011/Allen County	8 hour	2141	

*OAQ used the most conservative values for the air quality analysis. It is standard policy to use the latest 3 years of data.

Section D - NAAQS Analysis

NAAQS Compliance Analysis and Results

OAQ supplied emission inventories of all point sources within a 50-kilometer radius of Dalton. The NAAQS inventories are generated from I-STEPS (State Emission Processing System) in accordance with 326 IAC 2-6.

NAAQS modeling for the appropriate time-averaging periods for CO was conducted and compared to the respective NAAQs limit. OAQ modeling results are shown in Table 5. All maximum-modeled concentrations were compared to the respective NAAQS limit. All maximum-modeled concentrations during the five years were below the NAAQS limits and further modeling was not required.

TABLE 5 NAAQS Analysis

Pollutant	Year	Time-Averaging Period	Maximum Concentration ug/m3	Background Concentration ug/m3	Total ug/m3	NAAQS Limit ug/m3	NAAQS Violation
со	1990	1 hour	7411	3091	10502	40000	NO
со	1988	8 hour	3573	2141	5714	10000	NO

Page 5 of 7 SSM No. 085-25816-00003 SPM No. 085-25836-00003

Additional Impact Analysis

All PSD permit applicants must prepare additional impacts analysis for each pollutant subject to regulation under the Act. This analysis assesses the impacts on growth, soils and vegetation, endangered species and visibility caused by any increase in emissions of any regulated pollutant from the source. The Dalton modeling submittal provided an additional impact analysis performed by Rickun Consultants.

Economic Growth

The purpose of the growth analysis is to quantify project associated growth and estimate the air quality impacts from this growth either quantitatively or qualitatively.

No new construction is part of this application. No commercial growth is anticipated to occur. Since the area is predominately rural, it is not expected the growth impacts will cause a violation of the NAAQS.

Soils and Vegetation Analysis

A list of soil types present in the general area was determined. Soil types include the following: Sandy and Loamy Lacustrine deposits and Eolian sand, Alluvial and Outwash deposits, Eolian sand deposits.

Due to the agricultural nature of the land, crops in the Kosciusko County area consist mainly of corn, sorghum, wheat, soybeans, and oats (2002 Agricultural Census for Kosciusko County). The maximum modeled concentrations for Dalton are well below the threshold limits necessary to have adverse impacts on the surrounding vegetation such as autumn bent, nimblewill, barnyard grass, bishopscap and horsetail, and milkweed (Flora of Indiana – Charles Deam). Livestock in Kosciusko County) and will not be adversely impacted from the facility. Trees in the area are mainly hardwoods. These are hardy trees and no significant adverse impacts are expected due to modeled concentrations.

Federal and State Endangered Species Analysis

Federal and state endangered or threatened species are listed by the U.S. Fish and Wildlife Service; Division of Endangered Species for Indiana and includes 5 amphibians, 27 birds, 10 fishes, 7 mammals, 15 mollusks, and 15 reptiles. Of the federal and state endangered species on the list, 2 amphibians, 7 reptiles, 16 mollusks, 7 fish, 18 birds, and 4 mammals have habitat within Kosciusko County. The mollusks, fish, amphibians and certain species of birds and mammals are found along rivers and lakes while the other species of birds and mammals are found in forested areas. The facility is not expected to have any additional adverse effects on the habitats of the species than what has already occurred from the industrial, farming, and residential activities in the area.

Federal and state endangered or threatened plants are listed by the U.S. Fish and Wildlife Service, Division of Endangered Species for Indiana. They list 22 state significant species of plants. At this time no federally endangered plant species are found in Kosciusko County. The endangered plants do not thrive in industrialized and residential areas. The facility is not expected to adversely affect any plant on the endangered species list.

Page 7 of 7 SSM No. 085-25816-00003 SPM No. 085-25836-00003

Finally, the results of the additional impact analysis conclude the operation of the facility will have no significant impact on economic growth, soils or vegetation in the immediate vicinity or on any Class I area. CO is not a pollutant that affects visibility, the visibility analysis was not necessary for this application.

Part H - Summary of Air Quality Analysis

Rickun Consultants prepared the modeling portion of the PSD application. Kosciusko County is designated as attainment for all criteria pollutants. CO emission rates associated with the proposed facility exceeded the respective significant emission rates. Modeling results taken from the latest version of the AERMOD model showed CO impacts were predicted to be greater than the significant impact levels. Dalton did trigger the preconstruction monitoring threshold level for CO but can satisfy the preconstruction monitoring requirement since there is existing air quality monitoring data representative of the area. The NAAQS for CO showed no violations of the standards. The nearest Class I area is Mammoth Cave National Park in Kentucky over 400 kilometers away from the source. An additional impact analysis was required but the operation of the proposed facility will have no significant impact.