

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Michael R. Pence Governor Thomas W. Easterly

Commissioner

TO: Interested Parties / Applicant

DATE: December 17, 2013

RE: Essex Group, Inc. /003-33510-00269

FROM: Matthew Stuckey, Branch Chief

Permits Branch Office of Air Quality

Notice of Decision: Approval – Effective Immediately

Please be advised that on behalf of the Commissioner of the Department of Environmental Management, I have issued a decision regarding the enclosed matter. Pursuant to IC 13-17-3-4 and 326 IAC 2, this permit modification is effective immediately, unless a petition for stay of effectiveness is filed and granted, and may be revoked or modified in accordance with the provisions of IC 13-15-7-1.

If you wish to challenge this decision, IC 4-21.5-3-7 and IC 13-15-7-3 require that you file a petition for administrative review. This petition may include a request for stay of effectiveness and must be submitted to the Office Environmental Adjudication, 100 North Senate Avenue, Government Center North, Suite N 501E, Indianapolis, IN 46204, **within eighteen (18) days of the mailing of this notice**. The filing of a petition for administrative review is complete on the earliest of the following dates that apply to the filing:

- (1) the date the document is delivered to the Office of Environmental Adjudication (OEA);
- the date of the postmark on the envelope containing the document, if the document is mailed to OEA by U.S. mail; or
- (3) The date on which the document is deposited with a private carrier, as shown by receipt issued by the carrier, if the document is sent to the OEA by private carrier.

The petition must include facts demonstrating that you are either the applicant, a person aggrieved or adversely affected by the decision or otherwise entitled to review by law. Please identify the permit, decision, or other order for which you seek review by permit number, name of the applicant, location, date of this notice and all of the following:

- (1) the name and address of the person making the request;
- (2) the interest of the person making the request;
- (3) identification of any persons represented by the person making the request;
- (4) the reasons, with particularity, for the request;
- (5) the issues, with particularity, proposed for considerations at any hearing; and
- (6) identification of the terms and conditions which, in the judgment of the person making the request, would be appropriate in the case in question to satisfy the requirements of the law governing documents of the type issued by the Commissioner.

Pursuant to 326 IAC 2-7-18(d), any person may petition the U.S. EPA to object to the issuance of a Title V operating permit or modification within sixty (60) days of the end of the forty-five (45) day EPA review period. Such an objection must be based only on issues that were raised with reasonable specificity during the public comment period, unless the petitioner demonstrates that it was impractible to raise such issues, or if the grounds for such objection arose after the comment period.

To petition the U.S. EPA to object to the issuance of a Title V operating permit, contact:

U.S. Environmental Protection Agency 401 M Street Washington, D.C. 20406

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178. Callers from within Indiana may call toll-free at 1-800-451-6027, ext. 3-0178.

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue . Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Michael R. Pence Governor Thomas W. Easterly

Commissioner

Mr. David Riley Essex Group, Inc. 1601 Wall Street Fort Wayne, IN 46802

December 17, 2013

Re: 003-33510-00269

Significant Permit Modification

Part 70 Renewal No.: T003-30777-00269

Dear Mr. Riley:

Essex Group, Inc. was issued Part 70 Operating Permit Renewal No. T003-30777-00269 on April 10, 2012 for a stationary magnet wire manufacturing operation located at 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana. Pursuant to the provisions of 326 IAC 2-7-12, a significant permit modification to this permit is hereby approved as described in the attached Technical Support Document.

For your convenience, the entire Part 70 Operating Permit Renewal as modified is attached.

A copy of the permit is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/. For additional information about air permits and how the public and interested parties can participate, refer to the IDEM's Guide for Citizen Participation and Permit Guide on the Internet at: www.idem-in.gov/ai/appfiles/idem-caats/.

This decision is subject to the Indiana Administrative Orders and Procedures Act - IC 4-21.5-3-5. If you have any questions on this matter, please contact Laura Spriggs, of my staff, at 317-233-5693 or 1-800-451-6027, and ask for extension 3-5693.

Sincerely,

Jason R. Krawczyk, Section Chief

Permits Branch
Office of Air Quality

Attachments: Updated Permit and Technical Support Document

JRK/lss

CC:

File - Allen County

Allen County Health Department

U.S. EPA, Region V

Compliance and Enforcement Branch

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue . Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.lN.gov

Michael R. Pence Governor

Thomas W. Easterly

Commissioner

Part 70 Operating Permit Renewal OFFICE OF AIR QUALITY

Essex Group, Inc. 1601 Wall Street and 1700 West Swinney Fort Wayne, Indiana 46802

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

Operation Permit No.: T003-30777-00269

Issued by:
original signed by:
Chrystal A. Wagner, Section Chief
Permits Branch
Office of Air Quality

Administrative Amendment No.: 003-32834-00269, issued April 8, 2013

Significant Permit Modification No.: 003-33510-00269

Issued by:

Jason R. Krawczyk, Section Chief

Permits Branch Office of Air Quality

Expiration Date: April 10, 2017

Issuance Date: December 17, 2013

Page 2 of 76

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

TABLE OF CONTENTS

A. SOURCE SUMMARY

- A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]
- Part 70 Source Definition [326 IAC 2-7-1(22)] A.2
- Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)] A.3 [326 IAC 2-7-5(14)]
- Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)] [326 IAC 2-7-4(c)] A.4 [326 IAC 2-7-5(14)]
- A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

B. GENERAL CONDITIONS

- Definitions [326 IAC 2-7-1] B.1
- B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)] [IC 13-15-3-6(a)]
- B.3 Term of Conditions [326 IAC 2-1.1-9.5]
- B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]
- B.5 Severability [326 IAC 2-7-5(5)]
- B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
- B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
- B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]
- B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]
- Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3] B.10
- Emergency Provisions [326 IAC 2-7-16] B.11
- Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12] B.12
- Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5] B.13
- B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]
- B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
- Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)] B.16
- B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]
- B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)] [326 IAC 2-7-12(b)(2)]
- B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]
- B.20 Source Modification Requirement [326 IAC 2-7-10.5]
- B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
- B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
- B.23 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]
- B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]

C. SOURCE OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
- C.2 Opacity [326 IAC 5-1]
- Open Burning [326 IAC 4-1] [IC 13-17-9] C.3
- C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]
- C.5 Fugitive Dust Emissions [326 IAC 6-4]
- C.6 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)]

C.7 Performance Testing [326 IAC 3-6] Significant Permit Modification No.: 003-33510-00269 Page 3 of 76
Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Compliance Requirements [326 IAC 2-1.1-11]

C.8 Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

- C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]
- C.10 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

- C.11 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
- C.12 Risk Management Plan [326 IAC 2-7-5(12)] [40 CFR 68]
- C.13 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5] [326 IAC 2-7-6]
- C.14 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5] [326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)] [326 IAC 2-6]
- C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2] [326 IAC 2-3]
- C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2][40 CFR 64][326 IAC 3-8]

Stratospheric Ozone Protection

C.18 Compliance with 40 CFR 82 and 326 IAC 22-1

D.1 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.1.1 Particulate Matter (PM) [326 IAC 6-2-4]
- D.1.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

D.2 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.2.1 Volatile Organic Compound (VOC) Emission Limitations [326 IAC 8-2-8]
- D.2.2 PSD Minor Limit [326 IAC 2-2]
- D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements

- D.2.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]
- D.2.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]
- D.2.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]
- D.2.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]
- D.2.8 Testing Requirements [326 IAC 2-7-6(1),(6)] [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-6 (1)] [326 IAC 2-7-5 (1)]

D.2.9 Thermal Oxidizer Temperature

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.2.10 Record Keeping Requirements
- D.2.11 Reporting Requirements

Significant Permit Modification No.: 003-33510-00269 Page 4 of 76
Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

D.3 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.3.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]
- D.3.2 PSD Minor Limit [326 IAC 2-2]
- D.3.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements

- D.3.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]
- D.3.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]
- D.3.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]
- D.3.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]
- D.3.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.3.9 Thermal Oxidizer Temperature

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.3.10 Record Keeping Requirements
- D.3.11 Reporting Requirements

D.4 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.4.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]
- D.4.2 PSD Minor Limits [326 IAC 2-2][326 IAC 8-2-8]
- D.4.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements

- D.4.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]
- D.4.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]
- D.4.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]
- D.4.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]
- D.4.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.4.9 Thermal Oxidizer Temperature

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.4.10 Record Keeping Requirements
- D.4.11 Reporting Requirements

D.5 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.5.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]
- D.5.2 PSD Minor Limit [326 IAC 2-2][326 IAC 8-2-8]
- D.5.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements

- D.5.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]
- D.5.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]
- D.5.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]
- D.5.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]
- D.5.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

Page 5 of 76

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.5.9 Thermal Oxidizer Temperature

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.5.10 Record Keeping Requirements
- D.5.11 Reporting Requirements

D.6 FACILITY OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2]
- Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.6.3 Record Keeping Requirements

FACILITY OPERATION CONDITIONS - NESHAP Subpart MMMM E.1

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

- General Provisions Relating to NESHAP Subpart MMMM (National Emission Standards E.1.1 for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products) [326 IAC 20-1] [40 CFR Part 63, Subpart A]
- NESHAP Subpart MMMM Requirements [40 CFR 63, Subpart MMMM][326 IAC 20-80]

E.2 **FACILITY OPERATION CONDITIONS - NESHAP Subpart ZZZZ**

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

- General Provisions Relating to NESHAP Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) [326 IAC 20-1] [40 CFR Part 63, Subpart A]
- E.2.2 NESHAP Subpart ZZZZ Requirements [40 CFR 63, Subpart ZZZZ][326 IAC 20-82]

E.3 FACILITY OPERATION CONDITIONS - NSPS Subpart Dc

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

- General Provisions Relating to NSPS Subpart Dc (Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units) [326 IAC 12-1] [40 CFR Part 60, Subpart Al
- NSPS Subpart Dc Requirements [40 CFR 60, Subpart Dc][326 IAC 12]

FACILITY OPERATION CONDITIONS - NESHAP Subpart DDDDD E.4

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

- General Provisions Relating to NESHAP Subpart DDDDD (National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters) [326 IAC 20-1] [40 CFR Part 63, Subpart A]
- NESHAP Subpart DDDDD Requirements [40 CFR 63, Subpart DDDDD][326 IAC 20-95]

Certification **Emergency Occurrence Report** Part 70 Quarterly Reports Quarterly Deviation and Compliance Monitoring Report Significant Permit Modification No.: 003-33510-00269

Page 6 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Modified by: Laura Spriggs Permit Reviewer: Mehul Sura

Attachment A: 40 CFR 63, Subpart MMMM - National Emission Standards for Hazardous Air Pollutants

for Surface Coating of Miscellaneous Metal Parts and Products

Attachment B: 40 CFR 63, Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for

Stationary Reciprocating Internal Combustion Engines

Attachment C: 40 CFR 60, Subpart Dc - Standards of Performance for Small Industrial-Commercial-

Institutional Steam Generating Units

Attachment D: 40 CFR 63, Subpart DDDDD - National Emission Standards for Hazardous Air Pollutants

for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

SECTION A

SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1, A.3 through A.4 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary magnet wire manufacturing operation.

Source Address: 1601 Wall Street, and 1700 West Swinney, Fort Wayne,

Indiana 46802

General Source Phone Number: (260) 461-4000

SIC Code 3357 (Drawing and Insulating of Nonferrous Wire) and

2851 (Paints, Varnishes, Lacquers, Enamels and Allied

Page 7 of 76 T 003-30777-00269

Products)

County Location: Allen

Source Location Status: Attainment for all criteria pollutants
Source Status: Part 70 Operating Permit Program

Major Source, under PSD Rules

Major Source, Section 112 of the Clean Air Act

Not 1 of 28 Source Categories

A.2 Part 70 Source Definition [326 IAC 2-7-1(22)]

Pursuant to T003-7654-00269, issued on September 30, 1999, this stationary chemical processing and magnet wire coating company consists of two (2) plants:

- (a) Chemical Processing Plant is located at 1700 West Swinney, Fort Wayne, Indiana 46802; and
- (b) Magnet Wire Coating Plant is located at 1601 Wall Street, Fort Wayne, Indiana 46802.

Since the Chemical Processing Plant supports the Magnet Wire Coating Plant, and these two (2) plants are under common control of the same entity, they are considered one (1) source.

A.3 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)] [326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices.

Chemical Processing Plant

- (a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Page 8 of 76

Essex Group, Inc. Fort Wayne, Indiana

T 003-30777-00269 Permit Reviewer: Mehul Sura

- (c) Two (2) 4000 gallon hot oil heated reactors with fume scrubbers, agitator condenser and distillation column identified as emission units R-1 and R-2, and constructed in 1973 and 1981, respectively.
- (d) Six (6) jacketed mix kettles, all constructed after January 1, 1980 and identified as follows:
 - (1) One (1) 2000 gallon jacketed mix kettle equipped with agitator and condenser, identified as emission unit K-2, and constructed prior to 1982.
 - One (1) 1000 gallon jacketed mix kettle equipped with agitator and condenser, (2) identified as K-3, and constructed prior to 1982.
 - (3)One (1) 4000 gallon jacketed mix kettle equipped with an agitator and a condenser, identified as emission unit K-4, replaced in 2001.
 - One (1) 5000 gallon jacketed mix kettle equipped with an agitator and a (4) condenser, identified as emission unit K-5, and constructed in 1990.
 - (5)Two (2) 10000 gallon jacketed kettles each equipped with an agitator and a condenser, identified as emission units K-6 and K-7, constructed in 1973 and 1981, respectively.
- One (1) 560 gallon water cooled polymer batch reactor, identified as R-3, approved for (e) construction in 2013, with a maximum capacity of 4,900 pounds per batch of solid and solvent materials, using a baghouse for PM control, and exhausting to stacks R-3B. The outside of the tank is cleaned after each batch with VOC containing cleaning solvent.

The reactor is also equipped with a condenser and corresponding stack, but it is Note: not going to be used all the time as a control, therefore it was not used for permitting purposes and not indicated in the unit's description.

Magnet Wire Coating Plant

- (a) One (1) wire enameling oven with an integral internal thermal oxidizer, identified as emission unit 52, constructed in 1996, with a maximum capacity of 531 pounds of wire per hour, with emissions exhausting at stack S52.
- The following eight (8) wire enameling ovens with add-on thermal incinerators for control. (b) After production, a wire lube is applied to the enameled wire, with a combined maximum total usage of 0.4 pounds per hour for all eight (8) ovens.
 - (1) Five (5) wire enameling ovens, identified as emission units 53, 54, 55, 56 and 57, constructed in 1958, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add-on thermal incinerators for control, with emissions exhausting at the west incinerator identified as SWI.
 - (2)Three (3) wire enameling ovens, identified as emission units 58, 59 and 60, constructed in 1962, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add-on thermal incinerators for control, with emissions exhausting at the east incinerator identified as SEI.
- (c) Two (2) wire enameling ovens with an internal thermal oxidizer, identified as emission units 65 and 66, constructed in 1997, with a maximum capacity of 891 pounds of

Page 9 of 76 T 003-30777-00269

copper/aluminum wire per hour each, with emissions exhausting at stacks S65 and S66, respectively.

- (d) Three (3) wire coating machines, identified as emission units 24, 25 and 26, constructed in 1996, with a maximum capacity of 272 pounds of wire per hour each, with no controls, with emissions exhausting at stack SF-1.
- (e) One (1) wire coating machine, identified as emission unit 28, constructed in the 1970's, with a maximum capacity of 272 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-1.
- (f) One (1) wire coating machine, identified as emission unit 37, constructed in the 1980's, with a maximum capacity of 172.39 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-2.
- (g) Two (2) Weatherite V 14 magnet wire ovens, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour.
- (h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.
- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 52-60, 65, and 66, wire coating machines 24-26, 28 and 37, magnet wire ovens 61-64 and 12, cleaning tanks 2 and 3, and the two (2) die cleaning tanks are considered part of an existing affected source.

A.4 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)] [326 IAC 2-7-4(c)] [326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities, which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(a) One (1) emergency diesel generator, identified as EG-1, installed in 1993, rated at 900 horsepower, engine displacement volume less than 30 liters per cylinder and exhausting to the atmosphere. Under 40 CFR Part 63, Subpart ZZZZ, EG-1 is considered an existing affected source.

Page 10 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

(b) One (1) natural gas fired spark ignition emergency generator, identified as EG-2, installed in 1960, rated at 18 horsepower. Under 40 CFR Part 63, Subpart ZZZZ, EG-2 is

Chemical Processing Plant

considered an existing affected source.

- (a) The following equipment related to manufacturing activities not resulting in the emission of HAPs: brazing equipment, cutting torches, soldering equipment, welding equipment. [326 IAC 6-3-2]
- (b) The following storage tanks emitting less than 15 pounds per day of VOC, and under 40 CFR Part 63, Subpart MMMM, are considered part of an existing affected source:
 - (1) Seven (7) outside storage tanks, identified as tanks TK-17, TK-18, TK-19, TK-20, TK-21, TK-22, and TK-23, constructed after July 23, 1984, storing volatile organic liquids and having a maximum storage capacity less than 75 cubic meters.
 - (2) Fifteen (15) outside storage tanks, identified as tanks TK-1, TK-2, TK-3, TK-4, TK-5, TK-7, TK-8, TK-9, TK-10, TK-11, TK-12, TK-13, TK-15, TK-16, and TK-24, all constructed before July 23, 1984, except for tanks TK-3, and TK-9, storing volatile organic liquids and having a maximum storage capacity less than 40 cubic meters.
 - (3) Two (2) outside storage tanks, identified as tanks TK-6, and TK-14, approved in 2010 for construction, storing volatile organic liquids and having a maximum storage capacity less than 40 cubic meters.
 - (4) Three (3) inside storage tanks, storing volatile organic liquids and having maximum storage capacities less than 40 cubic meters, identified as:
 - (A) TK-25 and TK-32, constructed after July 23, 1984.
 - (B) TK-30, constructed prior to July 23, 1984.
- (c) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons. [40 CFR 63, Subpart MMMM]
- (d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

Magnet Wire Coating Plant

- (a) Aluminum wire drawing cleaning operation, with a maximum usage of 3500 pounds of hydrocarbon solvent per year. This operation uses felts soaked with hydrocarbon to clean tramp oils from aluminum process wire.
- (b) The following equipment related to manufacturing activities not resulting in the emission of HAPs: brazing equipment, cutting torches, soldering equipment, welding equipment. [326 IAC 6-3-2]
- (c) Paved and unpaved roads and parking lots with public access. [326 IAC 6-4]
- (d) One (1) Weatherite V 14 magnet wire oven, identified as 11, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour, each, with two (2)

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs Page 11 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

sides. This unit is for Research and Development purposes only and it is not for production.

(e) One (1) wire coating processing lab, identified as Lab-1, for research and development, approved for construction in 2013, with a maximum capacity of 345 pounds per hour of copper or aluminum and 13 pounds of pelletized resins, using no control, and exhausting inside the building.

Note: The above Lab-1 is the experimental magnet wire coating line for research and development and no commercial products are involved in this Lab-1.

(f) One (1) wire coating processing line (also known as extrusion), identified as E-1, approved for construction in 2013, with a maximum capacity of 345 pounds per hour of copper or aluminum and 13 pounds of pelletized resins, using no control, and exhausting inside the building.

A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

- (a) It is a major source, as defined in 326 IAC 2-7-1(22);
- (b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 Applicability).

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs Page 12 of 76 T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION B

GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

- (a) This permit, T003-30777-00269, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.
- (b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

- (a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or
- (b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]

- (a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.
- (b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

Page 13 of 76 T 003-30777-00269

- (1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and
- (2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.
- (c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source's compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

- (b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) The annual compliance certification report shall include the following:
 - (1) The appropriate identification of each term or condition of this permit that is the basis of the certification:
 - (2) The compliance status;
 - (3) Whether compliance was continuous or intermittent;
 - (4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
 - (5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

Page 14 of 76 Modified by: Laura Spriggs T 003-30777-00269

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

- A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - A description of the items or conditions that will be inspected and the inspection (2)schedule for said items or conditions; and
 - (3)Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

- (b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices:
 - (2)A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions: and
 - (3)Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee's control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Page 15 of 76 Modified by: Laura Spriggs T 003-30777-00269

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

- An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an (a) action brought for noncompliance with a federal or state health-based emission limitation.
- (b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:
 - (1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
 - The permitted facility was at the time being properly operated; (2)
 - (3)During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
 - (4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or

Telephone Number: 317-233-0178 (ask for Office of Air Quality,

Compliance and Enforcement Branch) Facsimile Number: 317-233-6865

For each emergency lasting one (1) hour or more, the Permittee submitted the (5) attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

- (A) A description of the emergency;
- (B) Any steps taken to mitigate the emissions; and
- (C) Corrective actions taken.

Page 16 of 76 T 003-30777-00269

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (6) The Permittee immediately took all reasonable steps to correct the emergency.
- (c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.
- (d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.
- (e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.
- (f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.
- (g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ, shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order. Significant Permit Modification No.: 003-33510-00269 Page 17 of 76
Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

- (c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.
- (d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:
 - (1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;
 - (2) The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;
 - (3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and
 - (4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.
- (e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).
- (f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]
- (g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

- (a) All terms and conditions of permits established prior to T003-30777-00269 and issued pursuant to permitting programs approved into the state implementation plan have been either:
 - (1) incorporated as originally stated,
 - (2) revised under 326 IAC 2-7-10.5, or
 - (3) deleted under 326 IAC 2-7-10.5.
- (b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this Part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).

- B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
 - (a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-

T 003-30777-00269

Page 18 of 76

5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:
 - (1) That this permit contains a material mistake.
 - (2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
 - (3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]
- (c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]
- (d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

- (b) A timely renewal application is one that is:
 - (1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and
 - (2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) If the Permittee submits a timely and complete application for renewal of this permit, the source's failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if,

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs Page 19 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

- (a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.
- (b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

- (a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.
- (b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

- (a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:
 - (1) The changes are not modifications under any provision of Title I of the Clean Air Act;
 - (2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
 - (3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
 - (4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality

100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

- (b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:
 - (1) A brief description of the change within the source;
 - (2) The date on which the change will occur;
 - (3) Any change in emissions; and
 - (4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) Emission Trades [326 IAC 2-7-20(c)]
 The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
- (d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]

 The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ, or U.S. EPA is required.
- (e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

Page 21 of 76 Modified by: Laura Spriggs T 003-30777-00269

B.20 Source Modification Requirement [326 IAC 2-7-10.5]

A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

- Enter upon the Permittee's premises where a Part 70 source is located, or emissions (a) related activity is conducted, or where records must be kept under the conditions of this permit:
- (b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;
- (c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;
- As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample (d) or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and
- (e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

- The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.
- Any application requesting a change in the ownership or operational control of the source (b) shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Page 22 of 76 T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana

Permit Reviewer: Mehul Sura

B.23 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

- The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.
- (b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.
- The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-(c) 4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.

Page 23 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION C

SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

- (a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.5 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.6 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

- (a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.
- (b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

Page 24 of 76 T 003-30777-00269

- (1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or
- (2) If there is a change in the following:
 - (A) Asbestos removal or demolition start date;
 - (B) Removal or demolition contractor; or
 - (C) Waste disposal site.
- (c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).
- (d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (e) Procedures for Asbestos Emission Control
 The Permittee shall comply with the applicable emission control procedures in 326 IAC
 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are
 applicable for any removal or disturbance of RACM greater than three (3) linear feet on
 pipes or three (3) square feet on any other facility components or a total of at least 0.75
 cubic feet on all facility components.
- (f) Demolition and Renovation
 The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).
- (g) Indiana Licensed Asbestos Inspector
 The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator,
 prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to
 thoroughly inspect the affected portion of the facility for the presence of asbestos. The
 requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

C.7 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management

Page 25 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

> Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
- (c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.8 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

Page 26 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.
- (d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.10 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

- (a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.
- (b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.11 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

- (a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.
- (b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.12 Risk Management Plan [326 IAC 2-7-5(12)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.13 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5] [326 IAC 2-7-6]

(I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:

Significant Permit Modification No.: 003-33510-00269 Page 27 of 76
Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

- (a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.
- (b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:
 - (1) initial inspection and evaluation;
 - (2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or
 - (3) any necessary follow-up actions to return operation to normal or usual manner of operation.
- (c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:
 - (1) monitoring results;
 - (2) review of operation and maintenance procedures and records; and/or
 - inspection of the control device, associated capture system, and the process.
- (d) Failure to take reasonable response steps shall be considered a deviation from the permit.
- (e) The Permittee shall record the reasonable response steps taken.

(II)

- (a) CAM Response to excursions or exceedances.
 - (1) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.
 - (2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

inspection of the control device, associated capture system, and the process.

Page 28 of 76

T 003-30777-00269

- (b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.
- (c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a QIP. The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.
- (d) Elements of a QIP:
 The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8 b (2).
- (e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.
- (f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:
 - Failed to address the cause of the control device performance problems;
 or
 - (2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.
- (h) CAM recordkeeping requirements.
 - (1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(a)(2) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C General Record Keeping Requirements

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

> of this permit contains the Permittee's obligations with regard to the records required by this condition.

Page 29 of 76

Instead of paper records, the owner or operator may maintain records on (2) alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements

C.14 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

- When the results of a stack test performed in conformance with Section C Performance (a) Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ, no later than seventy-five (75) days after the date of the test.
- (b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline
- (c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6] Pursuant to 326 IAC 2-6-3(a)(1), the Permittee shall submit by July 1 of each year an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:
 - (1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);
 - (2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management Technical Support and Modeling Section, Office of Air Quality 100 North Senate Avenue MC 61-50 IGCN 1003 Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2] [326 IAC 2-3]
 - Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring

sample, measurement, report, or application. Support information includes the following, where applicable:

Page 30 of 76

T 003-30777-00269

- (AA) All calibration and maintenance records.
- (BB) All original strip chart recordings for continuous monitoring instrumentation.
- (CC) Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:

- (AA) The date, place, as defined in this permit, and time of sampling or measurements.
- (BB) The dates analyses were performed.
- (CC) The company or entity that performed the analyses.
- (DD) The analytical techniques or methods used.
- (EE) The results of such analyses.
- (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

- (b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.
- (c) If there is a reasonable possibility (as defined in 326 IAC 2-2-8 (b)(6)(A), 326 IAC 2-2-8 (b)(6)(B), 326 IAC 2-3-2 (l)(6)(A), and/or 326 IAC 2-3-2 (l)(6)(B)) that a "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, other than projects at a source with a Plantwide Applicability Limitation (PAL), which is not part of a "major modification" (as defined in 326 IAC 2-2-1(dd) and/or 326 IAC 2-3-1(y)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions" (as defined in 326 IAC 2-2-1(pp) and/or 326 IAC 2-3-1(kk)), the Permittee shall comply with following:
 - (1) Before beginning actual construction of the "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, document and maintain the following records:
 - (A) A description of the project.
 - (B) Identification of any emissions unit whose emissions of a regulated new source review pollutant could be affected by the project.

(C) A description of the applicability test used to determine that the project is not a major modification for any regulated NSR pollutant, including:

Page 31 of 76

T 003-30777-00269

- (i) Baseline actual emissions;
- (ii) Projected actual emissions;
- (iii) Amount of emissions excluded under section 326 IAC 2-2-1(pp)(2)(A)(iii) and/or 326 IAC 2-3-1 (kk)(2)(A)(iii); and
- (iv) An explanation for why the amount was excluded, and any netting calculations, if applicable.
- (d) If there is a reasonable possibility (as defined in 326 IAC 2-2-8 (b)(6)(A) and/or 326 IAC 2-3-2 (l)(6)(A)) that a "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, other than projects at a source with a Plantwide Applicability Limitation (PAL), which is not part of a "major modification" (as defined in 326 IAC 2-2-1(dd) and/or 326 IAC 2-3-1(y)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions" (as defined in 326 IAC 2-2-1(pp) and/or 326 IAC 2-3-1(kk)), the Permittee shall comply with following:
 - (1) Monitor the emissions of any regulated NSR pollutant that could increase as a result of the project and that is emitted by any existing emissions unit identified in (1)(B) above; and
 - (2) Calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of five (5) years following resumption of regular operations after the change, or for a period of ten (10) years following resumption of regular operations after the change if the project increases the design capacity of or the potential to emit that regulated NSR pollutant at the emissions unit.
- C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2] [40 CFR 64][326 IAC 3-8]
 - (a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.
 - (b) The address for report submittal is:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Page 32 of 76 T 003-30777-00269

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

- (d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit "calendar year" means the twelve (12) month period from January 1 to December 31 inclusive.
- (e) If the Permittee is required to comply with the recordkeeping provisions of (d) in Section C - General Record Keeping Requirements for any "project" (as defined in 326 IAC 2-2-1 (oo) and/or 326 IAC 2-3-1 (jj)) at an existing emissions unit, and the project meets the following criteria, then the Permittee shall submit a report to IDEM, OAQ:
 - (1) The annual emissions, in tons per year, from the project identified in (c)(1) in Section C- General Record Keeping Requirements exceed the baseline actual emissions, as documented and maintained under Section C- General Record Keeping Requirements (c)(1)(C)(i), by a significant amount, as defined in 326 IAC 2-2-1 (ww) and/or 326 IAC 2-3-1 (pp), for that regulated NSR pollutant, and
 - (2) The emissions differ from the preconstruction projection as documented and maintained under Section C General Record Keeping Requirements (c)(1)(C)(ii).
- (f) The report for project at an existing emissions unit shall be submitted no later than sixty (60) days after the end of the year and contain the following:
 - (1) The name, address, and telephone number of the major stationary source.
 - (2) The annual emissions calculated in accordance with (d)(1) and (2) in Section C General Record Keeping Requirements.
 - (3) The emissions calculated under the actual-to-projected actual test stated in 326 IAC 2-2-2(d)(3) and/or 326 IAC 2-3-2(c)(3).
 - (4) Any other information that the Permittee wishes to include in this report such as an explanation as to why the emissions differ from the preconstruction projection.

Reports required in this part shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

(g) The Permittee shall make the information required to be documented and maintained in accordance with (c) in Section C- General Record Keeping Requirements available for review upon a request for inspection by IDEM, OAQ. The general public may request this information from the IDEM, OAQ under 326 IAC 17.1.

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Essex Group, Inc.

Page 33 of 76 T 003-30777-00269

Stratospheric Ozone Protection

C.18 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.

Page 34 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION D.1

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Chemical Processing Plant - Boilers

- (a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

Insignificant Activities

(d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.1.1 Particulate Matter (PM) [326 IAC 6-2-4]

(a) Pursuant to 326 IAC 6-2-4 (Particulate emission limitations for sources of indirect heating), particulate emissions from boilers EB and WB shall be limited to 0.417 pounds PM per MMBtu heat input each based on the following equation:

$$Pt = \frac{1.09}{0^{0.26}}$$

Where:

Pt = pounds of particulate matter emitted per MMBtu heat input.

Q = Total source maximum operating capacity rating in MMBtu per hour = 40.08 MMBtu/hr.

(b) Pursuant to 326 IAC 6-2-4(a), the particulate emissions from OH-1 and OH-2 shall not exceed 0.6 lb/MMBtu, each.

D.1.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for the facilities described in this section. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Page 35 of 76 T 003-30777-00269

SECTION D.2 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

- (a) One (1) wire enameling oven with an integral internal thermal oxidizer, identified as emission unit 52, constructed in 1996, with a maximum capacity of 531 pounds of wire per hour, with emissions exhausting at stack S52.
- (d) Three (3) wire coating machines, identified as emission units 24, 25 and 26, constructed in 1996, with a maximum capacity of 272 pounds of wire per hour each, with no controls, with emissions exhausting at stack SF-1.

Under 40 CFR 63, Subpart MMMM, wire enameling oven 52 and wire coating machines 24-26 are considered part of an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Volatile Organic Compound (VOC) Emission Limitations [326 IAC 8-2-8]

- (a) Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for the wire enameling oven identified as 52, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.
- (b) The VOC emissions from wire coating machines 24, 25, and 26 shall be less than fifteen (15) pounds per day per oven. Compliance with this limit shall render the requirements of 326 IAC 8-2-8 not applicable to these facilities.

D.2.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

Pursuant to Modification No. 003-4841-00077, issued in 1996, the VOC emissions from oven 52 shall be less than 31.25 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with this limit, combined with potential VOC emissions from ovens 24, 25, and 26, shall limit the VOC emissions from the modification to less than forty (40) tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 not applicable to the 1996 modification.

D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.2.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.2.1(a) and

Page 36 of 76 T 003-30777-00269

D.2.2, the Permittee shall operate the integral internal thermal oxidizer for the wire enameling oven identified as 52 at all times that this facility is in operation.

D.2.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content, usage, and emission limitations contained in Conditions D.2.1(a) and (b) and D.2.2 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ, reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.2.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.2.1(a) shall be determined as follows for wire enameling oven 52 using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.2.1(a).
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

- L= Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.
- D= Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.
- E= Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the thermal oxidizer shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} \times 100$$

Where:

V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.

Page 37 of 76 T 003-30777-00269

- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) Pursuant to T003-7654-00269, issued on September 30, 1999, and 326 IAC 8-1-2(c), the equivalent overall efficiency of the thermal oxidizer for oven 52 shall be not less than 95.19% or the required destruction efficiency demonstrated by the most recent valid stack test for the worst case VOC coating currently used. For a higher VOC content coating, the overall control efficiency of this thermal oxidizer shall be no less than the estimated control efficiency required to achieve compliance with the limit in Condition D.2.1(a).

D.2.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.2.2 shall be determined by calculating the VOC emissions for enameling oven 52 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used .

Amount i = U Usage, in tons of the coating i per month.

D.2.8 Testing Requirements [326 IAC 2-7-6(1),(6)] [326 IAC 2-1.1-11]

- (a) In order to demonstrate compliance with Conditions D.2.1(a) and D.2.2, the Permittee shall conduct performance testing on one (1) representative thermal oxidizer from the three (3) thermal oxidizers controlling the wire enameling ovens identified as 52, 65 and 66 to verify VOC control efficiency per Conditions D.2.6(b) and D.3.6(b) utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify VOC control efficiency as per Conditions D.2.1(a)and D.2.2 for the integral internal thermal oxidizer using methods approved by the Commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (O_{new}) , using the equation in Condition D.2.6(b)(1).
 - (2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be

Page 38 of 76 T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6 (1)] [326 IAC 2-7-5 (1)]

D.2.9 Thermal Oxidizer Temperature

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizer for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the thermal oxidizer is in operation.
- (b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions. D.2.1(a) and D.2.2.
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the internal integral thermal oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the internal integral thermal oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.10 Record Keeping Requirements

- (a) To document the compliance status with Condition D.2.1(a), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.2.1(a).
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
- (b) To document the compliance status with Condition D.2.1(b), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken daily and shall be complete and sufficient to establish compliance with the VOC usage limit established in Condition D.2.1(b).
 - (1) The amount of coating material and solvent less water used on a daily basis.
 - (2) Records shall include purchase orders, invoices, and material safety data sheets

Page 39 of 76 T 003-30777-00269

(MSDS) necessary to verify the type used.

- (3) The VOC usage for each day.
- (c) To document the compliance status with Condition D.2.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.2.2.
 - (1) The VOC content of each coating material and solvent used.
 - (2) The amount of coating material and solvent used on a monthly basis. Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total VOC usage for each month.
- (d) To document the compliance status with Condition D.2.9, the Permittee shall maintain continuous temperature records (on a three-hour average basis) for the thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.
- (e) Section C General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.2.11 Reporting Requirements

Quarterly summaries of the information to document the compliance status with Conditions D.2.1(b) and D.2.2 shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Page 40 of 76 T 003-30777-00269

SECTION D.3

FACILITY OPERATION CONDITIONS

Emissions Unit Description:

Magnet Wire Coating Plant

(c) Two (2) wire enameling ovens with an internal thermal oxidizer, identified as emission units 65 and 66, constructed in 1997, with a maximum capacity of 891 pounds of copper/aluminum wire per hour each, with emissions exhausting at stacks S65 and S66, respectively.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 65 and 66 are considered part of an existing affected source.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.3.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for wire enameling ovens 65 and 66, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds VOC per gallon of coating, excluding water, as delivered to the applicator.

D.3.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

The VOC emissions from ovens 65 and 66 shall be less than forty (40) tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with this limit shall render the requirements of 326 IAC 2-2 not applicable to the modification performed in 1997.

D.3.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.3.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.3.1 and D.3.2, the thermal oxidizers shall be in operation whenever the associated two (2) wire enameling ovens 65 and 66 are in operation.

D.3.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content and emission limitations contained in Conditions D.3.1 and D.3.2 shall be determined pursuant to 326 IAC 8-1-4(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserve the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4

Page 41 of 76 T 003-30777-00269

D.3.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.3.1 shall be determined as follows for the wire enameling ovens 65 and 66 using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.3.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

L = Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.

D = Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.

E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the internal thermal oxidizers shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

- V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) Pursuant to T003-7654-00269, issued on September 30, 1999, and 326 IAC 8-1-2(c), the equivalent overall efficiency of the thermal oxidizers for each oven (65 and 66) shall be not less than 94.10% or the required destruction efficiency

demonstrated by the most recent valid stack test for the worst case VOC coating currently used. For a higher VOC content coating, the overall control efficiency of these thermal oxidizers shall be no less than the estimated control efficiency required to achieve compliance with the limit in Condition D.3.1.

Page 42 of 76

T 003-30777-00269

D.3.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.3.2 shall be determined by calculating the VOC emissions for enameling ovens 65 and 66 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x

(1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent

valid compliance test.

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

D.3.8 Testing requirements [326 IAC 2-8-5(a)(1), (4)][326 IAC 2-1.1-11]

- (a) In order to demonstrate compliance with Conditions D.3.1 and D.3.2, the Permittee shall conduct performance testing on one (1) representative thermal oxidizer from the three (3) thermal oxidizers controlling the wire enameling ovens identified as 52, 65, and 66 to verify VOC control efficiency per Conditions D.2.6(b) and D.3.6(b) utilizing methods approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify VOC control efficiency as per Condition D.3.6 for the thermal oxidizers using methods approved by the commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - Calculate the new minimum required control efficiency for the new coating (O_{new}), using the equation in Condition D.3.6(b)(1).
 - (2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.3.9 Thermal Oxidizer Temperature

(a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizers for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the oxidizers are in operation.

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura Page 43 of 76 T 003-30777-00269

- (b) The Permittee shall determine the three-hour average temperature from the latest valid stack test that demonstrates compliance with Conditions D.3.1 and D.3.2.
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C -Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.3.10 Record Keeping Requirements

- (a) To document the compliance status with Condition D.3.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.3.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.3.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.3.2.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The amount of coating material and solvent used on a monthly basis. Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total weight of VOCs emitted each month.
- (c) To document the compliance status with Condition D.3.9, the Permittee shall maintain the continuous temperature records (on a three-hour average basis) for each thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.

Page 44 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

(d)

Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.3.11 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.3.2 shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Page 45 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION D.4

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

(g) Two (2) Weatherite V - 14 magnet wire ovens, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour.

Under 40 CFR 63, Subpart MMMM, magnet wire ovens 61-64 are considered part of an existing affected source.

Insignificant Activity:

(d) One (1) Weatherite V - 14 magnet wire oven, identified as 11, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour, each, with two (2) sides. This unit is for Research and Development purposes only and it is not for production.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.4.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for the two (2) Weatherite V - 14 magnet wire ovens, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.

D.4.2 PSD Minor Limits [326 IAC 2-2] [326 8-2-8]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

- (a) The combined VOC emissions from the two (2) Weatherite V 14 magnet wire ovens shall be less than 37.1 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
- (b) The VOC emissions from the R & D Weatherite magnet wire oven shall be less than 15 pounds per day.

Compliance with the above limits, combined with the potential to emit VOC from the magnet wire oven combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2008 modification. Compliance with (b) above shall also render 326 IAC 8-2-8 not applicable to the R & D Weatherite magnet wire oven 11.

D.4.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.4.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.4.1 and D.4.2(a), the internal thermal oxidizers shall be in operation whenever the associated two (2) Weatherite V - 14 magnet wire oven lines are in operation.

D.4.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content, emission, and usage limitations contained in Conditions D.4.1 and D.4.2 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.4.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.4.1 shall be determined as follows for the two (2) Weatherite V - 14 magnet wire ovens using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.4.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

L= Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.

D= Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.

E= Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the internal thermal oxidizers shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.

Page 47 of 76

- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) The overall efficiency of the internal thermal oxidizers for ovens 61-64 shall be equal to or greater than 95.88% or the efficiency required to demonstrate compliance with Condition D.4.1.

Volatile Organic Compounds (VOC) [326 IAC 2-2] D.4.7

Compliance with Condition D.4.2(a) shall be determined by calculating the VOC emissions for the two (2) Weatherite magnet wire ovens using the following equation:

Σ (VOC Content i (%) x Coating Amount i (tons/month) x VOC Emissions (tons/month) = (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

D.4.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

- In order to demonstrate compliance with Conditions D.4.1 and D.4.2(a), the Permittee shall conduct performance testing on one (1) representative thermal oxidizer from 61, 62, 63 and 64 to verify the VOC control efficiency per Condition D.4.6 utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify the VOC control efficiency as per Condition D.4.6 for the thermal oxidizer using methods approved by the commissioner.
- For a higher VOC content coating than that used during the stack test in (a) above, the (c) following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (O_{new}) , using the equation in Condition D.4.6(b)(1).

Page 48 of 76 T 003-30777-00269

(2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.4.9 Thermal Oxidizer Temperature [40 CFR 64]

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizers for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the oxidizers are in operation.
- (b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions D.4.1 and D.4.2(a).
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

This compliance monitoring requirement shall satisfy 40 CFR 64 (Compliance Assurance Monitoring) for the two (2) Weatherite V - 14 ovens (61-64).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.4.10 Record Keeping Requirements

- (a) To document the compliance status with Condition D.4.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.4.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.4.2(a), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) below shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.4.2(a).

Page 49 of 76 T 003-30777-00269

- (1) The VOC content of each coating material and solvent used.
- (2) The amount of coating material and solvent used on a monthly basis. Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
- (3) The total weight of VOCs emitted each month.
- (c) To document the compliance status with Condition D.4.2(b), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken daily and shall be complete and sufficient to establish compliance with the VOC usage limit established in Condition D.4.2(b).
 - (1) The amount of coating material and solvent less water used on a daily basis
 - (2) Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type used;
 - (3) The VOC usage and VOC content for each day.
- (d) To document the compliance status with Condition D.4.9, the Permittee shall maintain continuous temperature records (on a three-hour average basis) for each thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.
- (e) Section C General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.4.11 Reporting Requirements

Quarterly summaries of the information to document the compliance status with Conditions D.4.2(a) and D.4.2(b) shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Page 50 of 76 T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION D.5

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

(h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.

Under 40 CFR 63, Subpart MMMM, magnet wire oven 12 is considered part of an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.5.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for Magnet Wire Oven 12, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.

D.5.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

The VOC emissions from Magnet Wire Oven 12 shall be less than 39.7 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with the above limit, combined with the potential to emit VOC from TK-32 and Magnet Wire Oven 12 combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2013 modification.

D.5.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for this facility and its control device. Section B - Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.5.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.5.1 and D.5.2, the internal thermal oxidizer shall be in operation whenever Magnet Wire Oven 12 is in operation.

D.5.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content limitation contained in Condition D.5.1 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.5.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.5.1 shall be determined as follows for Magnet Wire Oven 12 using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.5.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

L = Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.

D = Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.

E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the thermal oxidizer shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

- V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) The overall efficiency of the internal thermal oxidizer for oven 12 shall be equal to or greater than 95.88% or the efficiency required to demonstrate compliance with Condition D.5.1.

Page 52 of 76 T 003-30777-00269

D.5.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.5.2 shall be determined by calculating the VOC emissions for Magnet Wire Oven 12 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid

compliance test.

VOC Content i = Percent VOC content of coating i used .

Amount i = Usage, in tons of the coating i per month.

D.5.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

- (a) Not later than 180 days after the startup of Magnet Wire Oven 12 and in order to demonstrate compliance with Conditions D.5.1 and D.5.2, the Permittee shall conduct performance testing on Magnet Wire Oven 12 to verify the VOC control efficiency per Condition D.5.6 utilizing methods approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify the VOC control efficiency as per Condition D.5.6 for the thermal oxidizer using methods approved by the commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (O_{new}), using the equation in Condition D.5.6(b)(1).
 - (2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.5.9 Thermal Oxidizer Temperature

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizer for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the oxidizers are in operation.
- (b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions D.5.1 and D.5.2.
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.

Significant Permit Modification No.: 003-33510-00269 Page 53 of 76
Modified by: Laura Spriggs T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.5.10 Record Keeping Requirements

- (a) To document the compliance status with Condition D.5.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.5.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.5.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.5.2.
 - (1) The VOC content of each coating material and solvent used.
 - (2) The amount of coating material and solvent used on a monthly basis. Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total weight of VOCs emitted each month.
- (c) To document the compliance status with Condition D.3.9, the Permittee shall maintain continuous temperature records (on a three-hour average basis) for the thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.
- (d) Section C General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.5.11 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.5.2 shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs Page 54 of 76 T 003-30777-00269

Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Page 55 of 76 T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION D.6

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.6.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2]

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements), for the degreasing operation, the Permittee shall ensure that the following control equipment and operating requirements are met for cleaning tanks 2 and 3 and the two (2) die cleaning tanks:

- (a) Equip the degreaser with a cover.
- (b) Equip the degreaser with a device for draining cleaned parts.
- (c) Close the degreaser cover whenever parts are not being handled in the degreaser.
- (d) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases.
- (e) Provide a permanent, conspicuous label that lists the operating requirements in (c), (d), (f), and (g) of this condition.
- (f) Store waste solvent only in closed containers.
- (g) Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

D.6.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Pursuant to 326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers), on and after January 1, 2015, the Permittee shall not operate a cold cleaner degreaser with a solvent that has a VOC composite partial vapor pressure than exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.6.3 Record Keeping Requirements

(a) Pursuant to 326 IAC 8-3-8(c)(2) and to document the compliance status with Condition D.6.2, on and after January 1, 2015, the Permittee shall maintain the following records for each purchase of solvent used in the cold cleaner degreasing operations. These records

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

shall be retained on-site or accessible electronically for the most recent three (3) year period and shall be reasonably accessible for an additional two (2) year period.

Page 56 of 76

T 003-30777-00269

- (1) The name and address of the solvent supplier.
- (2) The date of purchase (or invoice/bill dates of contract servicer indicating service date).
- (3) The type of solvent purchased.
- (4) The total volume of the solvent purchased.
- (5) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).
- (b) Section C General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Page 57 of 76 T 003-30777-00269

SECTION E.1 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

- (a) One (1) wire enameling oven with an integral internal thermal oxidizer, identified as emission unit 52, constructed in 1996, with a maximum capacity of 531 pounds of wire per hour, with emissions exhausting at stack S52.
- (b) The following eight (8) wire enameling ovens with add-on thermal incinerators for control. After production, a wire lube is applied to the enameled wire, with a combined maximum total usage of 0.4 pounds per hour for all eight (8) ovens.
 - (1) Five (5) wire enameling ovens, identified as emission units 53, 54, 55, 56 and 57, constructed in 1958, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add-on thermal incinerators for control, with emissions exhausting at the west incinerator identified as SWI.
 - (2) Three (3) wire enameling ovens, identified as emission units 58, 59 and 60, constructed in 1962, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add-on thermal incinerators for control, with emissions exhausting at the east incinerator identified as SEI.
- (c) Two (2) wire enameling ovens with an internal thermal oxidizer, identified as emission units 65 and 66, constructed in 1997, with a maximum capacity of 891 pounds of copper/aluminum wire per hour each, with emissions exhausting at stacks S65 and S66, respectively.
- (d) Three (3) wire coating machines, identified as emission units 24, 25 and 26, constructed in 1996, with a maximum capacity of 272 pounds of wire per hour each, with no controls, with emissions exhausting at stack SF-1.
- (e) One (1) wire coating machine, identified as emission unit 28, constructed in the 1970's, with a maximum capacity of 272 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-1.
- (f) One (1) wire coating machine, identified as emission unit 37, constructed in the 1980's, with a maximum capacity of 172.39 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-2.
- (g) Two (2) Weatherite V 14 magnet wire oven, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour.
- (h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.
- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura Page 58 of 76 T 003-30777-00269

- (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
- (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 52-60, 65, and 66, wire coating machines 24-26, 28, and 37, magnet wire ovens 61-64 and 12, cleaning tanks 2 and 3, and the two (2) die cleaning tanks are considered part of an existing affected source.

Insignificant Activities

Chemical Processing Plant

- (b) The following storage tanks emitting less than 15 pounds per day of VOC, and under 40 CFR Part 63, Subpart MMMM, are considered part of an existing affected source:
 - (1) Seven (7) outside storage tanks, identified as tanks TK-17, TK-18, TK-19, TK-20, TK-21, TK-22, and TK-23, constructed after July 23, 1984, storing volatile organic liquids and having a maximum storage capacity less than 75 cubic meters.
 - (2) Fifteen (15) outside storage tanks, identified as tanks TK-1, TK-2, TK-3, TK-4, TK-5, TK-7, TK-8, TK-9, TK-10, TK-11, TK-12, TK-13, TK-15, TK-16, and TK-24, all constructed before July 23, 1984, except for tanks TK-3, and TK-9, storing volatile organic liquids and having a maximum storage capacity less than 40 cubic meters.
 - (3) Two (2) outside storage tanks, identified as tanks TK-6, and TK-14, approved in 2010 for construction, storing volatile organic liquids and having a maximum storage capacity less than 40 cubic meters.
 - (4) Three (3) inside storage tanks, storing volatile organic liquids and having maximum storage capacities less than 40 cubic meters, identified as:
 - (A) TK-25 and TK-32, constructed after July 23, 1984.
 - (B) TK-30, constructed prior to July 23, 1984.
- (c) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons. [40 CFR 63, Subpart MMMM]

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

- E.1.1 General Provisions Relating to NESHAP Subpart MMMM (National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products) [326 IAC 20-1] [40 CFR Part 63, Subpart A]
 - (a) Pursuant to 40 CFR 63.3901, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A General Provisions, which are incorporated by reference as 326 IAC 20-1-1 as specified in Table 2 of 40 CFR Part 63, Subpart MMMM in accordance with schedule in 40 CFR 63 Subpart MMMM.

Page 59 of 76

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Modified by: Laura Spriggs T 003-30777-00269

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

NESHAP Subpart MMMM Requirements [40 CFR 63, Subpart MMMM] [326 IAC 20-80]

The Permittee shall comply with the following provisions of 40 CFR 63, Subpart MMMM (included as Attachment A of this permit), which are incorporated by reference as 326 IAC 20-80, for all of the magnet wire coating ovens (52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, and 12), wire coating machines (24, 25, 26, 28, and 37), and associated solvent cleaning and coating mixing operations involving HAPs:

- 40 CFR 63.3880 (1)
- (2) 40 CFR 63.3881(a)(1), (a)(4), (b)
- (3)40 CFR 63.3882(a), (b), (e)
- (4) 40 CFR 63.3883(b), (d)
- (5) 40 CFR 63.3890(b)(3)
- (6) 40 CFR 63.3891(c)
- (7) 40 CFR 63.3892(b), (c)
- (8) 40 CFR 63.3893(b), (c)
- (9)40 CFR 63.3900(a)(2), (b), (c)
- (10)40 CFR 63.3901
- (11)40 CFR 63.3910
- (12)40 CFR 63.3920
- (13)40 CFR 63.3930
- (14)40 CFR 63.3931
- (15)40 CFR 63.3960(b), (c)
- (16)40 CFR 63.3961
- (17)40 CFR 63.3963
- (18)40 CFR 63.3964
- (19)40 CFR 63.3965
- (20)40 CFR 63.3966
- 40 CFR 63.3967(a), (b) (21)
- 40 CFR 63.3968(a), (b), (c), (g) (22)
- (23)40 CFR 63.3980
- (24)40 CFR 63.3981
- (25)Table 1 to Subpart MMMM of Part 63
- (26)Table 2 to Subpart MMMM of Part 63
- (27)Table 3 to Subpart MMMM of Part 63
- Table 4 to Subpart MMMM of Part 63 (28)
- (29)Appendix A to Subpart MMMM of Part 63

Page 60 of 76 T 003-30777-00269

SECTION E.2 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Insignificant Activities

- (a) One (1) emergency diesel generator, identified as EG-1, installed in 1993, rated at 900 horsepower, engine displacement volume less than 30 liters per cylinder and exhausting to the atmosphere. Under 40 CFR Part 63, Subpart ZZZZ, EG-1 is considered an existing affected source.
- (b) One (1) natural gas fired spark ignition emergency generator, identified as EG-2, installed in 1960, rated at 18 horsepower. Under 40 CFR Part 63, Subpart ZZZZ, EG-2 is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

E.2.1 General Provisions Relating to NESHAP Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) [326 IAC 20-1] [40 CFR Part 63, Subpart A]

Pursuant to 40 CFR 63.6665, for EG-2, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1-1, as specified in 40 CFR Part 63, Subpart ZZZZ in accordance with schedule in 40 CFR 63, Subpart ZZZZ.

E.2.2 NESHAP Subpart ZZZZ Requirements [40 CFR 63, Subpart ZZZZ] [326 IAC 20-82]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as Attachment B of this permit), which are incorporated by reference as 326 IAC 20-82 for EG-1 and EG-2:

- (a) For EG-1:
 - (1) 40 CFR 63.6580
 - (2) 40 CFR 63.6585(a), (b)
 - (3) 40 CFR 63.6590(a)(1)(i), (b)(3)(iii)
 - (4) 40 CFR 63.6665
 - (5) 40 CFR 63.6670
 - (6) 40 CFR 63.6675
- (b) For EG-2:
 - (1) 40 CFR 63.6580
 - (2) 40 CFR 63.6585(a), (b)
 - (3) 40 CFR 63.6590(a)(1)(ii)
 - (4) 40 CFR 63.6595(a)(1)
 - (5) 40 CFR 63.6602
 - (6) 40 CFR 63.6605
 - (7) 40 CFR 63.6625(e)(2), (f), (h), (j)
 - (8) 40 CFR 6640(a), (b), (f)(1)-(f)(3)
 - (9) 40 CFR 63.6645(a)(5)
 - (10) 40 CFR 63.6650(f)

Essex Group, Inc. Significant Permit Modification No.: 003-33510-00269 Page 61 of 76 Modified by: Laura Spriggs T 003-30777-00269

Fort Wayne, Indiana Permit Reviewer: Mehul Sura

- 40 CFR 63.6655(d), (e)(2) (11)
- (12)40 CFR 63.6660
- (13)40 CFR 63.6665
- 40 CFR 63.6670 (14)
- 40 CFR 63.6675 (15)
- (16) Table 2c to Subpart ZZZZ of Part 63, item (6)
- Table 6 to Subpart ZZZZ of Part 63, item (9) (17)
- (18) Table 8 to Subpart ZZZZ of Part 63

Page 62 of 76 T 003-30777-00269

SECTION E.3 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Chemical Processing Plant - Boilers

- (a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards Requirements [326 IAC 2-7-5(1)]

E.3.1 General Provisions Relating to NSPS Subpart Dc (Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units) [326 IAC 12-1] [40 CFR Part 60, Subpart A]

The provisions of 40 CFR 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, apply to boilers EB and WB except when otherwise specified in 40 CFR 60, Subpart Dc.

E.3.2 NSPS Subpart Dc Requirements [40 CFR 60, Subpart Dc] [326 IAC 12]

The Permittee shall comply with the following provisions of 40 CFR 60, Subpart Dc (included as Attachment C of this permit), which are incorporated by reference as 326 IAC 12, for boilers EB and WB:

- (1) 40 CFR 60.40c(a), (b), (c), (d)
- (2) 40 CFR 60.41c
- (3) 40 CFR 60.48c(a), (g), (i)

Page 63 of 76

T 003-30777-00269

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

SECTION E.4

Permit Reviewer: Mehul Sura

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Chemical Processing Plant - Boilers

- (a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

Insignificant Activities

(d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

E.4.1 General Provisions Relating to NESHAP Subpart DDDDD (National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters) [326 IAC 20-1] [40 CFR Part 63, Subpart A]

Pursuant to 40 CFR 63.7565, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1-1 as specified in Table 10 of 40 CFR Part 63, Subpart DDDDD in accordance with schedule in 40 CFR 63 Subpart DDDDD.

E.4.2 NESHAP Subpart DDDDD Requirements [40 CFR 63, Subpart DDDDD] [326 IAC 20-95]

The Permittee shall comply with the following provisions of 40 CFR 63, Subpart DDDDD (included as Attachment D of this permit), which are incorporated by reference as 326 IAC 20-95 for boilers EB and WB and process heaters OH-1 and OH-2:

- (a) For Boilers EB and WB:
 - (1) 40 CFR 63.7480
 - (2) 40 CFR 63.7485
 - (3) 40 CFR 63.7490(a), (d)
 - (4) 40 CFR 63.7495(b), (d)
 - (5) 40 CFR 63.7499(I)
 - (6) 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
 - (7) 40 CFR 63.7501
 - (8) 40 CFR 63.7505(a)
 - (9) 40 CFR 63.7510(e)
 - (10) 40 CFR 63.7515(d)
 - (11) 40 CFR 63.7530(d), (e), (f)
 - (12) 40 CFR 63.7540(a)(10), (a)(13), (b)

Page 64 of 76 T 003-30777-00269

```
(13) 40 CFR 63.7545(a), (b), (e)(1), (e)(8), (f), (h)

(14) 40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)

(15) 40 CFR 63.7555(a), (i), (j)

(16) 40 CFR 63.7565

(17) 40 CFR 63.7565

(18) 40 CFR 63.7570
```

- (19) 40 CFR 63.7575(20) Table 3 to Subpart DDDDD of Part 63, items (3), (4)
- (21) Table 9 to Subpart DDDDD of Part 63
- (22) Table 10 to Subpart DDDDD of Part 63

(b) For Process Heater OH-1:

```
40 CFR 63.7480
(1)
(2)
       40 CFR 63.7485
(3)
       40 CFR 63.7490(a), (b)
       40 CFR 63.7495(a), (d)
(4)
(5)
       40 CFR 63.7499(I)
       40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
(6)
(7)
       40 CFR 63.7501
(8)
       40 CFR 63.7505(a)
       40 CFR 63.7510(g)
(9)
(10)
       40 CFR 63.7515(d)
(11)
       40 CFR 63.7530(d), (f)
```

- (12) 40 CFR 63.7540(a)(12), (a)(13), (b)
- (13) 40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (f), (h)
- (14) 40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
- (15) 40 CFR 63.7555(a), (i), (j)
- (16) 40 CFR 63.7560
- (17) 40 CFR 63.7565
- (18) 40 CFR 63.7570
- (19) 40 CFR 63.7575
- (20) Table 3 to Subpart DDDDD of Part 63, item (1)
- (21) Table 9 to Subpart DDDDD of Part 63
- (22) Table 10 to Subpart DDDDD of Part 63

(c) For Process Heater OH-2:

- 40 CFR 63.7480 (1)(2)40 CFR 63.7485 (3)40 CFR 63.7490(a), (d) 40 CFR 63.7495(b), (d) (4)40 CFR 63.7499(I) (5)40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f) (6)(7)40 CFR 63.7501 (8)40 CFR 63.7505(a) (9)40 CFR 63.7510(e) 40 CFR 63.7515(d) (10)40 CFR 63.7530(d), (e), (f) (11)(12)40 CFR 63.7540(a)(12), (a)(13), (b) 40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (e)(8)(ii), (f), (h) (13)(14)40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3) 40 CFR 63.7555(a), (i), (j) (15)40 CFR 63.7560 (16)
 - (17) 40 CFR 63.7565
 - (17) 40 CFR 63.7565 (18) 40 CFR 63.7570

Essex Group, Inc.
Significant Permit Modification No.: 003-33510-00269
Permit Reviewer: Mehul Sura
Page 65 of 76
T 003-30777-00269
Print Reviewer: Mehul Sura

(19) 40 CFR 63.7575

- (20) Table 3 to Subpart DDDDD of Part 63, items (1), (4)
- (21) Table 9 to Subpart DDDDD of Part 63(22) Table 10 to Subpart DDDDD of Part 63

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura Page 66 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT CERTIFICATION

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.
Please check what document is being certified:
□ Annual Compliance Certification Letter
□ Test Result (specify)
□ Report (specify)
□ Notification (specify)
□ Affidavit (specify)
□ Other (specify)
I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
Signature:
Printed Name:
Title/Position:
Phone:
Date:

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Phone: (317) 233-0178 Fax: (317) 233-6865

PART 70 OPERATING PERMIT EMERGENCY OCCURRENCE REPORT

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

This form consists of 2 pages

Page 1 of 2

Page 67 of 76 T 003-30777-00269

- ☐ This is an emergency as defined in 326 IAC 2-7-1(12)
 - The Permittee must notify the Office of Air Quality (OAQ), within four (4) business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 - The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Page 68 of 76 T 003-30777-00269

If any of the following are not applicable, mark N/A	Page 2 of 2
Date/Time Emergency started:	
Date/Time Emergency was corrected:	
Was the facility being properly operated at the time of the emergency?	Y N
Type of Pollutants Emitted: TSP, PM-10, SO ₂ , VOC, NO _X , CO, Pb, other	:
Estimated amount of pollutant(s) emitted during emergency:	
Describe the steps taken to mitigate the problem:	
Describe the corrective actions/response steps taken:	
Describe the measures taken to minimize emissions:	
If applicable, describe the reasons why continued operation of the facilitie imminent injury to persons, severe damage to equipment, substantial loss of product or raw materials of substantial economic value:	
Form Completed by:	
Title / Position:	
Date:	
Phone:	

Page 69 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name:	Essex Group,	Inc.
--------------	--------------	------

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Wire Coating Machines 24, 25, and 26

Parameter: VOC emissions

Limit: Less than fifteen (15) pounds per day each

Month: Y	ear:
----------	------

Day	Coating Machine 24	Coating Machine 25	Coating Machine 26	Day	Coating Machine 24	Coating Machine 25	Coating Machine 26
1				17			
2				18			
3				19			
4				20			
5				21			
6				22			
7				23			
8				24			
9				25			
10				26			
11				27			
12				28			
13				29			
14				30			
15				31			
16							

☐ No deviation occurred in this month.
☐ Deviation/s occurred in this month. Deviation has been reported on:
Submitted by:
Title / Position:
Signature:
Date:
Phone:

Page 70 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Oven 52
Parameter: VOC emissions

Limit: Less than 31.25 tons per twelve (12) consecutive month period

	Column 1	Column 2	Column 1 + Column 2
Month	This Month	Previous 11 Months	12 Month Total
Month 1			
Month 2			
Month 3			

☐ No deviation occurred in this quarter
☐ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by: Title / Position: Signature: Date: Phone:

Page 71 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name:	Essex Group,	Inc.
--------------	--------------	------

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269 Facility: Oven 65 and 66 Parameter: VOC emissions

Limit: Less than 40 tons total per twelve (12) consecutive month period

	Column 1	Column 2	Column 1 + Column 2
Month	This Month	Previous 11 Months	12 Month Total
Month 1			
Month 2			
Month 3			

$\hfill\square$ No deviation occurred in this quarter.
 □ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by: Title / Position: Signature: Date: Phone:

Page 72 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Two (2) Weatherite V - 14 magnet wire ovens (61-64)

Parameter: VOC emissions

Limit: Less than 37.1 tons total per twelve (12) consecutive month period

Column 1	Column 2	Column 1 + Column 2
This Month	Previous 11 Months	12 Month Total

☐ No deviation occurred in this quarter
☐ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by: Title / Position: Signature: Date: Phone:

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura Page 73 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269
Facility: Magnet Wire Oven 12
Parameter: VOC emissions

Limit: Less than 39.7 tons total per twelve (12) consecutive month period

	Column 1	Column 2	Column 1 + Column 2
Month	This Month	Previous 11 Months	12 Month Total
Month 1			
Month 2			
Month 3			

☐ No deviation occurred in this quarter.
□ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by: Title / Position: Signature: Date: Phone:

Page 74 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name:	Essex Group,	Inc.
--------------	--------------	------

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Weatherite V - 14 magnet wire oven 11

Parameter: VOC emissions

Limit: Less than fifteen (15) pounds per day

Month:	Year:
--------	-------

Day	Day
1	17
2	18
3	19
4	20
5	21
6	22
7	23
8	24
9	25
10	26
11	27
12	28
13	29
14	30
15	31
16	

☐ No deviation occurred in this month.
☐ Deviation/s occurred in this month. Deviation has been reported on:
Submitted by: Title / Position:
Signature:
Date:
Phone:

Significant Permit Modification No.: 003-33510-00269

Modified by: Laura Spriggs

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Mehul Sura

Response Steps Taken:

Page 75 of 76 T 003-30777-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name: Essex Group, Inc. Source Address: 1601 Wall Street and 1700 Too3-30777-00269	West Swinney, Fort Wayne, Indiana 46802	
Months: to	_ Year:	
	Page 1 of	
General Reporting. Any deviation from the require the probable cause of the deviation, and the response required to be reported pursuant to an applicable shall be reported according to the schedule stated	corting requirements of paragraph (a) of Section C- ements of this permit, the date(s) of each deviation, onse steps taken must be reported. A deviation requirement that exists independent of the permit, in the applicable requirement and does not need to be attached if necessary. If no deviations occurred,	
□ NO DEVIATIONS OCCURRED THIS REPORT	ING PERIOD.	
☐ THE FOLLOWING DEVIATIONS OCCURRED	THIS REPORTING PERIOD	
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		

Significant Permit Modification No.: 003-33510-00269 Modified by: Laura Spriggs

Page 76 of 76 T 003-30777-00269

Page 2 of 2

	: «go = o: =	
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Permit Requirement (specify permit condition #)		
Date of Deviation:	Duration of Deviation:	
Number of Deviations:		
Probable Cause of Deviation:		
Response Steps Taken:		
Form Completed by:		
Title / Position:		
Date:		
Phone:		

Attachment A to Part 70 Operating Permit Renewal No. T003-30777-00269

[Downloaded from the eCFR on May 13, 2013]

40 CFR Part 63, Subpart MMMM—National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products

Source: 69 FR 157, Jan. 2, 2004, unless otherwise noted.

What This Subpart Covers

§ 63.3880 What is the purpose of this subpart?

This subpart establishes national emission standards for hazardous air pollutants (NESHAP) for miscellaneous metal parts and products surface coating facilities. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations.

§ 63.3881 Am I subject to this subpart?

- (a) Miscellaneous metal parts and products include, but are not limited to, metal components of the following types of products as well as the products themselves: motor vehicle parts and accessories, bicycles and sporting goods, recreational vehicles, extruded aluminum structural components, railroad cars, heavy duty trucks, medical equipment, lawn and garden equipment, electronic equipment, magnet wire, steel drums, industrial machinery, metal pipes, and numerous other industrial, household, and consumer products. Except as provided in paragraph (c) of this section, the source category to which this subpart applies is the surface coating of any miscellaneous metal parts or products, as described in paragraph (a)(1) of this section, and it includes the subcategories listed in paragraphs (a)(2) through (6) of this section.
- (1) Surface coating is the application of coating to a substrate using, for example, spray guns or dip tanks. When application of coating to a substrate occurs, then surface coating also includes associated activities, such as surface preparation, cleaning, mixing, and storage. However, these activities do not comprise surface coating if they are not directly related to the application of the coating. Coating application with handheld, non-refillable aerosol containers, touch-up markers, marking pens, or the application of paper film or plastic film which may be pre-coated with an adhesive by the manufacturer are not coating operations for the purposes of this subpart.
- (2) The general use coating subcategory includes all surface coating operations that are not high performance, magnet wire, rubber-to-metal, or extreme performance fluoropolymer coating operations.
- (3) The high performance coating subcategory includes surface coating operations that are performed using coatings that meet the definition of high performance architectural coating or high temperature coating in § 63.3981.
- (4) The magnet wire coating subcategory includes surface coating operations that are performed using coatings that meet the definition of magnet wire coatings in § 63.3981.
- (5) The rubber-to-metal coatings subcategory includes surface coating operations that are performed using coatings that meet the definition of rubber-to-metal coatings in § 63.3981.
- (6) The extreme performance fluoropolymer coatings subcategory includes surface coating operations that are performed using coatings that meet the definition of extreme performance fluoropolymer coatings in § 63.3981.
- (b) You are subject to this subpart if you own or operate a new, reconstructed, or existing affected source, as defined in § 63.3882, that uses 946 liters (250 gallons (gal)) per year, or more, of coatings that contain hazardous air pollutants (HAP) in the surface coating of miscellaneous metal parts and products defined in paragraph (a) of this section; and that is a major source, is located at a major source, or is part of a major source of emissions of HAP. A major source of HAP emissions is any stationary source or group of stationary sources located within a contiguous

area and under common control that emits or has the potential to emit any single HAP at a rate of 9.07 megagrams (Mg) (10 tons) or more per year or any combination of HAP at a rate of 22.68 Mg (25 tons) or more per year. You do not need to include coatings that meet the definition of non-HAP coating contained in § 63.3981 in determining whether you use 946 liters (250 gal) per year, or more, of coatings in the surface coating of miscellaneous metal parts and products.

- (c) This subpart does not apply to surface coating or a coating operation that meets any of the criteria of paragraphs (c)(1) through (17) of this section.
- (1) A coating operation conducted at a facility where the facility uses only coatings, thinners and other additives, and cleaning materials that contain no organic HAP, as determined according to § 63.3941(a).
- (2) Surface coating operations that occur at research or laboratory facilities, or is part of janitorial, building, and facility maintenance operations, or that occur at hobby shops that are operated for noncommercial purposes.
- (3) Coatings used in volumes of less than 189 liters (50 gal) per year, provided that the total volume of coatings exempt under this paragraph does not exceed 946 liters (250 gal) per year at the facility.
- (4) The surface coating of metal parts and products performed on-site at installations owned or operated by the Armed Forces of the United States (including the Coast Guard and the National Guard of any such State) or the National Aeronautics and Space Administration, or the surface coating of military munitions manufactured by or for the Armed Forces of the United States (including the Coast Guard and the National Guard of any such State).
- (5) Surface coating where plastic is extruded onto metal wire or cable or metal parts or products to form a coating.
- (6) Surface coating of metal components of wood furniture that meet the applicability criteria for wood furniture manufacturing (subpart JJ of this part).
- (7) Surface coating of metal components of large appliances that meet the applicability criteria for large appliance surface coating (subpart NNNN of this part).
- (8) Surface coating of metal components of metal furniture that meet the applicability criteria for metal furniture surface coating (subpart RRRR of this part).
- (9) Surface coating of metal components of wood building products that meet the applicability criteria for wood building products surface coating (subpart QQQQ of this part).
- (10) Surface coating of metal components of aerospace vehicles that meet the applicability criteria for aerospace manufacturing and rework (40 CFR part 63, subpart GG).
- (11) Surface coating of metal parts intended for use in an aerospace vehicle or component using specialty coatings as defined in appendix A to subpart GG of this part.
- (12) Surface coating of metal components of ships that meet the applicability criteria for shipbuilding and ship repair (subpart II of this part).
- (13) Surface coating of metal using a web coating process that meets the applicability criteria for paper and other web coating (subpart JJJJ of this part).
- (14) Surface coating of metal using a coil coating process that meets the applicability criteria for metal coil coating (subpart SSSS of this part).
- (15) Surface coating of boats or metal parts of boats (including, but not limited to, the use of assembly adhesives) where the facility meets the applicability criteria for boat manufacturing facilities (subpart VVVV of this part), except where the surface coating of the boat is a metal coating operation performed on personal watercraft or parts of

Page 3 of 59 T003-30777-00269

personal watercraft. This subpart does apply to metal coating operations performed on personal watercraft and parts of personal watercraft.

- (16) Surface coating of assembled on-road vehicles that meet the applicability criteria for the assembled on-road vehicle subcategory in plastic parts and products surface coating (40 CFR part 63, subpart PPPP).
- (17) Surface coating of metal components of automobiles and light-duty trucks that meets the applicability criteria in § 63.3082(b) for the Surface Coating of Automobiles and Light-Duty Trucks NESHAP (40 CFR part 63, subpart IIII) at a facility that meets the applicability criteria in § 63.3081(b).
- (d) If your facility meets the applicability criteria in § 63.3081(b) of the Surface Coating of Automobiles and Light-Duty Trucks NESHAP (40 CFR part 63, subpart IIII), and you perform surface coating of metal parts or products that meets both the applicability criteria in § 63.3082(c) and the applicability criteria of the Surface Coating of Miscellaneous Metal Parts and Products (40 CFR part 63, subpart MMMM), then for the surface coating of any or all of your metal parts or products that meets the applicability criteria in § 63.3082(c), you may choose to comply with the requirements of subpart IIII of this part in lieu of complying with the Surface Coating of Miscellaneous Metal Parts and Products NESHAP. Surface coating operations on metal parts or products (e.g., parts for motorcycles or lawnmowers) not intended for use in automobiles, light-duty trucks, or other motor vehicles as defined in § 63.3176 cannot be made part of your affected source under subpart IIII of this part.
- (e) If you own or operate an affected source that meets the applicability criteria of this subpart and at the same facility you also perform surface coating that meets the applicability criteria of any other final surface coating NESHAP in this part you may choose to comply as specified in paragraph (e)(1), (2), or (3) of this section.
- (1) You may have each surface coating operation that meets the applicability criteria of a separate NESHAP comply with that NESHAP separately.
- (2) You may comply with the emission limitation representing the predominant surface coating activity at your facility, as determined according to paragraphs (e)(2)(i) and (ii) of this section. However, you may not establish high performance, rubber-to-metal, or extreme performance fluoropolymer coating operations as the predominant activity. You must not consider any surface coating activity that is subject to the Surface Coating of Automobiles and Light-Duty Trucks NESHAP (40 CFR part 63, subpart IIII) in determining the predominant surface coating activity at your facility.
- (i) If a surface coating operation accounts for 90 percent or more of the surface coating activity at your facility (that is, the predominant activity), then compliance with the emission limitations of the predominant activity for all surface coating operations constitutes compliance with these and other applicable surface coating NESHAP. In determining predominant activity, you must include coating activities that meet the applicability criteria of other surface coating NESHAP and constitute more than 1 percent of total coating activities at your facility. Coating activities that meet the applicability criteria of other surface coating NESHAP but comprise less than 1 percent of coating activities need not be included in the determination of predominant activity but must be included in the compliance calculation.
- (ii) You must use liters (gal) of solids used as a measure of relative surface coating activity over a representative period of operation. You may estimate the relative volume of coating solids used from parameters other than coating consumption and volume solids content (e.g., design specifications for the parts or products coated and the number of items produced). The determination of predominant activity must accurately reflect current and projected coating operations and must be verifiable through appropriate documentation. The use of parameters other than coating consumption and volume solids content must be approved by the Administrator. You may use data for any reasonable time period of at least 1 year in determining the relative amount of coating activity, as long as they represent the way the source will continue to operate in the future and are approved by the Administrator. You must determine the predominant activity at your facility and submit the results of that determination with the initial notification required by § 63.3910(b). You must also determine predominant activity annually and include the determination in the next semi-annual compliance report required by § 63.3920(a).
- (3) You may comply with a facility-specific emission limit calculated from the relative amount of coating activity that is subject to each emission limit. If you elect to comply using the facility-specific emission limit alternative, then compliance with the facility-specific emission limit and the emission limitations in this subpart for all surface coating operations constitutes compliance with this and other applicable surface coating NESHAP. The procedures for calculating the facility-specific emission limit are specified in § 63.3890. In calculating a facility-specific emission limit,

you must include coating activities that meet the applicability criteria of other surface coating NESHAP and constitute more than 1 percent of total coating activities at your facility. You must not consider any surface coating activity that is subject to the Surface Coating of Automobiles and Light-Duty Trucks NESHAP (40 CFR part 63, subpart IIII) in determining a facility-specific emission limit for your facility. Coating activities that meet the applicability criteria of other surface coating NESHAP but comprise less than 1 percent of total coating activities need not be included in the calculation of the facility-specific emission limit but must be included in the compliance calculations.

[69 FR 157, Jan. 2, 2004, as amended at 69 FR 22660, Apr. 26, 2004; 71 FR 76927, Dec. 22, 2006]

§ 63.3882 What parts of my plant does this subpart cover?

- (a) This subpart applies to each new, reconstructed, and existing affected source within each of the four subcategories listed in § 63.3881(a).
- (b) The affected source is the collection of all of the items listed in paragraphs (b)(1) through (4) of this section that are used for surface coating of miscellaneous metal parts and products within each subcategory.
- (1) All coating operations as defined in § 63.3981;
- (2) All storage containers and mixing vessels in which coatings, thinners and/or other additives, and cleaning materials are stored or mixed:
- (3) All manual and automated equipment and containers used for conveying coatings, thinners and/or other additives, and cleaning materials; and
- (4) All storage containers and all manual and automated equipment and containers used for conveying waste materials generated by a coating operation.
- (c) An affected source is a new affected source if you commenced its construction after August 13, 2002 and the construction is of a completely new miscellaneous metal parts and products surface coating facility where previously no miscellaneous metal parts and products surface coating facility had existed.
- (d) An affected source is reconstructed if it meets the criteria as defined in § 63.2.
- (e) An affected source is existing if it is not new or reconstructed.

§ 63.3883 When do I have to comply with this subpart?

The date by which you must comply with this subpart is called the compliance date. The compliance date for each type of affected source is specified in paragraphs (a) through (c) of this section. The compliance date begins the initial compliance period during which you conduct the initial compliance demonstration described in §§ 63.3940, 63.3950, and 63.3960.

- (a) For a new or reconstructed affected source, the compliance date is the applicable date in paragraph (a)(1) or (2) of this section:
- (1) If the initial startup of your new or reconstructed affected source is before January 2, 2004, the compliance date is January 2, 2004.
- (2) If the initial startup of your new or reconstructed affected source occurs after January 2, 2004, the compliance date is the date of initial startup of your affected source.
- (b) For an existing affected source, the compliance date is the date 3 years after January 2, 2004.
- (c) For an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP emissions, the compliance date is specified in paragraphs (c)(1) and (2) of this section.

- (1) For any portion of the source that becomes a new or reconstructed affected source subject to this subpart, the compliance date is the date of initial startup of the affected source or January 2, 2004, whichever is later.
- (2) For any portion of the source that becomes an existing affected source subject to this subpart, the compliance date is the date 1 year after the area source becomes a major source or 3 years after January 2, 2004, whichever is later.
- (d) You must meet the notification requirements in § 63.3910 according to the dates specified in that section and in subpart A of this part. Some of the notifications must be submitted before the compliance dates described in paragraphs (a) through (c) of this section.

Emission Limitations

§ 63.3890 What emission limits must I meet?

- (a) For a new or reconstructed affected source, you must limit organic HAP emissions to the atmosphere from the affected source to the applicable limit specified in paragraphs (a)(1) through (5) of this section, except as specified in paragraph (c) of this section, determined according to the requirements in § 63.3941, § 63.3951, or § 63.3961.
- (1) For each new general use coating affected source, limit organic HAP emissions to no more than 0.23 kilograms (kg) (1.9 pound (lb)) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (2) For each new high performance coating affected source, limit organic HAP emissions to no more than 3.3 kg (27.5 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (3) For each new magnet wire coating affected source, limit organic HAP emissions to no more than 0.050 kg (0.44 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (4) For each new rubber-to-metal coating affected source, limit organic HAP emissions to no more than 0.81 kg (6.8 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (5) For each new extreme performance fluoropolymer coating affected source, limit organic HAP emissions to no more than 1.5 kg (12.4 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (b) For an existing affected source, you must limit organic HAP emissions to the atmosphere from the affected source to the applicable limit specified in paragraphs (b)(1) through (5) of this section, except as specified in paragraph (c) of this section, determined according to the requirements in § 63.3941, § 63.3951, or § 63.3961.
- (1) For each existing general use coating affected source, limit organic HAP emissions to no more than 0.31 kg (2.6 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (2) For each existing high performance coating affected source, limit organic HAP emissions to no more than 3.3 kg (27.5 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (3) For each existing magnet wire coating affected source, limit organic HAP emissions to no more than 0.12 kg (1.0 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (4) For each existing rubber-to-metal coating affected source, limit organic HAP emissions to no more than 4.5 kg (37.7 lb) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (5) For each existing extreme performance fluoropolymer coating affected source, limit organic HAP emissions to no more than 1.5 kg (12.4 lbs) organic HAP per liter (gal) coating solids used during each 12-month compliance period.
- (c) If your facility's surface coating operations meet the applicability criteria of more than one of the subcategory emission limits specified in paragraphs (a) or (b) of this section, you may comply separately with each subcategory emission limit or comply using one of the alternatives in paragraph (c)(1) or (2) of this section.

- (1) If the general use or magnet wire surface coating operations subject to only one of the emission limits specified in paragraphs (a)(1), (3), (b)(1), or (3) of this section account for 90 percent or more of the surface coating activity at your facility (*i.e.*, it is the predominant activity at your facility), then compliance with that one emission limitations in this subpart for all surface coating operations constitutes compliance with the other applicable emission limits. You must use liters (gal) of solids used as a measure of relative surface coating activity over a representative period of operation. You may estimate the relative volume of coating solids used from parameters other than coating consumption and volume solids content (*e.g.*, design specifications for the parts or products coated and the number of items produced). The determination of predominant activity must accurately reflect current and projected coating operations and must be verifiable through appropriate documentation. The use of parameters other than coating consumption and volume solids content must be approved by the Administrator. You may use data for any reasonable time period of at least 1 year in determining the relative amount of coating activity, as long as they represent the way the source will continue to operate in the future and are approved by the Administrator. You must determine the predominant activity at your facility and submit the results of that determination with the initial notification required by § 63.3910(b). Additionally, you must determine the facility's predominant activity annually and include the determination in the next semi-annual compliance report required by § 63.3920(a).
- (2) You may calculate and comply with a facility-specific emission limit as described in paragraphs (c)(2)(i) through (iii) of this section. If you elect to comply using the facility-specific emission limit alternative, then compliance with the facility-specific emission limit and the emission limitations in this subpart for all surface coating operations constitutes compliance with this and other applicable surface coating NESHAP. In calculating a facility-specific emission limit, you must include coating activities that meet the applicability criteria of the other subcategories and constitute more than 1 percent of total coating activities. Coating activities that meet the applicability criteria of other surface coating NESHAP but comprise less than 1 percent of coating activities need not be included in the determination of predominant activity but must be included in the compliance calculation.
- (i) You are required to calculate the facility-specific emission limit for your facility when you submit the notification of compliance status required in § 63.3910(c), and on a monthly basis afterward using the coating data for the relevant 12-month compliance period.
- (ii) Use Equation 1 of this section to calculate the facility-specific emission limit for your surface coating operations for each 12-month compliance period.

$$\textit{Facility-Specific Emission Limit=} \frac{\sum_{i=1}^{n} \left(\text{Limit}_{i} \right) \left(\textit{Solids}_{i} \right)}{\sum_{i=1}^{n} \left(\textit{Solids}_{i} \right)} \qquad (\textit{Eq. 1})$$

Where:

Facility-specific emission limit = Facility-specific emission limit for each 12-month compliance period, kg (lb) organic HAP per kg (lb) coating solids used.

Limit_i = The new source or existing source emission limit applicable to coating operation, i, included in the facility-specific emission limit, converted to kg (lb) organic HAP per kg (lb) coating solids used, if the emission limit is not already in those units. All emission limits included in the facility-specific emission limit must be in the same units.

 $Solids_i$ = The liters (gal) of solids used in coating operation, i, in the 12-month compliance period that is subject to emission limit, i. You may estimate the volume of coating solids used from parameters other than coating consumption and volume solids content (e.g., design specifications for the parts or products coated and the number of items produced). The use of parameters other than coating consumption and volume solids content must be approved by the Administrator.

n = The number of different coating operations included in the facility-specific emission limit.

(iii) If you need to convert an emission limit in another surface coating NESHAP from kg (lb) organic HAP per kg (lb) coating solids used to kg (lb) organic HAP per liter (gal) coating solids used, you must use the default solids density of 1.26 kg solids per liter coating solids (10.5 lb solids per gal solids).

§ 63.3891 What are my options for meeting the emission limits?

You must include all coatings (as defined in § 63.3981), thinners and/or other additives, and cleaning materials used in the affected source when determining whether the organic HAP emission rate is equal to or less than the applicable emission limit in § 63.3890. To make this determination, you must use at least one of the three compliance options listed in paragraphs (a) through (c) of this section. You may apply any of the compliance options to an individual coating operation, or to multiple coating operations as a group, or to the entire affected source. You may use different compliance options for different coating operations, or at different times on the same coating operation. You may employ different compliance options when different coatings are applied to the same part, or when the same coating is applied to different parts. However, you may not use different compliance options at the same time on the same coating operation. If you switch between compliance options for any coating operation or group of coating operations, you must document this switch as required by § 63.3930(c), and you must report it in the next semiannual compliance report required in § 63.3920.

- (a) Compliant material option. Demonstrate that the organic HAP content of each coating used in the coating operation(s) is less than or equal to the applicable emission limit in § 63.3890, and that each thinner and/or other additive, and cleaning material used contains no organic HAP. You must meet all the requirements of §§ 63.3940, 63.3941, and 63.3942 to demonstrate compliance with the applicable emission limit using this option.
- (b) *Emission rate without add-on controls option*. Demonstrate that, based on the coatings, thinners and/or other additives, and cleaning materials used in the coating operation(s), the organic HAP emission rate for the coating operation(s) is less than or equal to the applicable emission limit in § 63.3890, calculated as a rolling 12-month emission rate and determined on a monthly basis. You must meet all the requirements of §§ 63.3950, 63.3951, and 63.3952 to demonstrate compliance with the emission limit using this option.
- (c) *Emission rate with add-on controls option*. Demonstrate that, based on the coatings, thinners and/or other additives, and cleaning materials used in the coating operation(s), and the emissions reductions achieved by emission capture systems and add-on controls, the organic HAP emission rate for the coating operation(s) is less than or equal to the applicable emission limit in § 63.3890, calculated as a rolling 12-month emission rate and determined on a monthly basis. If you use this compliance option, you must also demonstrate that all emission capture systems and add-on control devices for the coating operation(s) meet the operating limits required in § 63.3892, except for solvent recovery systems for which you conduct liquid-liquid material balances according to § 63.3961(j), and that you meet the work practice standards required in § 63.3893. You must meet all the requirements of §§ 63.3960 through 63.3968 to demonstrate compliance with the emission limits, operating limits, and work practice standards using this option.

§ 63.3892 What operating limits must I meet?

- (a) For any coating operation(s) on which you use the compliant material option or the emission rate without add-on controls option, you are not required to meet any operating limits.
- (b) For any controlled coating operation(s) on which you use the emission rate with add-on controls option, except those for which you use a solvent recovery system and conduct a liquid-liquid material balance according to § 63.3961(j), you must meet the operating limits specified in Table 1 to this subpart. These operating limits apply to the emission capture and control systems on the coating operation(s) for which you use this option, and you must establish the operating limits during the performance test according to the requirements in § 63.3967. You must meet the operating limits at all times after you establish them.
- (c) If you use an add-on control device other than those listed in Table 1 to this subpart, or wish to monitor an alternative parameter and comply with a different operating limit, you must apply to the Administrator for approval of alternative monitoring under § 63.8(f).

§ 63.3893 What work practice standards must I meet?

- (a) For any coating operation(s) on which you use the compliant material option or the emission rate without add-on controls option, you are not required to meet any work practice standards.
- (b) If you use the emission rate with add-on controls option, you must develop and implement a work practice plan to minimize organic HAP emissions from the storage, mixing, and conveying of coatings, thinners and/or other additives, and cleaning materials used in, and waste materials generated by the controlled coating operation(s) for which you use this option; or you must meet an alternative standard as provided in paragraph (c) of this section. The plan must specify practices and procedures to ensure that, at a minimum, the elements specified in paragraphs (b)(1) through (5) of this section are implemented.
- (1) All organic-HAP-containing coatings, thinners and/or other additives, cleaning materials, and waste materials must be stored in closed containers.
- (2) Spills of organic-HAP-containing coatings, thinners and/or other additives, cleaning materials, and waste materials must be minimized.
- (3) Organic-HAP-containing coatings, thinners and/or other additives, cleaning materials, and waste materials must be conveyed from one location to another in closed containers or pipes.
- (4) Mixing vessels which contain organic-HAP-containing coatings and other materials must be closed except when adding to, removing, or mixing the contents.
- (5) Emissions of organic HAP must be minimized during cleaning of storage, mixing, and conveying equipment.
- (c) As provided in § 63.6(g), we, the U.S. Environmental Protection Agency, may choose to grant you permission to use an alternative to the work practice standards in this section.

General Compliance Requirements

§ 63.3900 What are my general requirements for complying with this subpart?

- (a) You must be in compliance with the emission limitations in this subpart as specified in paragraphs (a)(1) and (2) of this section.
- (1) Any coating operation(s) for which you use the compliant material option or the emission rate without add-on controls option, as specified in § 63.3891(a) and (b), must be in compliance with the applicable emission limit in § 63.3890 at all times.
- (2) Any coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.3891(c), must be in compliance with the emission limitations as specified in paragraphs (a)(2)(i) through (iii) of this section.
- (i) The coating operation(s) must be in compliance with the applicable emission limit in § 63.3890 at all times except during periods of startup, shutdown, and malfunction.
- (ii) The coating operation(s) must be in compliance with the operating limits for emission capture systems and add-on control devices required by § 63.3892 at all times except during periods of startup, shutdown, and malfunction, and except for solvent recovery systems for which you conduct liquid-liquid material balances according to § 63.3961(j).
- (iii) The coating operation(s) must be in compliance with the work practice standards in § 63.3893 at all times.
- (b) You must always operate and maintain your affected source, including all air pollution control and monitoring equipment you use for purposes of complying with this subpart, according to the provisions in § 63.6(e)(1)(i).

Page 9 of 59 T003-30777-00269

(c) If your affected source uses an emission capture system and add-on control device, you must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The plan must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The plan must also address any coating operation equipment that may cause increased emissions or that would affect capture efficiency if the process equipment malfunctions, such as conveyors that move parts among enclosures.

[69 FR 157, Jan. 2, 2004, as amended at 71 FR 20465, Apr. 20, 2006]

§ 63.3901 What parts of the General Provisions apply to me?

Table 2 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you.

Notifications, Reports, and Records

§ 63.3910 What notifications must I submit?

- (a) General. You must submit the notifications in §§ 63.7(b) and (c), 63.8(f)(4), and 63.9(b) through (e) and (h) that apply to you by the dates specified in those sections, except as provided in paragraphs (b) and (c) of this section.
- (b) Initial Notification. You must submit the initial notification required by § 63.9(b) for a new or reconstructed affected source no later than 120 days after initial startup or 120 days after January 2, 2004, whichever is later. For an existing affected source, you must submit the initial notification no later than 1 year after January 2, 2004. If you are using compliance with the Surface Coating of Automobiles and Light-Duty Trucks NESHAP (subpart IIII of this part) as provided for under § 63.3881(d) to constitute compliance with this subpart for any or all of your metal parts coating operations, then you must include a statement to this effect in your initial notification, and no other notifications are required under this subpart in regard to those metal parts coating operations. If you are complying with another NESHAP that constitutes the predominant activity at your facility under § 63.3881(e)(2) to constitute compliance with this subpart for your metal parts coating operations, then you must include a statement to this effect in your initial notification, and no other notifications are required under this subpart in regard to those metal parts coating operations.
- (c) Notification of compliance status. You must submit the notification of compliance status required by § 63.9(h) no later than 30 calendar days following the end of the initial compliance period described in §§ 63.3940, 63.3950, or 63.3960 that applies to your affected source. The notification of compliance status must contain the information specified in paragraphs (c)(1) through (11) of this section and in § 63.9(h).
- (1) Company name and address.
- (2) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
- (3) Date of the report and beginning and ending dates of the reporting period. The reporting period is the initial compliance period described in §§ 63.3940, 63.3950, or 63.3960 that applies to your affected source.
- (4) Identification of the compliance option or options specified in § 63.3891 that you used on each coating operation in the affected source during the initial compliance period.
- (5) Statement of whether or not the affected source achieved the emission limitations for the initial compliance period.
- (6) If you had a deviation, include the information in paragraphs (c)(6)(i) and (ii) of this section.
- (i) A description and statement of the cause of the deviation.

- (ii) If you failed to meet the applicable emission limit in § 63.3890, include all the calculations you used to determine the kg (lb) of organic HAP emitted per liter (gal) coating solids used. You do not need to submit information provided by the materials' suppliers or manufacturers, or test reports.
- (7) For each of the data items listed in paragraphs (c)(7)(i) through (iv) of this section that is required by the compliance option(s) you used to demonstrate compliance with the emission limit, include an example of how you determined the value, including calculations and supporting data. Supporting data may include a copy of the information provided by the supplier or manufacturer of the example coating or material, or a summary of the results of testing conducted according to § 63.3941(a), (b), or (c). You do not need to submit copies of any test reports.
- (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material.
- (ii) Volume fraction of coating solids for one coating.
- (iii) Density for one coating, one thinner and/or other additive, and one leaning material, except that if you use the compliant material option, only the example coating density is required.
- (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials for which you are claiming an allowance in Equation 1 of § 63.3951.
- (8) The calculation of kg (lb) of organic HAP emitted per liter (gal) coating solids used for the compliance option(s) you used, as specified in paragraphs (c)(8)(i) through (iii) of this section.
- (i) For the compliant material option, provide an example calculation of the organic HAP content for one coating, using Equation 2 of § 63.3941.
- (ii) For the emission rate without add-on controls option, provide the calculation of the total mass of organic HAP emissions for each month; the calculation of the total volume of coating solids used each month; and the calculation of the 12-month organic HAP emission rate using Equations 1 and 1A through 1C, 2, and 3, respectively, of § 63.3951.
- (iii) For the emission rate with add-on controls option, provide the calculation of the total mass of organic HAP emissions for the coatings, thinners and/or other additives, and cleaning materials used each month, using Equations 1 and 1A through 1C of § 63.3951; the calculation of the total volume of coating solids used each month using Equation 2 of § 63.3951; the mass of organic HAP emission reduction each month by emission capture systems and add-on control devices using Equations 1 and 1A through 1D of § 63.3961 and Equations 2, 3, and 3A through 3C of § 63.3961 as applicable; the calculation of the total mass of organic HAP emissions each month using Equation 4 of § 63.3961; and the calculation of the 12-month organic HAP emission rate using Equation 5 of § 63.3961.
- (9) For the emission rate with add-on controls option, you must include the information specified in paragraphs (c)(9)(i) through (iv) of this section, except that the requirements in paragraphs (c)(9)(i) through (iii) of this section do not apply to solvent recovery systems for which you conduct liquid-liquid material balances according to § 63.3961(j).
- (i) For each emission capture system, a summary of the data and copies of the calculations supporting the determination that the emission capture system is a permanent total enclosure (PTE) or a measurement of the emission capture system efficiency. Include a description of the protocol followed for measuring capture efficiency, summaries of any capture efficiency tests conducted, and any calculations supporting the capture efficiency determination. If you use the data quality objective (DQO) or lower confidence limit (LCL) approach, you must also include the statistical calculations to show you meet the DQO or LCL criteria in appendix A to subpart KK of this part. You do not need to submit complete test reports.
- (ii) A summary of the results of each add-on control device performance test. You do not need to submit complete test reports.
- (iii) A list of each emission capture system's and add-on control device's operating limits and a summary of the data used to calculate those limits.

- (iv) A statement of whether or not you developed and implemented the work practice plan required by § 63.3893.
- (10) If you are complying with a single emission limit representing the predominant activity under § 63.3890(c)(1), include the calculations and supporting information used to demonstrate that this emission limit represents the predominant activity as specified in § 63.3890(c)(1).
- (11) If you are complying with a facility-specific emission limit under § 63.3890(c)(2), include the calculation of the facility-specific emission limit and any supporting information as specified in § 63.3890(c)(2).

[69 FR 157, Jan. 2, 2004, as amended at 69 FR 22660, Apr. 26, 2004]

§ 63.3920 What reports must I submit?

- (a) Semiannual compliance reports. You must submit semiannual compliance reports for each affected source according to the requirements of paragraphs (a)(1) through (7) of this section. The semiannual compliance reporting requirements may be satisfied by reports required under other parts of the Clean Air Act (CAA), as specified in paragraph (a)(2) of this section.
- (1) Dates. Unless the Administrator has approved or agreed to a different schedule for submission of reports under § 63.10(a), you must prepare and submit each semiannual compliance report according to the dates specified in paragraphs (a)(1)(i) through (iv) of this section. Note that the information reported for each of the months in the reporting period will be based on the last 12 months of data prior to the date of each monthly calculation.
- (i) The first semiannual compliance report must cover the first semiannual reporting period which begins the day after the end of the initial compliance period described in § 63.3940, § 63.3950, or § 63.3960 that applies to your affected source and ends on June 30 or December 31, whichever date is the first date following the end of the initial compliance period.
- (ii) Each subsequent semiannual compliance report must cover the subsequent semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
- (iii) Each semiannual compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
- (iv) For each affected source that is subject to permitting regulations pursuant to 40 CFR part 70 or 40 CFR part 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the date specified in paragraph (a)(1)(iii) of this section.
- (2) Inclusion with title V report. Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 40 CFR part 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a semiannual compliance report pursuant to this section along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the semiannual compliance report includes all required information concerning deviations from any emission limitation in this subpart, its submission will be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a semiannual compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permitting authority.
- (3) General requirements. The semiannual compliance report must contain the information specified in paragraphs (a)(3)(i) through (vii) of this section, and the information specified in paragraphs (a)(4) through (7) and (c)(1) of this section that is applicable to your affected source.
- (i) Company name and address.

- (ii) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
- (iii) Date of report and beginning and ending dates of the reporting period. The reporting period is the 6-month period ending on June 30 or December 31. Note that the information reported for each of the 6 months in the reporting period will be based on the last 12 months of data prior to the date of each monthly calculation.
- (iv) Identification of the compliance option or options specified in § 63.3891 that you used on each coating operation during the reporting period. If you switched between compliance options during the reporting period, you must report the beginning and ending dates for each option you used.
- (v) If you used the emission rate without add-on controls or the emission rate with add-on controls compliance option (§ 63.3891(b) or (c)), the calculation results for each rolling 12-month organic HAP emission rate during the 6-month reporting period.
- (vi) If you used the predominant activity alternative (§ 63.3890(c)(1)), include the annual determination of predominant activity if it was not included in the previous semi-annual compliance report.
- (vii) If you used the facility-specific emission limit alternative (§ 63.3890(c)(2)), include the calculation of the facility-specific emission limit for each 12-month compliance period during the 6-month reporting period.
- (4) No deviations. If there were no deviations from the emission limitations in §§ 63.3890, 63.3892, and 63.3893 that apply to you, the semiannual compliance report must include a statement that there were no deviations from the emission limitations during the reporting period. If you used the emission rate with add-on controls option and there were no periods during which the continuous parameter monitoring systems (CPMS) were out-of-control as specified in § 63.8(c)(7), the semiannual compliance report must include a statement that there were no periods during which the CPMS were out-of-control during the reporting period.
- (5) Deviations: Compliant material option. If you used the compliant material option and there was a deviation from the applicable organic HAP content requirements in § 63.3890, the semiannual compliance report must contain the information in paragraphs (a)(5)(i) through (iv) of this section.
- (i) Identification of each coating used that deviated from the applicable emission limit, and each thinner and/or other additive, and cleaning material used that contained organic HAP, and the dates and time periods each was used.
- (ii) The calculation of the organic HAP content (using Equation 2 of § 63.3941) for each coating identified in paragraph (a)(5)(i) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by coating suppliers or manufacturers, or test reports).
- (iii) The determination of mass fraction of organic HAP for each thinner and/or other additive, and cleaning material identified in paragraph (a)(5)(i) of this section. You do not need to submit background data supporting this calculation (e.g., information provided by material suppliers or manufacturers, or test reports).
- (iv) A statement of the cause of each deviation.
- (6) Deviations: Emission rate without add-on controls option. If you used the emission rate without add-on controls option and there was a deviation from the applicable emission limit in § 63.3890, the semiannual compliance report must contain the information in paragraphs (a)(6)(i) through (iii) of this section.
- (i) The beginning and ending dates of each compliance period during which the 12-month organic HAP emission rate exceeded the applicable emission limit in § 63.3890.
- (ii) The calculations used to determine the 12-month organic HAP emission rate for the compliance period in which the deviation occurred. You must submit the calculations for Equations 1, 1A through 1C, 2, and 3 of § 63.3951; and if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3951(e)(4). You do not need to submit background data supporting these calculations (*e.g.*, information provided by materials suppliers or manufacturers, or test reports).

- (iii) A statement of the cause of each deviation.
- (7) Deviations: Emission rate with add-on controls option. If you used the emission rate with add-on controls option and there was a deviation from an emission limitation (including any periods when emissions bypassed the add-on control device and were diverted to the atmosphere), the semiannual compliance report must contain the information in paragraphs (a)(7)(i) through (xiv) of this section. This includes periods of startup, shutdown, and malfunction during which deviations occurred.
- (i) The beginning and ending dates of each compliance period during which the 12-month organic HAP emission rate exceeded the applicable emission limit in § 63.3890.
- (ii) The calculations used to determine the 12-month organic HAP emission rate for each compliance period in which a deviation occurred. You must provide the calculation of the total mass of organic HAP emissions for the coatings, thinners and/or other additives, and cleaning materials used each month using Equations 1 and 1A through 1C of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3951(e)(4); the calculation of the total volume of coating solids used each month using Equation 2 of § 63.3951; the calculation of the mass of organic HAP emission reduction each month by emission capture systems and add-on control devices using Equations 1 and 1A through 1D of § 63.3961, and Equations 2, 3, and 3A through 3C of § 63.3961, as applicable; the calculation of the total mass of organic HAP emissions each month using Equation 4 of § 63.3961; and the calculation of the 12-month organic HAP emission rate using Equation 5 of § 63.3961. You do not need to submit the background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).
- (iii) The date and time that each malfunction started and stopped.
- (iv) A brief description of the CPMS.
- (v) The date of the latest CPMS certification or audit.
- (vi) The date and time that each CPMS was inoperative, except for zero (low-level) and high-level checks.
- (vii) The date, time, and duration that each CPMS was out-of-control, including the information in § 63.8(c)(8).
- (viii) The date and time period of each deviation from an operating limit in Table 1 to this subpart; date and time period of any bypass of the add-on control device; and whether each deviation occurred during a period of startup, shutdown, or malfunction or during another period.
- (ix) A summary of the total duration of each deviation from an operating limit in Table 1 to this subpart and each bypass of the add-on control device during the semiannual reporting period, and the total duration as a percent of the total source operating time during that semiannual reporting period.
- (x) A breakdown of the total duration of the deviations from the operating limits in Table 1 of this subpart and bypasses of the add-on control device during the semiannual reporting period into those that were due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes.
- (xi) A summary of the total duration of CPMS downtime during the semiannual reporting period and the total duration of CPMS downtime as a percent of the total source operating time during that semiannual reporting period.
- (xii) A description of any changes in the CPMS, coating operation, emission capture system, or add-on control device since the last semiannual reporting period.
- (xiii) For each deviation from the work practice standards, a description of the deviation, the date and time period of the deviation, and the actions you took to correct the deviation.
- (xiv) A statement of the cause of each deviation.

- (b) Performance test reports. If you use the emission rate with add-on controls option, you must submit reports of performance test results for emission capture systems and add-on control devices no later than 60 days after completing the tests as specified in § 63.10(d)(2).
- (c) Startup, shutdown, malfunction reports. If you used the emission rate with add-on controls option and you had a startup, shutdown, or malfunction during the semiannual reporting period, you must submit the reports specified in paragraphs (c)(1) and (2) of this section.
- (1) If your actions were consistent with your startup, shutdown, and malfunction plan, you must include the information specified in § 63.10(d) in the semiannual compliance report required by paragraph (a) of this section.
- (2) If your actions were not consistent with your startup, shutdown, and malfunction plan, you must submit an immediate startup, shutdown, and malfunction report as described in paragraphs (c)(2)(i) and (ii) of this section.
- (i) You must describe the actions taken during the event in a report delivered by facsimile, telephone, or other means to the Administrator within 2 working days after starting actions that are inconsistent with the plan.
- (ii) You must submit a letter to the Administrator within 7 working days after the end of the event, unless you have made alternative arrangements with the Administrator as specified in § 63.10(d)(5)(ii). The letter must contain the information specified in § 63.10(d)(5)(ii).

§ 63.3930 What records must I keep?

You must collect and keep records of the data and information specified in this section. Failure to collect and keep these records is a deviation from the applicable standard.

- (a) A copy of each notification and report that you submitted to comply with this subpart, and the documentation supporting each notification and report. If you are using the predominant activity alternative under § 63.3890(c), you must keep records of the data and calculations used to determine the predominant activity. If you are using the facility-specific emission limit alternative under § 63.3890(c), you must keep records of the data used to calculate the facility-specific emission limit for the initial compliance demonstration. You must also keep records of any data used in each annual predominant activity determination and in the calculation of the facility-specific emission limit for each 12-month compliance period included in the semi-annual compliance reports.
- (b) A current copy of information provided by materials suppliers or manufacturers, such as manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner and/or other additive, and cleaning material, and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of the complete test report. If you use information provided to you by the manufacturer or supplier of the material that was based on testing, you must keep the summary sheet of results provided to you by the manufacturer or supplier. You are not required to obtain the test report or other supporting documentation from the manufacturer or supplier.
- (c) For each compliance period, the records specified in paragraphs (c)(1) through (4) of this section.
- (1) A record of the coating operations on which you used each compliance option and the time periods (beginning and ending dates and times) for each option you used.
- (2) For the compliant material option, a record of the calculation of the organic HAP content for each coating, using Equation 2 of § 63.3941.
- (3) For the emission rate without add-on controls option, a record of the calculation of the total mass of organic HAP emissions for the coatings, thinners and/or other additives, and cleaning materials used each month using Equations 1, 1A through 1C, and 2 of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3951(e)(4); the calculation of the total volume of coating solids used each month using Equation 2 of § 63.3951; and the calculation of each 12-month organic HAP emission rate using Equation 3 of § 63.3951.

- (4) For the emission rate with add-on controls option, records of the calculations specified in paragraphs (c)(4)(i) through (v) of this section.
- (i) The calculation of the total mass of organic HAP emissions for the coatings, thinners and/or other additives, and cleaning materials used each month using Equations 1 and 1A through 1C of § 63.3951 and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.3951(e)(4);
- (ii) The calculation of the total volume of coating solids used each month using Equation 2 of § 63.3951;
- (iii) The calculation of the mass of organic HAP emission reduction by emission capture systems and add-on control devices using Equations 1 and 1A through 1D of § 63.3961 and Equations 2, 3, and 3A through 3C of § 63.3961, as applicable:
- (iv) The calculation of each month's organic HAP emission rate using Equation 4 of § 63.3961; and
- (v) The calculation of each 12-month organic HAP emission rate using Equation 5 of § 63.3961.
- (d) A record of the name and volume of each coating, thinner and/or other additive, and cleaning material used during each compliance period. If you are using the compliant material option for all coatings at the source, you may maintain purchase records for each material used rather than a record of the volume used.
- (e) A record of the mass fraction of organic HAP for each coating, thinner and/or other additive, and cleaning material used during each compliance period unless the material is tracked by weight.
- (f) A record of the volume fraction of coating solids for each coating used during each compliance period.
- (g) If you use either the emission rate without add-on controls or the emission rate with add-on controls compliance option, the density for each coating, thinner and/or other additive, and cleaning material used during each compliance period.
- (h) If you use an allowance in Equation 1 of § 63.3951 for organic HAP contained in waste materials sent to or designated for shipment to a treatment, storage, and disposal facility (TSDF) according to § 63.3951(e)(4), you must keep records of the information specified in paragraphs (h)(1) through (3) of this section.
- (1) The name and address of each TSDF to which you sent waste materials for which you use an allowance in Equation 1 of § 63.3951; a statement of which subparts under 40 CFR parts 262, 264, 265, and 266 apply to the facility; and the date of each shipment.
- (2) Identification of the coating operations producing waste materials included in each shipment and the month or months in which you used the allowance for these materials in Equation 1 of § 63.3951.
- (3) The methodology used in accordance with § 63.3951(e)(4) to determine the total amount of waste materials sent to or the amount collected, stored, and designated for transport to a TSDF each month; and the methodology to determine the mass of organic HAP contained in these waste materials. This must include the sources for all data used in the determination, methods used to generate the data, frequency of testing or monitoring, and supporting calculations and documentation, including the waste manifest for each shipment.
- (i) [Reserved]
- (j) You must keep records of the date, time, and duration of each deviation.
- (k) If you use the emission rate with add-on controls option, you must keep the records specified in paragraphs (k)(1) through (8) of this section.
- (1) For each deviation, a record of whether the deviation occurred during a period of startup, shutdown, or malfunction.

- (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.
- (3) The records required to show continuous compliance with each operating limit specified in Table 1 to this subpart that applies to you.
- (4) For each capture system that is a PTE, the data and documentation you used to support a determination that the capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and has a capture efficiency of 100 percent, as specified in § 63.3965(a).
- (5) For each capture system that is not a PTE, the data and documentation you used to determine capture efficiency according to the requirements specified in §§ 63.3964 and 63.3965(b) through (e), including the records specified in paragraphs (k)(5)(i) through (iii) of this section that apply to you.
- (i) Records for a liquid-to-uncaptured gas protocol using a temporary total enclosure or building enclosure. Records of the mass of total volatile hydrocarbon (TVH) as measured by Method 204A or 204F of appendix M to 40 CFR part 51 for each material used in the coating operation, and the total TVH for all materials used during each capture efficiency test run, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run, as measured by Method 204D or 204E of appendix M to 40 CFR part 51, including a copy of the test report. Records documenting that the enclosure used for the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure.
- (ii) Records for a gas-to-gas protocol using a temporary total enclosure or a building enclosure. Records of the mass of TVH emissions captured by the emission capture system as measured by Method 204B or 204C of appendix M to 40 CFR part 51 at the inlet to the add-on control device, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run as measured by Method 204D or 204E of appendix M to 40 CFR part 51, including a copy of the test report. Records documenting that the enclosure used for the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure.
- (iii) Records for an alternative protocol. Records needed to document a capture efficiency determination using an alternative method or protocol as specified in § 63.3965(e), if applicable.
- (6) The records specified in paragraphs (k)(6)(i) and (ii) of this section for each add-on control device organic HAP destruction or removal efficiency determination as specified in § 63.3966.
- (i) Records of each add-on control device performance test conducted according to §§ 63.3964 and 63.3966.
- (ii) Records of the coating operation conditions during the add-on control device performance test showing that the performance test was conducted under representative operating conditions.
- (7) Records of the data and calculations you used to establish the emission capture and add-on control device operating limits as specified in § 63.3967 and to document compliance with the operating limits as specified in Table 1 to this subpart.
- (8) A record of the work practice plan required by § 63.3893 and documentation that you are implementing the plan on a continuous basis.

§ 63.3931 In what form and for how long must I keep my records?

- (a) Your records must be in a form suitable and readily available for expeditious review, according to § 63.10(b)(1). Where appropriate, the records may be maintained as electronic spreadsheets or as a database.
- (b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

Page 17 of 59 T003-30777-00269

(c) You must keep each record on-site for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record according to § 63.10(b)(1). You may keep the records off-site for the remaining 3 years.

Compliance Requirements for the Compliant Material Option

§ 63.3940 By what date must I conduct the initial compliance demonstration?

You must complete the initial compliance demonstration for the initial compliance period according to the requirements in § 63.3941. The initial compliance period begins on the applicable compliance date specified in § 63.3883 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through that month plus the next 12 months. The initial compliance demonstration includes the calculations according to § 63.3941 and supporting documentation showing that during the initial compliance period, you used no coating with an organic HAP content that exceeded the applicable emission limit in § 63.3890, and that you used no thinners and/or other additives, or cleaning materials that contained organic HAP as determined according to § 63.3941(a).

§ 63.3941 How do I demonstrate initial compliance with the emission limitations?

You may use the compliant material option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source. You must use either the emission rate without add-on controls option or the emission rate with add-on controls option for any coating operation in the affected source for which you do not use this option. To demonstrate initial compliance using the compliant material option, the coating operation or group of coating operations must use no coating with an organic HAP content that exceeds the applicable emission limits in § 63.3890 and must use no thinner and/or other additive, or cleaning material that contains organic HAP as determined according to this section. Any coating operation for which you use the compliant material option is not required to meet the operating limits or work practice standards required in §§ 63.3892 and 63.3893, respectively. You must conduct a separate initial compliance demonstration for each general use, high performance, magnet wire, rubber-to-metal, and extreme performance fluoropolymer coating operation unless you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.3890(c). If you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.3890(c), you must demonstrate that all coating operations included in the predominant activity determination or calculation of the facility-specific emission limit comply with that limit. You must meet all the requirements of this section. Use the procedures in this section on each coating, thinner and/or other additive, and cleaning material in the condition it is in when it is received from its manufacturer or supplier and prior to any alteration. You do not need to redetermine the organic HAP content of coatings, thinners and/or other additives, and cleaning materials that are reclaimed on-site (or reclaimed off-site if you have documentation showing that you received back the exact same materials that were sent off-site) and reused in the coating operation for which you use the compliant material option, provided these materials in their condition as received were demonstrated to comply with the compliant material option.

- (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each coating, thinner and/or other additive, and cleaning material used during the compliance period by using one of the options in paragraphs (a)(1) through (5) of this section.
- (1) Method 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs (a)(1)(i) and (ii) of this section when performing a Method 311 test.
- (i) Count each organic HAP that is measured to be present at 0.1 percent by mass or more for Occupational Safety and Health Administration (OSHA)-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of each organic HAP you count as a value truncated to four places after the decimal point (e.g., 0.3791).
- (ii) Calculate the total mass fraction of organic HAP in the test material by adding up the individual organic HAP mass fractions and truncating the result to three places after the decimal point (e.g., 0.763).

- (2) Method 24 (appendix A to 40 CFR part 60). For coatings, you may use Method 24 to determine the mass fraction of nonaqueous volatile matter and use that value as a substitute for mass fraction of organic HAP. For reactive adhesives in which some of the HAP react to form solids and are not emitted to the atmosphere, you may use the alternative method contained in appendix A to subpart PPPP of this part, rather than Method 24. You may use the volatile fraction that is emitted, as measured by the alternative method in appendix A to subpart PPPP of this part, as a substitute for the mass fraction of organic HAP.
- (3) Alternative method. You may use an alternative test method for determining the mass fraction of organic HAP once the Administrator has approved it. You must follow the procedure in § 63.7(f) to submit an alternative test method for approval.
- (4) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified in paragraphs (a)(1) through (3) of this section, such as manufacturer's formulation data, if it represents each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to count it. For reactive adhesives in which some of the HAP react to form solids and are not emitted to the atmosphere, you may rely on manufacturer's data that expressly states the organic HAP or volatile matter mass fraction emitted. If there is a disagreement between such information and results of a test conducted according to paragraphs (a)(1) through (3) of this section, then the test method results will take precedence unless, after consultation, you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.
- (5) Solvent blends. Solvent blends may be listed as single components for some materials in data provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP mass fraction of the materials. When test data and manufacturer's data for solvent blends are not available, you may use the default values for the mass fraction of organic HAP in these solvent blends listed in Table 3 or 4 to this subpart. If you use the tables, you must use the values in Table 3 for all solvent blends that match Table 3 entries according to the instructions for Table 3, and you may use Table 4 only if the solvent blends in the materials you use do not match any of the solvent blends in Table 3 and you know only whether the blend is aliphatic or aromatic. However, if the results of a Method 311 (appendix A to 40 CFR part 63) test indicate higher values than those listed on Table 3 or 4 to this subpart, the Method 311 results will take precedence unless, after consultation, you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.
- (b) Determine the volume fraction of coating solids for each coating. You must determine the volume fraction of coating solids (liters (gal) of coating solids per liter (gal) of coating) for each coating used during the compliance period by a test, by information provided by the supplier or the manufacturer of the material, or by calculation, as specified in paragraphs (b)(1) through (4) of this section. If test results obtained according to paragraph (b)(1) of this section do not agree with the information obtained under paragraph (b)(3) or (4) of this section, the test results will take precedence unless, after consultation, you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.
- (1) ASTM Method D2697-86 (Reapproved 1998) or ASTM Method D6093-97 (Reapproved 2003). You may use ASTM Method D2697-86 (Reapproved 1998), "Standard Test Method for Volume Nonvolatile Matter in Clear or Pigmented Coatings" (incorporated by reference, see § 63.14), or ASTM Method D6093-97 (Reapproved 2003), "Standard Test Method for Percent Volume Nonvolatile Matter in Clear or Pigmented Coatings Using a Helium Gas Pycnometer" (incorporated by reference, see § 63.14), to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids.
- (2) Alternative method. You may use an alternative test method for determining the solids content of each coating once the Administrator has approved it. You must follow the procedure in § 63.7(f) to submit an alternative test method for approval.
- (3) Information from the supplier or manufacturer of the material. You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer.
- (4) Calculation of volume fraction of coating solids. You may determine the volume fraction of coating solids using Equation 1 of this section:

$$V_s = 1 - \frac{m_{volatiles}}{D_{ave}}$$
 (Eq. 1)

Where:

V_s = Volume fraction of coating solids, liters (gal) coating solids per liter (gal) coating.

m_{volatiles} = Total volatile matter content of the coating, including HAP, volatile organic compounds (VOC), water, and exempt compounds, determined according to Method 24 in appendix A of 40 CFR part 60, grams volatile matter per liter coating.

 D_{avg} = Average density of volatile matter in the coating, grams volatile matter per liter volatile matter, determined from test results using ASTM Method D1475-98, "Standard Test Method for Density of Liquid Coatings, Inks, and Related Products" (incorporated by reference, see § 63.14), information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475-98 test results and other information sources, the test results will take precedence unless, after consultation you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.

- (c) Determine the density of each coating. Determine the density of each coating used during the compliance period from test results using ASTM Method D1475-98, "Standard Test Method for Density of Liquid Coatings, Inks, and Related Products" (incorporated by reference, see § 63.14), information from the supplier or manufacturer of the material, or specific gravity data for pure chemicals. If there is disagreement between ASTM Method D1475-98 test results and the supplier's or manufacturer's information, the test results will take precedence unless, after consultation you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.
- (d) Determine the organic HAP content of each coating. Calculate the organic HAP content, kg (lb) of organic HAP emitted per liter (gal) coating solids used, of each coating used during the compliance period using Equation 2 of this section:

$$H_c = \frac{(D_c)(W_c)}{V_s} \qquad (Eq. 2)$$

Where:

H_c = Organic HAP content of the coating, kg organic HAP emitted per liter (gal) coating solids used.

 D_c = Density of coating, kg coating per liter (gal) coating, determined according to paragraph (c) of this section.

 W_c = Mass fraction of organic HAP in the coating, kg organic HAP per kg coating, determined according to paragraph (a) of this section.

 V_s = Volume fraction of coating solids, liter (gal) coating solids per liter (gal) coating, determined according to paragraph (b) of this section.

(e) Compliance demonstration. The calculated organic HAP content for each coating used during the initial compliance period must be less than or equal to the applicable emission limit in § 63.3890; and each thinner and/or other additive, and cleaning material used during the initial compliance period must contain no organic HAP, determined according to paragraph (a) of this section. You must keep all records required by §§ 63.3930 and 63.3931. As part of the notification of compliance status required in § 63.3910, you must identify the coating operation(s) for which you used the compliant material option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because you used no coatings for which the organic HAP content exceeded the applicable emission limit in § 63.3890, and you used no thinners and/or other additives, or cleaning materials that contained organic HAP, determined according to the procedures in paragraph (a) of this section.

§ 63.3942 How do I demonstrate continuous compliance with the emission limitations?

- (a) For each compliance period to demonstrate continuous compliance, you must use no coating for which the organic HAP content (determined using Equation 2 of § 63.3941) exceeds the applicable emission limit in § 63.3890, and use no thinner and/or other additive, or cleaning material that contains organic HAP, determined according to § 63.3941(a). A compliance period consists of 12 months. Each month, after the end of the initial compliance period described in § 63.3940, is the end of a compliance period consisting of that month and the preceding 11 months. If you are complying with a facility-specific emission limit under § 63.3890(c), you must also perform the calculation using Equation 1 in § 63.3890(c)(2) on a monthly basis using the data from the previous 12 months of operation.
- (b) If you choose to comply with the emission limitations by using the compliant material option, the use of any coating, thinner and/or other additive, or cleaning material that does not meet the criteria specified in paragraph (a) of this section is a deviation from the emission limitations that must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(5).
- (c) As part of each semiannual compliance report required by § 63.3920, you must identify the coating operation(s) for which you used the compliant material option. If there were no deviations from the applicable emission limit in § 63.3890, submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the reporting period because you used no coatings for which the organic HAP content exceeded the applicable emission limit in § 63.3890, and you used no thinner and/or other additive, or cleaning material that contained organic HAP, determined according to § 63.3941(a).
- (d) You must maintain records as specified in §§ 63.3930 and 63.3931.

Compliance Requirements for the Emission Rate Without Add-On Controls Option

§ 63.3950 By what date must I conduct the initial compliance demonstration?

You must complete the initial compliance demonstration for the initial compliance period according to the requirements of § 63.3951. The initial compliance period begins on the applicable compliance date specified in § 63.3883 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coating solids used each month and then calculate an organic HAP emission rate at the end of the initial compliance period. The initial compliance demonstration includes the calculations according to § 63.3951 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in § 63.3890.

§ 63.3951 How do I demonstrate initial compliance with the emission limitations?

You may use the emission rate without add-on controls option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source. You must use either the compliant material option or the emission rate with add-on controls option for any coating operation in the affected source for which you do not use this option. To demonstrate initial compliance using the emission rate without add-on controls option, the coating operation or group of coating operations must meet the applicable emission limit in § 63.3890, but is not required to meet the operating limits or work practice standards in §§ 63.3892 and 63.3893. respectively. You must conduct a separate initial compliance demonstration for each general use, magnet wire, rubber-to-metal, and extreme performance fluoropolymer coating operation unless you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.3890(c). If you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.3890(c), you must demonstrate that all coating operations included in the predominant activity determination or calculation of the facilityspecific emission limit comply with that limit. You must meet all the requirements of this section. When calculating the organic HAP emission rate according to this section, do not include any coatings, thinners and/or other additives, or cleaning materials used on coating operations for which you use the compliant material option or the emission rate with add-on controls option. You do not need to redetermine the mass of organic HAP in coatings, thinners and/or other additives, or cleaning materials that have been reclaimed on-site (or reclaimed off-site if you have documentation showing that you received back the exact same materials that were sent off-site) and reused in the coating operation for which you use the emission rate without add-on controls option. If you use coatings, thinners and/or other additives, or cleaning materials that have been reclaimed on-site, the amount of each used in a month

may be reduced by the amount of each that is reclaimed. That is, the amount used may be calculated as the amount consumed to account for materials that are reclaimed.

- (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating, thinner and/or other additive, and cleaning material used during each month according to the requirements in § 63.3941(a).
- (b) Determine the volume fraction of coating solids. Determine the volume fraction of coating solids (liter (gal) of coating solids per liter (gal) of coating used during each month according to the requirements in § 63.3941(b).
- (c) Determine the density of each material. Determine the density of each liquid coating, thinner and/or other additive, and cleaning material used during each month from test results using ASTM Method D1475-98, "Standard Test Method for Density of Liquid Coatings, Inks, and Related Products" (incorporated by reference, see § 63.14), information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If you are including powder coatings in the compliance determination, determine the density of powder coatings, using ASTM Method D5965-02, "Standard Test Methods for Specific Gravity of Coating Powders" (incorporated by reference, see § 63.14), or information from the supplier. If there is disagreement between ASTM Method D1475-98 or ASTM Method D5965-02 test results and other such information sources, the test results will take precedence unless, after consultation you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct. If you purchase materials or monitor consumption by weight instead of volume, you do not need to determine material density. Instead, you may use the material weight in place of the combined terms for density and volume in Equations 1A, 1B, 1C, and 2 of this section.
- (d) Determine the volume of each material used. Determine the volume (liters) of each coating, thinner and/or other additive, and cleaning material used during each month by measurement or usage records. If you purchase materials or monitor consumption by weight instead of volume, you do not need to determine the volume of each material used. Instead, you may use the material weight in place of the combined terms for density and volume in Equations 1A, 1B, and 1C of this section.
- (e) Calculate the mass of organic HAP emissions. The mass of organic HAP emissions is the combined mass of organic HAP contained in all coatings, thinners and/or other additives, and cleaning materials used during each month minus the organic HAP in certain waste materials. Calculate the mass of organic HAP emissions using Equation 1 of this section.

$$H_e = A + B + C - R_w$$
 (Eq. 1)

Where:

H_e = Total mass of organic HAP emissions during the month, kg.

A = Total mass of organic HAP in the coatings used during the month, kg, as calculated in Equation 1A of this section.

B = Total mass of organic HAP in the thinners and/or other additives used during the month, kg, as calculated in Equation 1B of this section.

C = Total mass of organic HAP in the cleaning materials used during the month, kg, as calculated in Equation 1C of this section.

 R_w = Total mass of organic HAP in waste materials sent or designated for shipment to a hazardous waste TSDF for treatment or disposal during the month, kg, determined according to paragraph (e)(4) of this section. (You may assign a value of zero to R $_w$ if you do not wish to use this allowance.)

(1) Calculate the kg organic HAP in the coatings used during the month using Equation 1A of this section:

$$A = \sum_{i=1}^{m} (Vol_{ej})(D_{ej})(W_{ej}) \qquad (Eq. 1A)$$

Where:

A = Total mass of organic HAP in the coatings used during the month, kg.

Vol_{c,i} = Total volume of coating, i, used during the month, liters.

D_{c,i} = Density of coating, i, kg coating per liter coating.

 $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

m = Number of different coatings used during the month.

(2) Calculate the kg of organic HAP in the thinners and/or other additives used during the month using Equation 1B of this section:

$$B = \sum_{j=1}^{n} (Vol_{t,j}) (D_{t,j}) (W_{t,j}) \qquad (Eq. 1B)$$

Where:

B = Total mass of organic HAP in the thinners and/or other additives used during the month, kg.

 $Vol_{t,j}$ = Total volume of thinner and/or other additive, j, used during the month, liters.

 $D_{t,j}$ = Density of thinner and/or other additive, j, kg per liter.

W_{t,j} = Mass fraction of organic HAP in thinner and/or other additive, j, kg organic HAP per kg thinner and/or other additive. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

n = Number of different thinners and/or other additives used during the month.

(3) Calculate the kg organic HAP in the cleaning materials used during the month using Equation 1C of this section:

$$C = \sum_{k=1}^{p} (Vol_{s,k}) (D_{s,k}) (W_{s,k}) \qquad (Eq. 1C)$$

Where:

C = Total mass of organic HAP in the cleaning materials used during the month, kg.

Vol_{s,k} = Total volume of cleaning material, k, used during the month, liters.

 $D_{s,k}$ = Density of cleaning material, k, kg per liter.

W_{s,k} = Mass fraction of organic HAP in cleaning material, k, kg organic HAP per kg material.

p = Number of different cleaning materials used during the month.

- (4) If you choose to account for the mass of organic HAP contained in waste materials sent or designated for shipment to a hazardous waste TSDF in Equation 1 of this section, then you must determine the mass according to paragraphs (e)(4)(i) through (iv) of this section.
- (i) You may only include waste materials in the determination that are generated by coating operations in the affected source for which you use Equation 1 of this section and that will be treated or disposed of by a facility that is regulated as a TSDF under 40 CFR part 262, 264, 265, or 266. The TSDF may be either off-site or on-site. You may not include organic HAP contained in wastewater.
- (ii) You must determine either the amount of the waste materials sent to a TSDF during the month or the amount collected and stored during the month and designated for future transport to a TSDF. Do not include in your determination any waste materials sent to a TSDF during a month if you have already included them in the amount collected and stored during that month or a previous month.
- (iii) Determine the total mass of organic HAP contained in the waste materials specified in paragraph (e)(4)(ii) of this section.
- (iv) You must document the methodology you use to determine the amount of waste materials and the total mass of organic HAP they contain, as required in § 63.3930(h). If waste manifests include this information, they may be used as part of the documentation of the amount of waste materials and mass of organic HAP contained in them.
- (f) Calculate the total volume of coating solids used. Determine the total volume of coating solids used, liters, which is the combined volume of coating solids for all the coatings used during each month, using Equation 2 of this section:

$$V_{st} = \sum_{i=1}^{m} (Vol_{e,i})(V_{s,i}) \qquad (Eq. 2)$$

Where:

V_{st} = Total volume of coating solids used during the month, liters.

Volci = Total volume of coating, i, used during the month, liters.

 $V_{s,i}$ = Volume fraction of coating solids for coating, i, liter solids per liter coating, determined according to § 63.3941(b).

m = Number of coatings used during the month.

(g) Calculate the organic HAP emission rate. Calculate the organic HAP emission rate for the compliance period, kg (lb) organic HAP emitted per liter (gal) coating solids used, using Equation 3 of this section:

$$H_{yr} = \frac{\sum_{y=1}^{n} H_{e}}{\sum_{y=1}^{n} V_{st}}$$
 (Eq. 3)

Where:

H_{yr} = Average organic HAP emission rate for the compliance period, kg organic HAP emitted per liter coating solids

Page 24 of 59 T003-30777-00269

 H_e = Total mass of organic HAP emissions from all materials used during month, y, kg, as calculated by Equation 1 of this section.

V_{st} = Total volume of coating solids used during month, y, liters, as calculated by Equation 2 of this section.

y = Identifier for months.

- n = Number of full or partial months in the compliance period (for the initial compliance period, n equals 12 if the compliance date falls on the first day of a month; otherwise n equals 13; for all following compliance periods, n equals 12).
- (h) Compliance demonstration. The organic HAP emission rate for the initial compliance period calculated using Equation 3 of this section must be less than or equal to the applicable emission limit for each subcategory in § 63.3890 or the predominant activity or facility-specific emission limit allowed in § 63.3890(c). You must keep all records as required by §§ 63.3930 and 63.3931. As part of the notification of compliance status required by § 63.3910, you must identify the coating operation(s) for which you used the emission rate without add-on controls option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in § 63.3890, determined according to the procedures in this section.

§ 63.3952 How do I demonstrate continuous compliance with the emission limitations?

- (a) To demonstrate continuous compliance, the organic HAP emission rate for each compliance period, determined according to § 63.3951(a) through (g), must be less than or equal to the applicable emission limit in § 63.3890. A compliance period consists of 12 months. Each month after the end of the initial compliance period described in § 63.3950 is the end of a compliance period consisting of that month and the preceding 11 months. You must perform the calculations in § 63.3951(a) through (g) on a monthly basis using data from the previous 12 months of operation. If you are complying with a facility-specific emission limit under § 63.3890(c), you must also perform the calculation using Equation 1 in § 63.3890(c)(2) on a monthly basis using the data from the previous 12 months of operation.
- (b) If the organic HAP emission rate for any 12-month compliance period exceeded the applicable emission limit in § 63.3890, this is a deviation from the emission limitation for that compliance period and must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(6).
- (c) As part of each semiannual compliance report required by § 63.3920, you must identify the coating operation(s) for which you used the emission rate without add-on controls option. If there were no deviations from the emission limitations, you must submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in § 63.3890, determined according to § 63.3951(a) through (g).
- (d) You must maintain records as specified in §§ 63.3930 and 63.3931.

Compliance Requirements for the Emission Rate With Add-On Controls Option

§ 63.3960 By what date must I conduct performance tests and other initial compliance demonstrations?

- (a) New and reconstructed affected sources. For a new or reconstructed affected source, you must meet the requirements of paragraphs (a)(1) through (4) of this section.
- (1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in § 63.3883. Except for solvent recovery systems for which you conduct liquid-liquid material balances according to § 63.3961(j), you must conduct a performance test of each capture system and add-on control device according to §§ 63.3964, 63.3965, and 63.3966 and establish the operating limits required by § 63.3892 no later than 180 days after the applicable compliance date specified in § 63.3883. For a solvent recovery system for which you conduct liquid-liquid material balances according to § 63.3961(j), you must initiate the first material balance no later than the applicable compliance date specified in § 63.3883. For magnet wire coating operations you may, with approval, conduct a performance test of one representative magnet wire coating machine for each group of identical or very similar magnet wire coating machines.

- (2) You must develop and begin implementing the work practice plan required by § 63.3893 no later than the compliance date specified in § 63.3883.
- (3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of § 63.3961. The initial compliance period begins on the applicable compliance date specified in § 63.3883 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coatings solids used each month and then calculate an organic HAP emission rate at the end of the initial compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to § 63.3964, 63.3965, and 63.3966; results of liquid-liquid material balances conducted according to § 63.3961(j); calculations according to § 63.3961 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in § 63.3890; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by § 63.3968; and documentation of whether you developed and implemented the work practice plan required by § 63.3893.
- (4) You do not need to comply with the operating limits for the emission capture system and add-on control device required by § 63.3892 until after you have completed the performance tests specified in paragraph (a)(1) of this section. Instead, you must maintain a log detailing the operation and maintenance of the emission capture system, add-on control device, and continuous parameter monitors during the period between the compliance date and the performance test. You must begin complying with the operating limits for your affected source on the date you complete the performance tests specified in paragraph (a)(1) of this section. For magnet wire coating operations, you must begin complying with the operating limits for all identical or very similar magnet wire coating machines on the date you complete the performance test of a representative magnet wire coating machine. The requirements in this paragraph (a)(4) do not apply to solvent recovery systems for which you conduct liquid-liquid material balances according to the requirements in § 63.3961(j).
- (b) Existing affected sources. For an existing affected source, you must meet the requirements of paragraphs (b)(1) through (3) of this section.
- (1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in § 63.3883. Except for magnet wire coating operations and solvent recovery systems for which you conduct liquid-liquid material balances according to § 63.3961(j), you must conduct a performance test of each capture system and add-on control device according to the procedures in §§ 63.3964, 63.3965, and 63.3966 and establish the operating limits required by § 63.3892 no later than the compliance date specified in § 63.3883. For magnet wire coating operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that represents identical or very similar magnet wire coating machines. For a solvent recovery system for which you conduct liquid-liquid material balances according to § 63.3961(j), you must initiate the first material balance no later than the compliance date specified in § 63.3883.
- (2) You must develop and begin implementing the work practice plan required by § 63.3893 no later than the compliance date specified in § 63.3883.
- (3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of § 63.3961. The initial compliance period begins on the applicable compliance date specified in § 63.3883 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coatings solids used each month and then calculate an organic HAP emission rate at the end of the initial compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.3964, 63.3965, and 63.3966; results of liquid-liquid material balances conducted according to § 63.3961(j); calculations according to § 63.3961 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in § 63.3890; the operating limits established during the performance tests and the results of the continuous parameter monitoring required by § 63.3968; and documentation of whether you developed and implemented the work practice plan required by § 63.3893.
- (c) You are not required to conduct an initial performance test to determine capture efficiency or destruction efficiency of a capture system or control device if you receive approval to use the results of a performance test that has been

Page 26 of 59 T003-30777-00269

previously conducted on that capture system or control device. Any such previous tests must meet the conditions described in paragraphs (c)(1) through (3) of this section.

- (1) The previous test must have been conducted using the methods and conditions specified in this subpart.
- (2) Either no process or equipment changes have been made since the previous test was performed or the owner or operator must be able to demonstrate that the results of the performance test, reliably demonstrate compliance despite process or equipment changes.
- (3) Either the required operating parameters were established in the previous test or sufficient data were collected in the previous test to establish the required operating parameters.

§ 63.3961 How do I demonstrate initial compliance?

- (a) You may use the emission rate with add-on controls option for any coating operation, for any group of coating operations in the affected source, or for all of the coating operations in the affected source. You may include both controlled and uncontrolled coating operations in a group for which you use this option. You must use either the compliant material option or the emission rate without add-on controls option for any coating operation in the affected source for which you do not use the emission rate with add-on controls option. To demonstrate initial compliance, the coating operation(s) for which you use the emission rate with add-on controls option must meet the applicable emission limitations in §§ 63.3890, 63.3892, and 63.3893. You must conduct a separate initial compliance demonstration for each general use, magnet wire, rubber-to-metal, and extreme performance fluoropolymer coating operation, unless you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.3890(c). If you are demonstrating compliance with a predominant activity or facility-specific emission limit as provided in § 63.4490(c), you must demonstrate that all coating operations included in the predominant activity determination or calculation of the facility-specific emission limit comply with that limit. You must meet all the requirements of this section. When calculating the organic HAP emission rate according to this section, do not include any coatings, thinners and/or other additives, or cleaning materials used on coating operations for which you use the compliant material option or the emission rate without add-on controls option. You do not need to redetermine the mass of organic HAP in coatings, thinners and/or other additives, or cleaning materials that have been reclaimed onsite (or reclaimed off-site if you have documentation showing that you received back the exact same materials that were sent off-site) and reused in the coatings operation(s) for which you use the emission rate with add-on controls option. If you use coatings, thinners and/or other additives, or cleaning materials that have been reclaimed on-site, the amount of each used in a month may be reduced by the amount of each that is reclaimed. That is, the amount used may be calculated as the amount consumed to account for materials that are reclaimed.
- (b) Compliance with operating limits. Except as provided in § 63.3960(a)(4), and except for solvent recovery systems for which you conduct liquid-liquid material balances according to the requirements of paragraph (j) of this section, you must establish and demonstrate continuous compliance during the initial compliance period with the operating limits required by § 63.3892, using the procedures specified in §§ 63.3967 and 63.3968.
- (c) Compliance with work practice requirements. You must develop, implement, and document your implementation of the work practice plan required by § 63.3893 during the initial compliance period, as specified in § 63.3930.
- (d) Compliance with emission limits. You must follow the procedures in paragraphs (e) through (n) of this section to demonstrate compliance with the applicable emission limit in § 63.3890 for each affected source in each subcategory.
- (e) Determine the mass fraction of organic HAP, density, volume used, and volume fraction of coating solids. Follow the procedures specified in § 63.3951(a) through (d) to determine the mass fraction of organic HAP, density, and volume of each coating, thinner and/or other additive, and cleaning material used during each month; and the volume fraction of coating solids for each coating used during each month.
- (f) Calculate the total mass of organic HAP emissions before add-on controls. Using Equation 1 of § 63.3951, calculate the total mass of organic HAP emissions before add-on controls from all coatings, thinners and/or other additives, and cleaning materials used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option.

- (g) Calculate the organic HAP emission reduction for each controlled coating operation. Determine the mass of organic HAP emissions reduced for each controlled coating operation during each month. The emission reduction determination quantifies the total organic HAP emissions that pass through the emission capture system and are destroyed or removed by the add-on control device. Use the procedures in paragraph (h) of this section to calculate the mass of organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct a liquid-liquid material balance, use the procedures in paragraph (j) of this section to calculate the organic HAP emission reduction.
- (h) Calculate the organic HAP emission reduction for each controlled coating operation not using liquid-liquid material balance. Use Equation 1 of this section to calculate the organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances. The calculation applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coatings, thinners and/or other additives, and cleaning materials that are used in the coating operation served by the emission capture system and add-on control device during each month. You must assume zero efficiency for the emission capture system and add-on control device for any period of time a deviation specified in § 63.3963(c) or (d) occurs in the controlled coating operation, including a deviation during a period of startup, shutdown, or malfunction, unless you have other data indicating the actual efficiency of the emission capture system and add-on control device and the use of these data is approved by the Administrator. Equation 1 of this section treats the materials used during such a deviation as if they were used on an uncontrolled coating operation for the time period of the deviation.

$$H_C = \left(A_C + B_C + C_C - R_W - H_{UNC}\right) \left(\frac{CE}{100} \times \frac{DRE}{100}\right) \qquad (Eq. \ 1)$$

Where:

H_C = Mass of organic HAP emission reduction for the controlled coating operation during the month, kg.

 A_C = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg, as calculated in Equation 1A of this section.

B_C = Total mass of organic HAP in the thinners and/or other additives used in the controlled coating operation during the month, kg, as calculated in Equation 1B of this section.

 C_C = Total mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, kg, as calculated in Equation 1C of this section.

 R_W = Total mass of organic HAP in waste materials sent or designated for shipment to a hazardous waste TSDF for treatment or disposal during the compliance period, kg, determined according to § 63.3951(e)(4). (You may assign a value of zero to R_W if you do not wish to use this allowance.)

 H_{UNC} = Total mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used during all deviations specified in § 63.3963(c) and (d) that occurred during the month in the controlled coating operation, kg, as calculated in Equation 1D of this section.

CE = Capture efficiency of the emission capture system vented to the add-on control device, percent. Use the test methods and procedures specified in §§ 63.3964 and 63.3965 to measure and record capture efficiency.

DRE = Organic HAP destruction or removal efficiency of the add-on control device, percent. Use the test methods and procedures in §§ 63.3964 and 63.3966 to measure and record the organic HAP destruction or removal efficiency.

(1) Calculate the mass of organic HAP in the coatings used in the controlled coating operation, kg (lb), using Equation 1A of this section:

$$A_{C} = \sum_{i=1}^{m} (Vol_{e,i}) (D_{e,i}) (W_{e,i}) \qquad (Eq. 1A)$$

Where:

A_C = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg.

Vol_{c,i} = Total volume of coating, i, used during the month, liters.

D_{c.i} = Density of coating, i, kg per liter.

 $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg per kg. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

m = Number of different coatings used.

(2) Calculate the mass of organic HAP in the thinners and/or other additives used in the controlled coating operation, kg (lb), using Equation 1B of this section:

$$B_C = \sum_{i=1}^{n} (Vol_{i,j}) (D_{i,j}) (W_{i,j}) \qquad (Eq. 1B)$$

Where:

 B_C = Total mass of organic HAP in the thinners and/or other additives used in the controlled coating operation during the month, kg.

Vol_{t,j} = Total volume of thinner and/or other additive, j, used during the month, liters.

D_{t,j} = Density of thinner and/or other additive, j, kg per liter.

 $W_{t,j}$ = Mass fraction of organic HAP in thinner and/or other additive, j, kg per kg. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

n = Number of different thinners and/or other additives used.

(3) Calculate the mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, kg (lb), using Equation 1C of this section:

$$C_C = \sum_{k=1}^{p} (Vol_{s,k}) (D_{s,k}) (W_{s,k}) \qquad (Eq. 1C)$$

Where:

 C_C = Total mass of organic HAP in the cleaning materials used in the controlled coating operation during the month,

Vol_{s,k} = Total volume of cleaning material, k, used during the month, liters.

 $D_{s,k}$ = Density of cleaning material, k, kg per liter.

W_{s,k} = Mass fraction of organic HAP in cleaning material, k, kg per kg.

p = Number of different cleaning materials used.

(4) Calculate the mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used in the controlled coating operation during deviations specified in § 63.3963(c) and (d), using Equation 1D of this section:

$$H_{U\!\!\!N\!\!\!V\!\!\!C} = \sum_{k=1}^q \bigl(Vol_k\bigr)\bigl(D_k\bigr)\bigl(W_k\bigr) \qquad (Eq. \, 1\mathrm{D})$$

Where:

H_{UNC} = Total mass of organic HAP in the coatings, thinners and/or other additives, and cleaning materials used during all deviations specified in § 63.3963(c) and (d) that occurred during the month in the controlled coating operation, kg.

 $Vol_h = Total volume of coating, thinner and/or other additive, or cleaning material, h, used in the controlled coating operation during deviations, liters.$

D_h = Density of coating, thinner and/or other additives, or cleaning material, h, kg per liter.

W_h = Mass fraction of organic HAP in coating, thinner and/or other additives, or cleaning material, h, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

q = Number of different coatings, thinners and/or other additives, and cleaning materials used.

(i) [Reserved]

- (j) Calculate the organic HAP emission reduction for each controlled coating operation using liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the coatings, thinners and/or other additives, and cleaning materials that are used in the coating operation controlled by the solvent recovery system during each month. Perform a liquid-liquid material balance for each month as specified in paragraphs (j)(1) through (6) of this section. Calculate the mass of organic HAP emission reduction by the solvent recovery system as specified in paragraph (j)(7) of this section.
- (1) For each solvent recovery system, install, calibrate, maintain, and operate according to the manufacturer's specifications, a device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device must be initially certified by the manufacturer to be accurate to within ±2.0 percent of the mass of volatile organic matter recovered.
- (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, based on measurement with the device required in paragraph (j)(1) of this section.
- (3) Determine the mass fraction of volatile organic matter for each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, kg volatile organic matter per kg coating. You may determine the volatile organic matter mass fraction using Method 24 of 40 CFR part 60, appendix A, or an EPA approved alternative method, or you may use information provided by the manufacturer or supplier of the coating. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24 of 40 CFR part 60, appendix A, or an approved alternative method, the test method results will take precedence unless, after consultation you demonstrate to the satisfaction of the enforcement agency that the formulation data are correct.

- (4) Determine the density of each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, kg per liter, according to § 63.3951(c).
- (5) Measure the volume of each coating, thinner and/or other additive, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, liters.
- (6) Each month, calculate the solvent recovery system's volatile organic matter collection and recovery efficiency, using Equation 2 of this section:

$$R_{V} = 100 \frac{M_{VR}}{\sum_{i=1}^{m} Vol_{i} D_{i} W V_{c,i} + \sum_{j=1}^{n} Vol_{j} D_{j} W V_{t,j} + \sum_{k=1}^{p} Vol_{k} D_{k} W V_{s,k}}$$
(Eq. 2)

Where:

 R_V = Volatile organic matter collection and recovery efficiency of the solvent recovery system during the month, percent.

M_{VR} = Mass of volatile organic matter recovered by the solvent recovery system during the month, kg.

Vol_i = Volume of coating, i, used in the coating operation controlled by the solvent recovery system during the month, liters.

 D_i = Density of coating, i, kg per liter.

 $WV_{c,i}$ = Mass fraction of volatile organic matter for coating, i, kg volatile organic matter per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

Vol_j = Volume of thinner and/or other additive, j, used in the coating operation controlled by the solvent recovery system during the month, liters.

D_i = Density of thinner and/or other additive, j, kg per liter.

 $WV_{t,j}$ = Mass fraction of volatile organic matter for thinner and/or other additive, j, kg volatile organic matter per kg thinner and/or other additive. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

 $Vol_k = Volume$ of cleaning material, k, used in the coating operation controlled by the solvent recovery system during the month, liters.

 D_k = Density of cleaning material, k, kg per liter.

WV_{s,k} = Mass fraction of volatile organic matter for cleaning material, k, kg volatile organic matter per kg cleaning material.

m = Number of different coatings used in the coating operation controlled by the solvent recovery system during the month.

n = Number of different thinners and/or other additives used in the coating operation controlled by the solvent recovery system during the month.

p = Number of different cleaning materials used in the coating operation controlled by the solvent recovery system during the month.

(7) Calculate the mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system during the month, using Equation 3 of this section and according to paragraphs (j)(7)(i) through (iii) of this section:

$$H_{\text{CSR}} = \left(A_{\text{CSR}} + B_{\text{CSR}} + C_{\text{CSR}}\right) \left(\frac{R_{\text{V}}}{100}\right) \qquad (Eq. 3)$$

Where:

H_{CSR} = Mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system using a liquid-liquid material balance during the month, kg.

A_{CSR} = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3A of this section.

B_{CSR} = Total mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3B of this section.

C_{CSR} = Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system, kg, calculated using Equation 3C of this section.

 R_V = Volatile organic matter collection and recovery efficiency of the solvent recovery system, percent, from Equation 2 of this section.

(i) Calculate the mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, kg, using Equation 3A of this section.

$$A_{\text{CSR}} = \sum_{i=1}^{m} (Vol_{ej}) (D_{ej}) (W_{e,i}) \qquad (Eq. 3A)$$

Where:

A_{CSR} = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system during the month, kg.

Vol_{c,i} = Total volume of coating, i, used during the month in the coating operation controlled by the solvent recovery system, liters.

 $D_{c,i}$ = Density of coating, i, kg per liter.

 $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

m = Number of different coatings used.

(ii) Calculate the mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system, kg, using Equation 3B of this section:

$$B_{\text{CSR}} = \sum_{i=1}^{n} \left(Vol_{t,j} \right) \left(D_{t,j} \right) \left(W_{t,j} \right) \qquad (Eq. 3B)$$

Where:

B_{CSR} = Total mass of organic HAP in the thinners and/or other additives used in the coating operation controlled by the solvent recovery system during the month, kg.

 $Vol_{t,j}$ = Total volume of thinner and/or other additive, j, used during the month in the coating operation controlled by the solvent recovery system, liters.

D_{t,j} = Density of thinner and/or other additive, j, kg per liter.

 $W_{t,j}$ = Mass fraction of organic HAP in thinner and/or other additive, j, kg lb organic HAP per kg thinner and/or other additive. For reactive adhesives as defined in § 63.3981, use the mass fraction of organic HAP that is emitted as determined using the method in appendix A to subpart PPPP of this part.

n = Number of different thinners and/or other additives used.

(iii) Calculate the mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the month, kg, using Equation 3C of this section:

$$C_{\text{CSR}} = \sum_{k=1}^{p} (Vol_{s,k}) (D_{s,k}) (W_{s,k}) \qquad (Eq. 3C)$$

Where:

 C_{CSR} = Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the month, kg.

 $Vol_{s,k}$ = Total volume of cleaning material, k, used during the month in the coating operation controlled by the solvent recovery system, liters.

 $D_{s,k}$ = Density of cleaning material, k, kg per liter.

W_{s,k} = Mass fraction of organic HAP in cleaning material, k, kg organic HAP per kg cleaning material.

p = Number of different cleaning materials used.

- (k) Calculate the total volume of coating solids used. Determine the total volume of coating solids used, liters, which is the combined volume of coating solids for all the coatings used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option, using Equation 2 of § 63.3951.
- (I) Calculate the mass of organic HAP emissions for each month. Determine the mass of organic HAP emissions, kg, during each month, using Equation 4 of this section:

$$H_{HAP} = H_e - \sum_{i=1}^{q} (H_{e,i}) - \sum_{i=1}^{r} (H_{CSR,j})$$
 (Eq. 4)

where:

H_{HAP} = Total mass of organic HAP emissions for the month, kg.

 H_e = Total mass of organic HAP emissions before add-on controls from all the coatings, thinners and/or other additives, and cleaning materials used during the month, kg, determined according to paragraph (f) of this section.

H_{C,i} = Total mass of organic HAP emission reduction for controlled coating operation, i, not using a liquid-liquid material balance, during the month, kg, from Equation 1 of this section.

H_{CSR,j} = Total mass of organic HAP emission reduction for coating operation, j, controlled by a solvent recovery system using a liquid-liquid material balance, during the month, kg, from Equation 3 of this section.

q = Number of controlled coating operations not controlled by a solvent recovery system using a liquid-liquid material balance.

r = Number of coating operations controlled by a solvent recovery system using a liquid-liquid material balance.

(m) Calculate the organic HAP emission rate for the compliance period. Determine the organic HAP emission rate for the compliance period, kg (lb) of organic HAP emitted per liter (gal) coating solids used, using Equation 5 of this section:

$$H_{annihol} = \frac{\sum_{y=1}^{n} H_{EMP,y}}{\sum_{y=1}^{n} V_{st,y}}$$
 (Eq. 5)

Where:

H_{annual} = Organic HAP emission rate for the compliance period, kg organic HAP emitted per liter coating solids used.

H_{HAP,y} = Organic HAP emissions for month, y, kg, determined according to Equation 4 of this section.

V_{st,y} = Total volume of coating solids used during month, y, liters, from Equation 2 of § 63.3951.

y = Identifier for months.

n = Number of full or partial months in the compliance period (for the initial compliance period, n equals 12 if the compliance date falls on the first day of a month; otherwise n equals 13; for all following compliance periods, n equals 12).

(n) Compliance demonstration. The organic HAP emission rate for the initial compliance period, calculated using Equation 5 of this section, must be less than or equal to the applicable emission limit for each subcategory in § 63.3890 or the predominant activity or facility-specific emission limit allowed in § 63.3890(c). You must keep all records as required by §§ 63.3930 and 63.3931. As part of the notification of compliance status required by § 63.3910, you must identify the coating operation(s) for which you used the emission rate with add-on controls option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in § 63.3890, and you achieved the operating limits required by § 63.3892 and the work practice standards required by § 63.3893.

§ 63.3962 [Reserved]

§ 63.3963 How do I demonstrate continuous compliance with the emission limitations?

(a) To demonstrate continuous compliance with the applicable emission limit in § 63.3890, the organic HAP emission rate for each compliance period, determined according to the procedures in § 63.3961, must be equal to or less than the applicable emission limit in § 63.3890. A compliance period consists of 12 months. Each month after the end of the initial compliance period described in § 63.3960 is the end of a compliance period consisting of that month and the preceding 11 months. You must perform the calculations in § 63.3961 on a monthly basis using data from the previous 12 months of operation. If you are complying with a facility-specific emission limit under § 63.3890(c), you

must also perform the calculation using Equation 1 in § 63.3890(c)(2) on a monthly basis using the data from the previous 12 months of operation.

- (b) If the organic HAP emission rate for any 12-month compliance period exceeded the applicable emission limit in § 63.3890, this is a deviation from the emission limitation for that compliance period that must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(7).
- (c) You must demonstrate continuous compliance with each operating limit required by § 63.3892 that applies to you, as specified in Table 1 to this subpart, when the coating line is in operation.
- (1) If an operating parameter is out of the allowed range specified in Table 1 to this subpart, this is a deviation from the operating limit that must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(7).
- (2) If an operating parameter deviates from the operating limit specified in Table 1 to this subpart, then you must assume that the emission capture system and add-on control device were achieving zero efficiency during the time period of the deviation, unless you have other data indicating the actual efficiency of the emission capture system and add-on control device and the use of these data is approved by the Administrator.
- (d) You must meet the requirements for bypass lines in § 63.3968(b) for controlled coating operations for which you do not conduct liquid-liquid material balances. If any bypass line is opened and emissions are diverted to the atmosphere when the coating operation is running, this is a deviation that must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(7). For the purposes of completing the compliance calculations specified in §§ 63.3961(h), you must treat the materials used during a deviation on a controlled coating operation as if they were used on an uncontrolled coating operation for the time period of the deviation as indicated in Equation 1 of § 63.3961.
- (e) You must demonstrate continuous compliance with the work practice standards in § 63.3893. If you did not develop a work practice plan, or you did not implement the plan, or you did not keep the records required by § 63.3930(k)(8), this is a deviation from the work practice standards that must be reported as specified in §§ 63.3910(c)(6) and 63.3920(a)(7).
- (f) As part of each semiannual compliance report required in § 63.3920, you must identify the coating operation(s) for which you used the emission rate with add-on controls option. If there were no deviations from the emission limitations, submit a statement that you were in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in § 63.3890, and you achieved the operating limits required by § 63.3892 and the work practice standards required by § 63.3893 during each compliance period.
- (g)-(i) [Reserved]
- (j) You must maintain records as specified in §§ 63.3930 and 63.3931.
- [69 FR 157, Jan. 2, 2004, as amended at 71 FR 20465, Apr. 20, 2006]

§ 63.3964 What are the general requirements for performance tests?

- (a) You must conduct each performance test required by § 63.3960 according to the requirements in § 63.7(e)(1) and under the conditions in this section, unless you obtain a waiver of the performance test according to the provisions in § 63.7(h).
- (1) Representative coating operation operating conditions. You must conduct the performance test under representative operating conditions for the coating operation. Operations during periods of startup, shutdown, or malfunction and during periods of nonoperation do not constitute representative conditions. You must record the process information that is necessary to document operating conditions during the test and explain why the conditions represent normal operation.
- (2) Representative emission capture system and add-on control device operating conditions. You must conduct the performance test when the emission capture system and add-on control device are operating at a representative flow

rate, and the add-on control device is operating at a representative inlet concentration. You must record information that is necessary to document emission capture system and add-on control device operating conditions during the test and explain why the conditions represent normal operation.

(b) You must conduct each performance test of an emission capture system according to the requirements in § 63.3965. You must conduct each performance test of an add-on control device according to the requirements in § 63.3966.

§ 63.3965 How do I determine the emission capture system efficiency?

You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by § 63.3960.

- (a) Assuming 100 percent capture efficiency. You may assume the capture system efficiency is 100 percent if both of the conditions in paragraphs (a)(1) and (2) of this section are met:
- (1) The capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and directs all the exhaust gases from the enclosure to an add-on control device.
- (2) All coatings, thinners and/or other additives, and cleaning materials used in the coating operation are applied within the capture system; coating solvent flash-off, curing, and drying occurs within the capture system; and the removal or evaporation of cleaning materials from the surfaces they are applied to occurs within the capture system. For example, this criterion is not met if parts enter the open shop environment when being moved between a spray booth and a curing oven.
- (b) Measuring capture efficiency. If the capture system does not meet both of the criteria in paragraphs (a)(1) and (2) of this section, then you must use one of the three protocols described in paragraphs (c), (d), and (e) of this section to measure capture efficiency. The capture efficiency measurements use TVH capture efficiency as a surrogate for organic HAP capture efficiency. For the protocols in paragraphs (c) and (d) of this section, the capture efficiency measurement must consist of three test runs. Each test run must be at least 3 hours duration or the length of a production run, whichever is longer, up to 8 hours. For the purposes of this test, a production run means the time required for a single part to go from the beginning to the end of the production, which includes surface preparation activities and drying and curing time.
- (c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not captured by the emission capture system. Use a temporary total enclosure or a building enclosure and the procedures in paragraphs (c)(1) through (6) of this section to measure emission capture system efficiency using the liquid-to-uncaptured-gas protocol.
- (1) Either use a building enclosure or construct an enclosure around the coating operation where coatings, thinners and/or other additives, and cleaning materials are applied, and all areas where emissions from these applied coatings and materials subsequently occur, such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions for routing to an add-on control device, such as the entrance and exit areas of an oven or spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51.
- (2) Use Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner and/or other additive, and cleaning material used in the coating operation during each capture efficiency test run. To make the determination, substitute TVH for each occurrence of the term VOC in the methods.
- (3) Use Equation 1 of this section to calculate the total mass of TVH liquid input from all the coatings, thinners and/or other additives, and cleaning materials used in the coating operation during each capture efficiency test run:

$$TVH_{wed} = \sum_{i=1}^{n} (TVH_i)(Vol_i)(D_i)$$
 (Eq. 1)

Where:

TVH_{used} = Mass of liquid TVH in materials used in the coating operation during the capture efficiency test run, kg.

 $TVH_i = Mass$ fraction of TVH in coating, thinner and/or other additive, or cleaning material, i, that is used in the coating operation during the capture efficiency test run, kg TVH per kg material.

Vol_i = Total volume of coating, thinner and/or other additive, or cleaning material, i, used in the coating operation during the capture efficiency test run, liters.

D_i = Density of coating, thinner and/or other additive, or cleaning material, i, kg material per liter material.

n = Number of different coatings, thinners and/or other additives, and cleaning materials used in the coating operation during the capture efficiency test run.

- (4) Use Method 204D or 204E of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions that are not captured by the emission capture system. They are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.
- (i) Use Method 204D of appendix M to 40 CFR part 51 if the enclosure is a temporary total enclosure.
- (ii) Use Method 204E of appendix M to 40 CFR 51 if the enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally.
- (5) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 2 of this section:

$$CE = \frac{\left(TVH_{used} - TVH_{uncaptured}\right)}{TVH_{used}} \times 100$$
 (Eq. 2)

Where:

CE = Capture efficiency of the emission capture system vented to the add-on control device, percent.

TVH_{used} = Total mass of TVH liquid input used in the coating operation during the capture efficiency test run, kg.

TVH_{uncaptured} = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, kg.

- (6) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs.
- (d) Gas-to-gas protocol using a temporary total enclosure or a building enclosure. The gas-to-gas protocol compares the mass of TVH emissions captured by the emission capture system to the mass of TVH emissions not captured. Use a temporary total enclosure or a building enclosure and the procedures in paragraphs (d)(1) through (5) of this section to measure emission capture system efficiency using the gas-to-gas protocol.
- (1) Either use a building enclosure or construct an enclosure around the coating operation where coatings, thinners and/or other additives, and cleaning materials are applied, and all areas where emissions from these applied coatings and materials subsequently occur, such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions generated by the coating operation for routing to an add-on control device,

such as the entrance and exit areas of an oven or a spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51.

- (2) Use Method 204B or 204C of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions captured by the emission capture system during each capture efficiency test run as measured at the inlet to the addon control device. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.
- (i) The sampling points for the Method 204B or 204C measurement must be upstream from the add-on control device and must represent total emissions routed from the capture system and entering the add-on control device.
- (ii) If multiple emission streams from the capture system enter the add-on control device without a single common duct, then the emissions entering the add-on control device must be simultaneously measured in each duct and the total emissions entering the add-on control device must be determined.
- (3) Use Method 204D or 204E of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions that are not captured by the emission capture system; they are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.
- (i) Use Method 204D of appendix M to 40 CFR part 51 if the enclosure is a temporary total enclosure.
- (ii) Use Method 204E of appendix M to 40 CFR part 51 if the enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally.
- (4) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 3 of this section:

$$CE = \frac{TVH_{captured}}{\left(TVH_{captured} + TVH_{uncaptured}\right)} \times 100$$
 (Eq. 3)

Where:

CE = Capture efficiency of the emission capture system vented to the add-on control device, percent.

TVH_{captured} = Total mass of TVH captured by the emission capture system as measured at the inlet to the add-on control device during the emission capture efficiency test run, kg.

 $TVH_{uncaptured}$ = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, kg.

- (5) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs.
- (e) Alternative capture efficiency protocol. As an alternative to the procedures specified in paragraphs (c) and (d) of this section and subject to the approval of the Administrator, you may determine capture efficiency using any other capture efficiency protocol and test methods that satisfy the criteria of either the DQO or LCL approach as described in appendix A to subpart KK of this part.

§ 63.3966 How do I determine the add-on control device emission destruction or removal efficiency?

You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.3960. You must conduct three test

runs as specified in § 63.7(e)(3) and each test run must last at least 1 hour. If the source is a magnet wire coating machine, you may use the procedures in section 3.0 of appendix A to this subpart as an alternative.

- (a) For all types of add-on control devices, use the test methods specified in paragraphs (a)(1) through (5) of this section.
- (1) Use Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select sampling sites and velocity traverse points.
- (2) Use Method 2, 2A, 2C, 2D, 2F, or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.
- (3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight.
- (4) Use Method 4 of appendix A to 40 CFR part 60, to determine stack gas moisture.
- (5) Methods for determining gas volumetric flow rate, dry molecular weight, and stack gas moisture must be performed, as applicable, during each test run.
- (b) Measure total gaseous organic mass emissions as carbon at the inlet and outlet of the add-on control device simultaneously, using either Method 25 or 25A of appendix A to 40 CFR part 60.
- (1) Use Method 25 if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as carbon to be more than 50 parts per million (ppm) at the control device outlet.
- (2) Use Method 25A if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as carbon to be 50 ppm or less at the control device outlet.
- (3) Use Method 25A if the add-on control device is not an oxidizer.
- (c) If two or more add-on control devices are used for the same emission stream, then you must measure emissions at the outlet to the atmosphere of each device. For example, if one add-on control device is a concentrator with an outlet to the atmosphere for the high-volume dilute stream that has been treated by the concentrator, and a second add-on control device is an oxidizer with an outlet to the atmosphere for the low-volume concentrated stream that is treated with the oxidizer, you must measure emissions at the outlet of the oxidizer and the high volume dilute stream outlet of the concentrator.
- (d) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 1 of this section. If there is more than one inlet or outlet to the add-on control device, you must calculate the total gaseous organic mass flow rate using Equation 1 of this section for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions:

$$M_f = Q_{sl}C_c(12) (0.0416) (10^{-6})$$
 (Eq. 1)

Where:

 M_f = Total gaseous organic emissions mass flow rate, kg per hour (h).

 C_c = Concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A, parts per million by volume (ppmv), dry basis.

 Q_{sd} = Volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F, or 2G, dry standard cubic meters/hour (dscm/h).

0.0416 = Conversion factor for molar volume, kg-moles per cubic meter (mol/m³) (@ 293 Kelvin (K) and 760 millimeters of mercury (mmHg).

(e) For each test run, determine the add-on control device organic emissions destruction or removal efficiency, using Equation 2 of this section:

$$DRE = \frac{M_{fi} - M_{fb}}{M_{fi}} \times 100$$
 (Eq. 2)

Where:

DRE = Organic emissions destruction or removal efficiency of the add-on control device, percent.

 $M_{\rm fi}$ = Total gaseous organic emissions mass flow rate at the inlet(s) to the add-on control device, using Equation 1 of this section, kg/h.

 M_{fo} = Total gaseous organic emissions mass flow rate at the outlet(s) of the add-on control device, using Equation 1 of this section, kg/h.

(f) Determine the emission destruction or removal efficiency of the add-on control device as the average of the efficiencies determined in the three test runs and calculated in Equation 2 of this section.

§ 63.3967 How do I establish the emission capture system and add-on control device operating limits during the performance test?

During the performance test required by \S 63.3960 and described in $\S\S$ 63.3964, 63.3965, and 63.3966, you must establish the operating limits required by \S 63.3892 according to this section, unless you have received approval for alternative monitoring and operating limits under \S 63.8(f) as specified in \S 63.3892.

- (a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating limits according to paragraphs (a)(1) and (2) of this section.
- (1) During the performance test, you must monitor and record the combustion temperature at least once every 15 minutes during each of the three test runs. You must monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs.
- (2) Use the data collected during the performance test to calculate and record the average combustion temperature maintained during the performance test. This average combustion temperature is the minimum operating limit for your thermal oxidizer.
- (b) Catalytic oxidizers. If your add-on control device is a catalytic oxidizer, establish the operating limits according to either paragraphs (b)(1) and (2) or paragraphs (b)(3) and (4) of this section. If the source is a magnet wire coating machine, you may use the procedures in section 3.0 of appendix A to this subpart as an alternative.
- (1) During the performance test, you must monitor and record the temperature just before the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test runs.
- (2) Use the data collected during the performance test to calculate and record the average temperature just before the catalyst bed and the average temperature difference across the catalyst bed maintained during the performance test. These are the minimum operating limits for your catalytic oxidizer.
- (3) You must monitor the temperature at the inlet to the catalyst bed and implement a site-specific inspection and maintenance plan for your catalytic oxidizer as specified in paragraph (b)(4) of this section. During the performance test, you must monitor and record the temperature just before the catalyst bed at least once every 15 minutes during each of the three test runs. Use the data collected during the performance test to calculate and record the average

Page 40 of 59 T003-30777-00269

temperature just before the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer.

- (4) You must develop and implement an inspection and maintenance plan for your catalytic oxidizer(s) for which you elect to monitor according to paragraph (b)(3) of this section. The plan must address, at a minimum, the elements specified in paragraphs (b)(4)(i) through (iii) of this section.
- (i) Annual sampling and analysis of the catalyst activity (*i.e.*, conversion efficiency) following the manufacturer's or catalyst supplier's recommended procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations.
- (ii) Monthly external inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures.
- (iii) Annual internal inspection of the catalyst bed to check for channeling, abrasion, and settling. If problems are found during the annual internal inspection of the catalyst, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations. If the catalyst bed is replaced and is not of like or better kind and quality as the old catalyst then you must conduct a new performance test to determine destruction efficiency according to § 63.3966. If a catalyst bed is replaced and the replacement catalyst is of like or better kind and quality as the old catalyst, then a new performance test to determine destruction efficiency is not required and you may continue to use the previously established operating limits for that catalytic oxidizer.
- (c) Regenerative carbon adsorbers. If your add-on control device is a regenerative carbon adsorber, establish the operating limits according to paragraphs (c)(1) and (2) of this section.
- (1) You must monitor and record the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, and the carbon bed temperature after each carbon bed regeneration and cooling cycle for the regeneration cycle either immediately preceding or immediately following the performance test.
- (2) The operating limits for your regenerative carbon adsorber are the minimum total desorbing gas mass flow recorded during the regeneration cycle and the maximum carbon bed temperature recorded after the cooling cycle.
- (d) Condensers. If your add-on control device is a condenser, establish the operating limits according to paragraphs (d)(1) and (2) of this section.
- (1) During the performance test, you must monitor and record the condenser outlet (product side) gas temperature at least once every 15 minutes during each of the three test runs.
- (2) Use the data collected during the performance test to calculate and record the average condenser outlet (product side) gas temperature maintained during the performance test. This average condenser outlet gas temperature is the maximum operating limit for your condenser.
- (e) Concentrators. If your add-on control device includes a concentrator, you must establish operating limits for the concentrator according to paragraphs (e)(1) through (4) of this section.
- (1) During the performance test, you must monitor and record the desorption concentrate stream gas temperature at least once every 15 minutes during each of the three runs of the performance test.
- (2) Use the data collected during the performance test to calculate and record the average temperature. This is the minimum operating limit for the desorption concentrate gas stream temperature.
- (3) During the performance test, you must monitor and record the pressure drop of the dilute stream across the concentrator at least once every 15 minutes during each of the three runs of the performance test.
- (4) Use the data collected during the performance test to calculate and record the average pressure drop. This is the minimum operating limit for the dilute stream across the concentrator.

- (f) *Emission capture systems*. For each capture device that is not part of a PTE that meets the criteria of § 63.3965(a), establish an operating limit for either the gas volumetric flow rate or duct static pressure, as specified in paragraphs (f)(1) and (2) of this section. The operating limit for a PTE is specified in Table 1 to this subpart. If the source is a magnet wire coating machine, you may use the procedures in section 2.0 of appendix A to this subpart as an alternative.
- (1) During the capture efficiency determination required by § 63.3960 and described in §§ 63.3964 and 63.3965, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate capture device in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the capture device and the add-on control device inlet.
- (2) Calculate and record the average gas volumetric flow rate or duct static pressure for the three test runs for each capture device. This average gas volumetric flow rate or duct static pressure is the minimum operating limit for that specific capture device.

§ 63.3968 What are the requirements for continuous parameter monitoring system installation, operation, and maintenance?

- (a) General. You must install, operate, and maintain each CPMS specified in paragraphs (c), (e), (f), and (g) of this section according to paragraphs (a)(1) through (6) of this section. You must install, operate, and maintain each CPMS specified in paragraphs (b) and (d) of this section according to paragraphs (a)(3) through (5) of this section.
- (1) The CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four equally spaced successive cycles of CPMS operation in 1 hour.
- (2) You must determine the average of all recorded readings for each successive 3-hour period of the emission capture system and add-on control device operation.
- (3) You must record the results of each inspection, calibration, and validation check of the CPMS.
- (4) You must maintain the CPMS at all times and have available necessary parts for routine repairs of the monitoring equipment.
- (5) You must operate the CPMS and collect emission capture system and add-on control device parameter data at all times that a controlled coating operation is operating, except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments).
- (6) You must not use emission capture system or add-on control device parameter data recorded during monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities when calculating data averages. You must use all the data collected during all other periods in calculating the data averages for determining compliance with the emission capture system and add-on control device operating limits.
- (7) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the CPMS to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions. Any period for which the monitoring system is out-of-control and data are not available for required calculations is a deviation from the monitoring requirements.
- (b) Capture system bypass line. You must meet the requirements of paragraphs (b)(1) and (2) of this section for each emission capture system that contains bypass lines that could divert emissions away from the add-on control device to the atmosphere.
- (1) You must monitor or secure the valve or closure mechanism controlling the bypass line in a nondiverting position in such a way that the valve or closure mechanism cannot be opened without creating a record that the valve was opened. The method used to monitor or secure the valve or closure mechanism must meet one of the requirements specified in paragraphs (b)(1)(i) through (v) of this section.

- (i) Flow control position indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow control position indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. The time of occurrence and flow control position must be recorded, as well as every time the flow direction is changed. The flow control position indicator must be installed at the entrance to any bypass line that could divert the emissions away from the add-on control device to the atmosphere.
- (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal or closure mechanism at least once every month to ensure that the valve is maintained in the closed position, and the emissions are not diverted away from the add-on control device to the atmosphere.
- (iii) Valve closure monitoring. Ensure that any bypass line valve is in the closed (nondiverting) position through monitoring of valve position at least once every 15 minutes. You must inspect the monitoring system at least once every month to verify that the monitor will indicate valve position.
- (iv) Automatic shutdown system. Use an automatic shutdown system in which the coating operation is stopped when flow is diverted by the bypass line away from the add-on control device to the atmosphere when the coating operation is running. You must inspect the automatic shutdown system at least once every month to verify that it will detect diversions of flow and shut down the coating operation.
- (v) Flow direction indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow direction indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. Each time the flow direction changes, the next reading of the time of occurrence and flow direction must be recorded. The flow direction indicator must be installed in each bypass line or air makeup supply line that could divert the emissions away from the add-on control device to the atmosphere.
- (2) If any bypass line is opened, you must include a description of why the bypass line was opened and the length of time it remained open in the semiannual compliance reports required in § 63.3920.
- (c) Thermal oxidizers and catalytic oxidizers. If you are using a thermal oxidizer or catalytic oxidizer as an add-on control device (including those used with concentrators or with carbon adsorbers to treat desorbed concentrate streams), you must comply with the requirements in paragraphs (c)(1) through (3) of this section:
- (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately downstream of the firebox before any substantial heat exchange occurs.
- (2) For a catalytic oxidizer, install gas temperature monitors upstream and/or downstream of the catalyst bed as required in § 63.3967(b).
- (3) For all thermal oxidizers and catalytic oxidizers, you must meet the requirements in paragraphs (a) and (c)(3)(i) through (v) of this section for each gas temperature monitoring device.
- (i) Locate the temperature sensor in a position that provides a representative temperature.
- (ii) Use a temperature sensor with a measurement sensitivity of 5 degrees Fahrenheit or 1.0 percent of the temperature value, whichever is larger.
- (iii) Before using the sensor for the first time or when relocating or replacing the sensor, perform a validation check by comparing the sensor output to a calibrated temperature measurement device or by comparing the sensor output to a simulated temperature.
- (iv) Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor output to redundant temperature sensors, to calibrated temperature measurement devices, or to temperature simulation devices.

- (v) Conduct a visual inspection of each sensor every quarter if redundant temperature sensors are not used.
- (d) Regenerative carbon adsorbers. If you are using a regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) through (3) of this section.
- (1) The regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of plus or minus 10 percent capable of recording the total regeneration desorbing gas mass flow for each regeneration cycle.
- (2) The carbon bed temperature monitor must be capable of recording the temperature within 15 minutes of completing any carbon bed cooling cycle.
- (3) For all regenerative carbon adsorbers, you must meet the requirements in paragraphs (c)(3)(i) through (v) of this section for each temperature monitoring device.
- (e) Condensers. If you are using a condenser, you must monitor the condenser outlet (product side) gas temperature and comply with paragraphs (a) and (e)(1) and (2) of this section.
- (1) The temperature monitor must provide a gas temperature record at least once every 15 minutes.
- (2) For all condensers, you must meet the requirements in paragraphs (c)(3)(i) through (v) of this section for each temperature monitoring device.
- (f) Concentrators. If you are using a concentrator, such as a zeolite wheel or rotary carbon bed concentrator, you must comply with the requirements in paragraphs (f)(1) and (2) of this section.
- (1) You must install a temperature monitor in the desorption gas stream. The temperature monitor must meet the requirements in paragraphs (a) and (c)(3) of this section.
- (2) You must install a device to monitor pressure drop across the zeolite wheel or rotary carbon bed. The pressure monitoring device must meet the requirements in paragraphs (a) and (g)(2) of this section.
- (g) *Emission capture systems*. The capture system monitoring system must comply with the applicable requirements in paragraphs (g)(1) and (2) of this section. If the source is a magnet wire coating machine, you may use the procedures in section 2.0 of appendix A to this subpart as an alternative.
- (1) For each flow measurement device, you must meet the requirements in paragraphs (a) and (g)(1)(i) through (vii) of this section.
- (i) Locate a flow sensor in a position that provides a representative flow measurement in the duct from each capture device in the emission capture system to the add-on control device.
- (ii) Use a flow sensor with an accuracy of at least 10 percent of the flow.
- (iii) Perform an initial sensor calibration in accordance with the manufacturer's requirements.
- (iv) Perform a validation check before initial use or upon relocation or replacement of a sensor. Validation checks include comparison of sensor values with electronic signal simulations or via relative accuracy testing.
- (v) Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor values with electronic signal simulations or via relative accuracy testing.
- (vi) Perform leak checks monthly.

- (vii) Perform visual inspections of the sensor system quarterly if there is no redundant sensor.
- (2) For each pressure drop measurement device, you must comply with the requirements in paragraphs (a) and (g)(2)(i) through (vii) of this section.
- (i) Locate the pressure sensor(s) in or as close to a position that provides a representative measurement of the pressure drop across each opening you are monitoring.
- (ii) Use a pressure sensor with an accuracy of at least 0.5 inches of water column or 5 percent of the measured value, whichever is larger.
- (iii) Perform an initial calibration of the sensor according to the manufacturer's requirements.
- (iv) Conduct a validation check before initial operation or upon relocation or replacement of a sensor. Validation checks include comparison of sensor values to calibrated pressure measurement devices or to pressure simulation using calibrated pressure sources.
- (v) Conduct accuracy audits every quarter and after every deviation. Accuracy audits include comparison of sensor values to calibrated pressure measurement devices or to pressure simulation using calibrated pressure sources.
- (vi) Perform monthly leak checks on pressure connections. A pressure of at least 1.0 inches of water column to the connection must yield a stable sensor result for at least 15 seconds.
- (vii) Perform a visual inspection of the sensor at least monthly if there is no redundant sensor.

Other Requirements and Information

§ 63.3980 Who implements and enforces this subpart?

- (a) This subpart can be implemented and enforced by us, the U.S. Environmental Protection Agency (EPA), or a delegated authority such as your State, local, or tribal agency. If the Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the EPA) has the authority to implement and enforce this subpart. You should contact your EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator and are not transferred to the State, local, or tribal agency.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section:
- (1) Approval of alternatives to the requirements in § 63.3881 through 3883 and § 63.3890 through 3893.
- (2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.
- (3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.
- (4) Approval of major alternatives to recordkeeping and reporting under § 63.10(f) and as defined in § 63.90.

§ 63.3981 What definitions apply to this subpart?

Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows:

Page 45 of 59 T003-30777-00269

Additive means a material that is added to a coating after purchase from a supplier (e.g., catalysts, activators, accelerators).

Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere.

Adhesive, adhesive coating means any chemical substance that is applied for the purpose of bonding two surfaces together. Products used on humans and animals, adhesive tape, contact paper, or any other product with an adhesive incorporated onto or in an inert substrate shall not be considered adhesives under this subpart.

Assembled on-road vehicle coating means any coating operation in which coating is applied to the surface of some component or surface of a fully assembled motor vehicle or trailer intended for on-road use including, but not limited to, components or surfaces on automobiles and light-duty trucks that have been repaired after a collision or otherwise repainted, fleet delivery trucks, and motor homes and other recreational vehicles (including camping trailers and fifth wheels). Assembled on-road vehicle coating includes the concurrent coating of parts of the assembled on-road vehicle that are painted off-vehicle to protect systems, equipment, or to allow full coverage. Assembled on-road vehicle coating does not include surface coating operations that meet the applicability criteria of the automobiles and light-duty trucks NESHAP. Assembled on-road vehicle coating also does not include the use of adhesives, sealants, and caulks used in assembling on-road vehicles.

Capture device means a hood, enclosure, room, floor sweep, or other means of containing or collecting emissions and directing those emissions into an add-on air pollution control device.

Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device.

Capture system means one or more capture devices intended to collect emissions generated by a coating operation in the use of coatings or cleaning materials, both at the point of application and at subsequent points where emissions from the coatings and cleaning materials occur, such as flashoff, drying, or curing. As used in this subpart, multiple capture devices that collect emissions generated by a coating operation are considered a single capture system.

Cleaning material means a solvent used to remove contaminants and other materials, such as dirt, grease, oil, and dried or wet coating (e.g., depainting or paint stripping), from a substrate before or after coating application or from equipment associated with a coating operation, such as spray booths, spray guns, racks, tanks, and hangers. Thus, it includes any cleaning material used on substrates or equipment or both.

Coating means a material applied to a substrate for decorative, protective, or functional purposes. Such materials include, but are not limited to, paints, sealants, liquid plastic coatings, caulks, inks, adhesives, and maskants. Decorative, protective, or functional materials that consist only of protective oils for metal, acids, bases, or any combination of these substances, or paper film or plastic film which may be pre-coated with an adhesive by the film manufacturer, are not considered coatings for the purposes of this subpart. A liquid plastic coating means a coating made from fine particle-size polyvinyl chloride (PVC) in solution (also referred to as a plastisol).

Coating operation means equipment used to apply cleaning materials to a substrate to prepare it for coating application (surface preparation) or to remove dried coating; to apply coating to a substrate (coating application) and to dry or cure the coating after application; or to clean coating operation equipment (equipment cleaning). A single coating operation may include any combination of these types of equipment, but always includes at least the point at which a given quantity of coating or cleaning material is applied to a given part and all subsequent points in the affected source where organic HAP are emitted from the specific quantity of coating or cleaning material on the specific part. There may be multiple coating operations in an affected source. Coating application with handheld, non-refillable aerosol containers, touch-up markers, or marking pens is not a coating operation for the purposes of this subpart.

Coatings solids means the nonvolatile portion of the coating that makes up the dry film.

Continuous parameter monitoring system (CPMS) means the total equipment that may be required to meet the data acquisition and availability requirements of this subpart, used to sample, condition (if applicable), analyze, and provide a record of coating operation, or capture system, or add-on control device parameters.

Controlled coating operation means a coating operation from which some or all of the organic HAP emissions are routed through an emission capture system and add-on control device.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart including but not limited to, any emission limit or operating limit or work practice standard;
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emission limit, or operating limit, or work practice standard in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

Emission limitation means the aggregate of all requirements associated with a compliance option including emission limit, operating limit, work practice standard, etc.

Enclosure means a structure that surrounds a source of emissions and captures and directs the emissions to an addon control device.

Exempt compound means a specific compound that is not considered a VOC due to negligible photochemical reactivity. The exempt compounds are listed in 40 CFR 51.100(s).

Extreme performance fluoropolymer coating means coatings that are formulated systems based on fluoropolymer resins which often contain bonding matrix polymers dissolved in non-aqueous solvents as well as other ingredients. Extreme performance fluoropolymer coatings are typically used when one or more critical performance criteria are required including, but not limited to a nonstick low-energy surface, dry film lubrication, high resistance to chemical attack, extremely wide operating temperature, high electrical insulating properties, or that the surface comply with government (e.g., USDA, FDA) or third party specifications for health, safety, reliability, or performance. Once applied to a substrate, extreme performance fluoropolymer coatings undergo a curing process that typically requires high temperatures, a chemical reaction, or other specialized technology.

Facility maintenance means the routine repair or renovation (including the surface coating) of the tools, equipment, machinery, and structures that comprise the infrastructure of the affected facility and that are necessary for the facility to function in its intended capacity.

General use coating means any material that meets the definition of coating but does not meet the definition of high performance coating, rubber-to-metal coating, magnet wire coating, or extreme performance fluoropolymer coating as defined in this section.

High performance architectural coating means any coating applied to architectural subsections which is required to meet the specifications of Architectural Aluminum Manufacturer's Association's publication number AAMA 605.2-2000.

High performance coating means any coating that meets the definition of high performance architectural coating or high temperature coating in this section.

High temperature coating means any coating applied to a substrate which during normal use must withstand temperatures of at least 538 degrees Celsius (1000 degrees Fahrenheit).

Hobby shop means any surface coating operation, located at an affected source, that is used exclusively for personal, noncommercial purposes by the affected source's employees or assigned personnel.

Magnet wire coatings, commonly referred to as magnet wire enamels, are applied to a continuous strand of wire which will be used to make turns (windings) in electrical devices such as coils, transformers, or motors. Magnet wire coatings provide high dielectric strength and turn-to-turn conductor insulation. This allows the turns of an electrical device to be placed in close proximity to one another which leads to increased coil effectiveness and electrical efficiency.

Magnet wire coating machine means equipment which applies and cures magnet wire coatings.

Manufacturer's formulation data means data on a material (such as a coating) that are supplied by the material manufacturer based on knowledge of the ingredients used to manufacture that material, rather than based on testing of the material with the test methods specified in § 63.3941. Manufacturer's formulation data may include, but are not limited to, information on density, organic HAP content, volatile organic matter content, and coating solids content.

Mass fraction of organic HAP means the ratio of the mass of organic HAP to the mass of a material in which it is contained, expressed as kg of organic HAP per kg of material.

Month means a calendar month or a pre-specified period of 28 days to 35 days to allow for flexibility in recordkeeping when data are based on a business accounting period.

Non-HAP coating means, for the purposes of this subpart, a coating that contains no more than 0.1 percent by mass of any individual organic HAP that is an OSHA-defined carcinogen as specified in 29 CFR 1910.1200(d)(4) and no more than 1.0 percent by mass for any other individual HAP.

Organic HAP content means the mass of organic HAP emitted per volume of coating solids used for a coating calculated using Equation 2 of § 63.3941. The organic HAP content is determined for the coating in the condition it is in when received from its manufacturer or supplier and does not account for any alteration after receipt. For reactive adhesives in which some of the HAP react to form solids and are not emitted to the atmosphere, organic HAP content is the mass of organic HAP that is emitted, rather than the organic HAP content of the coating as it is received.

Permanent total enclosure (PTE) means a permanently installed enclosure that meets the criteria of Method 204 of appendix M, 40 CFR part 51, for a PTE and that directs all the exhaust gases from the enclosure to an add-on control device.

Personal watercraft means a vessel (boat) which uses an inboard motor powering a water jet pump as its primary source of motive power and which is designed to be operated by a person or persons sitting, standing, or kneeling on the vessel, rather than in the conventional manner of sitting or standing inside the vessel.

Protective oil means an organic material that is applied to metal for the purpose of providing lubrication or protection from corrosion without forming a solid film. This definition of protective oil includes, but is not limited to, lubricating oils, evaporative oils (including those that evaporate completely), and extrusion oils. Protective oils used on miscellaneous metal parts and products include magnet wire lubricants and soft temporary protective coatings that are removed prior to installation or further assembly of a part or component.

Reactive adhesive means adhesive systems composed, in part, of volatile monomers that react during the adhesive curing reaction, and, as a result, do not evolve from the film during use. These volatile components instead become integral parts of the adhesive through chemical reaction. At least 70 percent of the liquid components of the system, excluding water, react during the process.

Research or laboratory facility means a facility whose primary purpose is for research and development of new processes and products, that is conducted under the close supervision of technically trained personnel, and is not engaged in the manufacture of final or intermediate products for commercial purposes, except in a *de minimis* manner

Responsible official means responsible official as defined in 40 CFR 70.2.

Rubber-to-metal coatings are coatings that contain heat-activated polymer systems in either solvent or water that, when applied to metal substrates, dry to a non-tacky surface and react chemically with the rubber and metal during a vulcanization process.

Page 48 of 59 T003-30777-00269

Startup, initial means the first time equipment is brought online in a facility.

Surface preparation means use of a cleaning material on a portion of or all of a substrate. This includes use of a cleaning material to remove dried coating, which is sometimes called depainting.

Temporary total enclosure means an enclosure constructed for the purpose of measuring the capture efficiency of pollutants emitted from a given source as defined in Method 204 of appendix M, 40 CFR part 51.

Thinner means an organic solvent that is added to a coating after the coating is received from the supplier.

Total volatile hydrocarbon (TVH) means the total amount of nonaqueous volatile organic matter determined according to Methods 204 and 204A through 204F of appendix M to 40 CFR part 51 and substituting the term TVH each place in the methods where the term VOC is used. The TVH includes both VOC and non-VOC.

Uncontrolled coating operation means a coating operation from which none of the organic HAP emissions are routed through an emission capture system and add-on control device.

Volatile organic compound (VOC) means any compound defined as VOC in 40 CFR 51.100(s).

Volume fraction of coating solids means the ratio of the volume of coating solids (also known as the volume of nonvolatiles) to the volume of a coating in which it is contained; liters (gal) of coating solids per liter (gal) of coating.

Wastewater means water that is generated in a coating operation and is collected, stored, or treated prior to being discarded or discharged.

Table 1 to Subpart MMMM of Part 63—Operating Limits if Using the Emission Rate With Add-On Controls Option

If you are required to comply with operating limits by § 63.3892(c), you must comply with the applicable operating limits in the following table:

For the following device	You must meet the following operating limit	And you must demonstrate continuous compliance with the operating limit by
1. Thermal oxidizer	a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3967(a)	i. Collecting the combustion temperature data according to § 63.3968(c); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average combustion temperature at or above the temperature limit.
2. Catalytic oxidizer	a. The average temperature measured just before the catalyst bed in any 3-hour period must not fall below the limit established according to § 63.3967(b) (for magnet wire coating machines, temperature can be monitored before or after the catalyst bed); and either	i. Collecting the temperature data according to § 63.3968(c); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average temperature before (or for magnet wire coating machines after) the catalyst bed at or above the temperature limit.
	b. Ensure that the average temperature difference across the catalyst bed in any 3-hour period does not fall below the temperature difference limit established according to § 63.3967(b) (2); or	i. Collecting the temperature data according to § 63.3968(c); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average temperature difference at or above the temperature difference limit.

For the following device	You must meet the following operating limit	And you must demonstrate continuous compliance with the operating limit by
	c. Develop and implement an inspection and maintenance plan according to § 63.3967(b)(4) or for magnet wire coating machines according to section 3.0 of appendix A to this subpart	i. Maintaining and up-to-date inspection and maintenance plan, records of annual catalyst activity checks, records of monthly inspections of the oxidizer system, and records of the annual internal inspections of the catalyst bed. If a problem is discovered during a monthly or annual inspection required by § 63.3967(b)(4) or for magnet wire coating machines by section 3.0 of appendix A to this subpart, you must take corrective action as soon as practicable consistent with the manufacturer's recommendations.
3. Regenerative carbon adsorber	a. The total regeneration desorbing gas (e.g.,steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3967(c); and	i. Measuring the total regeneration desorbing gas (e.g.,steam or nitrogen) mass flow for each regeneration cycle according to § 63.3968(d); and ii. Maintaining the total regeneration desorbing gas mass flow at or above the mass flow limit.
	b. The temperature of the carbon bed, after completing each regeneration and any cooling cycle, must not exceed the carbon bed temperature limit established according to § 63.3967(c)	i. Measuring the temperature of the carbon bed after completing each regeneration and any cooling cycle according to § 63.3968(d); and ii. Operating the carbon beds such that each carbon bed is not returned to service until completing each regeneration and any cooling cycle until the recorded temperature of the carbon bed is at or below the temperature limit.
4. Condenser	a. The average condenser outlet (product side) gas temperature in any 3-hour period must not exceed the temperature limit established according to § 63.3967(d)	i. Collecting the condenser outlet (product side) gas temperature according to § 63.3968(e); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average gas temperature at the outlet at or below the temperature limit.
5. Concentrators, including zeolite wheels and rotary carbon adsorbers	a. The average gas temperature of the desorption concentrate stream in any 3-hour period must not fall below the limit established according to § 63.3967(e); and	i. Collecting the temperature data according to 63.3968(f); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average temperature at or above the temperature limit.
	b. The average pressure drop of the dilute stream across the concentrator in any 3-hour period must not fall below the limit established according to § 63.3967(e)	i. Collecting the pressure drop data according to 63.3968(f); ii. Reducing the pressure drop data to 3-hour block averages; and iii. Maintaining the 3-hour average pressure drop at or above the pressure drop limit.
6. Emission capture system that is a PTE according to § 63.3965(a)	a. The direction of the air flow at all times must be into the enclosure; and either	i. Collecting the direction of air flow, and either the facial velocity of air through all natural draft openings according to § 63.3968(b)(1) or the pressure drop across the enclosure according to § 63.3968(g)(2); and ii. Maintaining the facial velocity of air flow through all natural draft openings or the pressure drop at or above the facial velocity limit or pressure drop limit, and maintaining the direction of air flow into the enclosure at all times.
	b. The average facial velocity of air through all natural draft openings in the enclosure must be at least 200 feet per minutes; or	i. See items 6.a.i and 6.a.ii.

For the following device	You must meet the following operating limit	And you must demonstrate continuous compliance with the operating limit by
	c. The pressure drop across the enclosure must be at least 0.007 inch H_2O , as established in Method 204 of appendix M to 40 CFR part 51	i. See items 6.a.i and 6.a.ii.
system that is not a	a. The average gas volumetric flow rate or duct static pressure in each duct between a capture device and add-on control device inlet in any 3-hour period must not fall below the average volumetric flow rate or duct static pressure limit established for that capture device according to § 63.3967(f)	i. Collecting the gas volumetric flow rate or duct static pressure for each capture device according to § 63.3968(g); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average gas volumetric flow rate or duct static pressure for each capture device at or above the gas volumetric flow rate or duct static pressure limited.

Table 2 to Subpart MMMM of Part 63—Applicability of General Provisions to Subpart MMMM of Part 63

You must comply with the applicable General Provisions requirements according to the following table:

Citation	Subject	Applicable to subpart MMMM	Explanation
§ 63.1(a)(1)- (14)	General Applicability	Yes	
§ 63.1(b)(1)- (3)	Initial Applicability Determination	Yes	Applicability to subpart MMMM is also specified in § 63.3881.
§ 63.1(c)(1)	Applicability After Standard Established	Yes	
§ 63.1(c)(2)- (3)	Applicability of Permit Program for Area Sources	No	Area sources are not subject to subpart MMMM.
§ 63.1(c)(4)- (5)	Extensions and Notifications	Yes	
§ 63.1(e)	Applicability of Permit Program Before Relevant Standard is Set	Yes	
§ 63.2	Definitions	Yes	Additional definitions are specified in § 63.3981.
§ 63.1(a)-(c)	Units and Abbreviations	Yes	
§ 63.4(a)(1)- (5)	Prohibited Activities	Yes	
§ 63.4(b)-(c)	Circumvention/Severability	Yes	
§ 63.5(a)	Construction/Reconstruction	Yes	
§ 63.5(b)(1)- (6)	Requirements for Existing Newly Constructed, and Reconstructed Sources	Yes	
§ 63.5(d)	Application for Approval of Construction/Reconstruction	Yes	
§ 63.5(e)	Approval of Construction/Reconstruction	Yes	
§ 63.5(f)	Approval of Construction/Reconstruction Based on Prior State Review	Yes	
§ 63.6(a)	Compliance With Standards and Maintenance Requirements— Applicability	Yes	
§ 63.6(b)(1)- (7)	Compliance Dates for New and Reconstructed Sources	Yes	Section 63.3883 specifies the compliance dates.

Citation	ation Subject to s	Applicable to subpart MMMM	Explanation
§ 63.6(c)(1)- (5)	Compliance Dates for Existing Sources	Yes	Section 63.3883 specifies the compliance dates.
§ 63.6(e)(1)- (2)	Operation and Maintenance	Yes	
§ 63.6(e)(3)	Startup, Shutdown, and Malfunction Plan	Yes	Only sources using an add-on control device to comply with the standard must complete startup, shutdown, and malfunction plans.
§ 63.6(f)(1)	Compliance Except During Startup, Shutdown, and Malfunction	Yes	Applies only to sources using an add-on control device to comply with the standard.
§ 63.6(f)(2)- (3)	Methods for Determining Compliance.	Yes	
§ 63.6(g)(1)- (3)	Use of an Alternative Standard	Yes	
§ 63.6(h)	Compliance With Opacity/Visible Emission Standards	No	Subpart MMMM does not establish opacity standards and does not require continuous opacity monitoring systems (COMS).
§ 63.6(i)(1)- (16)	Extension of Compliance	Yes	
§ 63.6(j)	Presidential Compliance Exemption	Yes	
§ 63.7(a)(1)	Performance Test Requirements— Applicability	Yes	Applies to all affected sources. Additional requirements for performance testing are specified in §§ 63.3964, 63.3965, and 63.3966.
§ 63.7(a)(2)	Performance Test Requirements— Dates	Yes	Applies only to performance tests for capture system and control device efficiency at sources using these to comply with the standard. Section 63.3960 specifies the schedule for performance test requirements that are earlier than those specified in § 63.7(a)(2).
§ 63.7(a)(3)	Performance Tests Required By the Administrator	Yes	
§ 63.7(b)-(e)	Performance Test Requirements— Notification, Quality Assurance, Facilities Necessary for Safe Testing, Conditions During Test	Yes	Applies only to performance tests for capture system and add-on control device efficiency at sources using these to comply with the standard.
§ 63.7(f)	Performance Test Requirements—Use of Alternative Test Method	Yes	Applies to all test methods except those used to determine capture system efficiency.
§ 63.7(g)-(h)	Performance Test Requirements—Data Analysis, Recordkeeping, Reporting, Waiver of Test	Yes	Applies only to performance tests for capture system and add-on control device efficiency at sources using these to comply with the standard.
§ 63.8(a)(1)- (3)	Monitoring Requirements—Applicability	Yes	Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standard. Additional requirements for monitoring are specified in § 63.3968.
§ 63.8(a)(4)	Additional Monitoring Requirements	No	Subpart MMMM does not have monitoring requirements for flares.
§ 63.8(b)	Conduct of Monitoring	Yes	

Citation	tation Subject to s	Applicable to subpart MMMM	Explanation
§ 63.8(c)(1)- (3)	Continuous Monitoring Systems (CMS) Operation and Maintenance	Yes	Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standard. Additional requirements for CMS operations and maintenance are specified in § 63.3968.
§ 63.8(c)(4)	CMS	No	§ 63.3968 specifies the requirements for the operation of CMS for capture systems and add-on control devices at sources using these to comply.
§ 63.8(c)(5)	COMS	No	Subpart MMMM does not have opacity or visible emission standards.
§ 63.8(c)(6)	CMS Requirements	No	Section 63.3968 specifies the requirements for monitoring systems for capture systems and add-on control devices at sources using these to comply.
§ 63.8(c)(7)	CMS Out-of-Control Periods	Yes	
§ 63.8(c)(8)	CMS Out-of-Control Periods and Reporting	No	§ 63.3920 requires reporting of CMS out-of-control periods.
§ 63.8(d)-(e)	Quality Control Program and CMS Performance Evaluation	No	Subpart MMMM does not require the use of continuous emissions monitoring systems.
§ 63.8(f)(1)- (5)	Use of an Alternative Monitoring Method	Yes	
§ 63.8(f)(6)	Alternative to Relative Accuracy Test	No	Subpart MMMM does not require the use of continuous emissions monitoring systems.
§ 63.8(g)(1)- (5)	Data Reduction	No	Sections 63.3967 and 63.3968 specify monitoring data reduction.
§ 63.9(a)-(d)	Notification Requirements	Yes	
§ 63.9(e)	Notification of Performance Test	Yes	Applies only to capture system and add-on control device performance tests at sources using these to comply with the standard.
§ 63.9(f)	Notification of Visible Emissions/Opacity Test	No	Subpart MMMM does not have opacity or visible emissions standards.
§ 63.9(g)(1)- (3)	Additional Notifications When Using CMS	No	Subpart MMMM does not require the use of continuous emissions monitoring systems.
§ 63.9(h)	Notification of Compliance Status	Yes	Section 63.3910 specifies the dates for submitting the notification of compliance status.
§ 63.9(i)	Adjustment of Submittal Deadlines	Yes	
§ 63.9(j)	Change in Previous Information	Yes	
§ 63.10(a)	Recordkeeping/Reporting—Applicability and General Information	Yes	
§ 63.10(b)(1)	General Recordkeeping Requirements	Yes	Additional requirements are specified in §§ 63.3930 and 63.3931.
§ 63.10(b)(2) (i)-(v)	Recordkeeping Relevant to Startup, Shutdown, and Malfunction Periods and CMS	Yes	Requirements for startup, shutdown, and malfunction records only apply to add-on control devices used to comply with the standard.
§ 63.10(b)(2) (vi)-(xi)		Yes	

Citation	Subject	Applicable to subpart MMMM	Explanation
§ 63.10(b)(2) (xii)	Records	Yes	
§ 63.10(b)(2) (xiii)		No	Subpart MMMM does not require the use of continuous emissions monitoring systems.
§ 63.10(b)(2) (xiv)		Yes	
§ 63.10(b)(3)	Recordkeeping Requirements for Applicability Determinations	Yes	
§ 63.10(c) (1)-(6)	Additional Recordkeeping Requirements for Sources with CMS	Yes	
§ 63.10(c) (7)-(8)		No	The same records are required in § 63.3920(a)(7).
§ 63.10(c) (9)-(15)		Yes	
§ 63.10(d)(1)	General Reporting Requirements	Yes	Additional requirements are specified in § 63.3920.
§ 63.10(d)(2)	Report of Performance Test Results	Yes	Additional requirements are specified in § 63.3920(b).
§ 63.10(d)(3)	Reporting Opacity or Visible Emissions Observations	No	Subpart MMMM does not require opacity or visible emissions observations.
§ 63.10(d)(4)	Progress Reports for Sources With Compliance Extensions	Yes	
§ 63.10(d)(5)	Startup, Shutdown, and Malfunction Reports	Yes	Applies only to add-on control devices at sources using these to comply with the standard.
§ 63.10(e) (1)-(2)	Additional CMS Reports	No	Subpart MMMM does not require the use of continuous emissions monitoring systems.
§ 63.10(e) (3)	Excess Emissions/CMS Performance Reports	No	Section 63.3920 (b) specifies the contents of periodic compliance reports.
§ 63.10(e) (4)	COMS Data Reports	No	Subpart MMMMM does not specify requirements for opacity or COMS.
§ 63.10(f)	Recordkeeping/Reporting Waiver	Yes	
§ 63.11	Control Device Requirements/Flares	No	Subpart MMMM does not specify use of flares for compliance.
§ 63.12	State Authority and Delegations	Yes	
§ 63.13	Addresses	Yes	
§ 63.14	Incorporation by Reference	Yes	
§ 63.15	Availability of Information/Confidentiality	Yes	

Table 3 to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends

You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer's formulation data and which match either the solvent blend name or the chemical abstract series (CAS) number. If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP mass fraction for the entry matching either the solvent blend name or CAS number, or use the organic HAP mass fraction from table 4 to this subpart if neither the name or CAS number match.

Solvent/solvent blend	CAS. No.	Average organic HAP mass fraction	Typical organic HAP, percent by mass
1. Toluene	108-88-3	1.0	Toluene.
2. Xylene(s)	1330-20-7	1.0	Xylenes, ethylbenzene.
3. Hexane	110-54-3	0.5	n-hexane.
4. n-Hexane	110-54-3	1.0	n-hexane.
5. Ethylbenzene	100-41-4	1.0	Ethylbenzene.
6. Aliphatic 140		0	None.
7. Aromatic 100		0.02	1% xylene, 1% cumene.
8. Aromatic 150		0.09	Naphthalene.
9. Aromatic naphtha	64742-95- 6	0.02	1% xylene, 1% cumene.
10. Aromatic solvent	64742-94- 5	0.1	Naphthalene.
11. Exempt mineral spirits	8032-32-4	0	None.
12. Ligroines (VM & P)	8032-32-4	0	None.
13. Lactol spirits	64742-89- 6	0.15	Toluene.
14. Low aromatic white spirit	64742-82- 1	0	None.
15. Mineral spirits	64742-88- 7	0.01	Xylenes.
16. Hydrotreated naphtha	64742-48- 9	0	None.
17. Hydrotreated light distillate	64742-47- 8	0.001	Toluene.
18. Stoddard solvent	8052-41-3	0.01	Xylenes.
19. Super high-flash naphtha	64742-95- 6	0.05	Xylenes.
20. Varsol [®] solvent	8052-49-3	0.01	0.5% xylenes, 0.5% ethylbenzene.
21. VM & P naphtha	64742-89- 8	0.06	3% toluene, 3% xylene.
22. Petroleum distillate mixture	68477-31- 6	0.08	4% naphthalene, 4% biphenyl.

Table 4 to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer's formulation data.

Solvent type	Average organic HAP mass fraction	Typical organic HAP, percent by mass
Aliphatic ^b	0.03	1% Xylene, 1% Toluene, and 1% Ethylbenzene.
Aromatic ^c	0.06	4% Xylene, 1% Toluene, and 1% Ethylbenzene.

^a Use this table only if the solvent blend does not match any of the solvent blends in Table 3 to this subpart by either solvent blend name or CAS number and you only know whether the blend is aliphatic or aromatic.

Appendix A to Subpart MMMM of Part 63—Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures for Magnet Wire Coating Operations

- 1.0 Introduction.
- 1.1 These alternative procedures for capture efficiency and destruction efficiency measurement and monitoring are intended principally for newer magnet wire coating machines where the control device is internal and integral to the oven so that it is difficult or infeasible to make gas measurements at the inlet to the control device.
- 1.2 In newer gas fired magnet wire ovens with thermal control (no catalyst), the burner tube serves as the control device (thermal oxidizer) for the process. The combustion of solvents in the burner tube is the principal source of heat for the oven.
- 1.3 In newer magnet wire ovens with a catalyst there is either a burner tube (gas fired ovens) or a tube filled with electric heating elements (electric heated oven) before the catalyst. A large portion of the solvent is often oxidized before reaching the catalyst. The combustion of solvents in the tube and across the catalyst is the principal source of heat for the oven. The internal catalyst in these ovens cannot be accessed without disassembly of the oven. This disassembly includes removal of the oven insulation. Oven reassembly often requires the installation of new oven insulation.
- 1.4 Some older magnet wire ovens have external afterburners. A significant portion of the solvent is oxidized within these ovens as well.
- 1.5 The alternative procedure for destruction efficiency determines the organic carbon content of the volatiles entering the control device based on the quantity of coating used, the carbon content of the volatile portion of the coating and the efficiency of the capture system. The organic carbon content of the control device outlet (oven exhaust for ovens without an external afterburner) is determined using Method 25 or 25A.
- 1.6 When it is difficult or infeasible to make gas measurements at the inlet to the control device, measuring capture efficiency with a gas-to-gas protocol (see § 63.3965(d)) which relies on direct measurement of the captured gas stream will also be difficult or infeasible. In these situations, capture efficiency measurement is more appropriately done with a procedure which does not rely on direct measurement of the captured gas stream.
- 1.7 Magnet wire ovens are relatively small compared to many other coating ovens. The exhaust rate from an oven is low and varies as the coating use rate and solvent loading rate change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire ovens must be operated under negative pressure to avoid smoke and odor in the workplace, and the exhaust rate must be sufficient to prevent over heating within the oven.

^b Mineral Spirits 135, Mineral Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naphtha, Naphtha, Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.

^c Medium-flash Naphtha, High-flash Naphtha, Aromatic Naphtha, Light Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light Aromatic Solvent.

- 1.8 The liquid and gas measurements needed to determine capture efficiency and control device efficiency using these alternative procedures may be made simultaneously.
- 1.9 Magnet wire facilities may have many (e.g., 20 to 70 or more) individual coating lines each with its own capture and control system. With approval, representative capture efficiency and control device efficiency testing of one magnet wire coating machine out of a group of identical or very similar magnet wire coating machines may be performed rather than testing every individual magnet wire coating machine. The operating parameters must be established for each tested magnet wire coating machine during each capture efficiency test and each control device efficiency test. The operating parameters established for each tested magnet wire coating machine also serve as the operating parameters for untested or very similar magnet wire coating machines represented by a tested magnet wire coating machine.
- 2.0 Capture Efficiency.
- 2.1 If the capture system is a permanent total enclosure as described in § 63.3965(a), then its capture efficiency may be assumed to be 100 percent.
- 2.2 If the capture system is not a permanent total enclosure, then capture efficiency must be determined using the liquid-to-uncaptured-gas protocol using a temporary total enclosure or building enclosure in § 63.3965(c), or an alternative capture efficiency protocol (see § 63.3965(e)) which does not rely on direct measurement of the captured gas stream.
- 2.3 As an alternative to establishing and monitoring the capture efficiency operating parameters in § 63.3967(f), the monitoring described in either section 2.4 or 2.5, and the monitoring described in sections 2.6 and 2.7 may be used for magnet wire coating machines.
- 2.4 Each magnet wire oven must be equipped with an interlock mechanism which will stop or prohibit the application of coating either when any exhaust fan for that oven is not operating or when the oven experiences an over limit temperature condition.
- 2.5 Each magnet wire oven must be equipped with an alarm which will be activated either when any oven exhaust fan is not operating or when the oven experiences an over limit temperature condition.
- 2.6 If the interlock in 2.4 or the alarm in 2.5 is monitoring for over limit temperature conditions, then the temperature(s) that will trigger the interlock or the alarm must be included in the start-up, shutdown and malfunction plan and the interlock or alarm must be set to be activated when the oven reaches that temperature.
- 2.7 Once every 6 months, each magnet wire oven must be checked using a smoke stick or equivalent approach to confirm that the oven is operating at negative pressure compared to the surrounding atmosphere.
- 3.0 Control Device Efficiency.
- 3.1 Determine the weight fraction carbon content of the volatile portion of each coating, thinner, additive, or cleaning material used during each test run using either the procedure in section 3.2 or 3.3.
- 3.2 Following the procedures in Method 204F, distill a sample of each coating, thinner, additive, or cleaning material used during each test run to separate the volatile portion. Determine the weight fraction carbon content of each distillate using ASTM Method D5291-02, "Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants" (incorporated by reference, see § 63.14).
- 3.3 Analyze each coating, thinner, additive or cleaning material used during each test run using Method 311. For each volatile compound detected in the gas chromatographic analysis of each coating, thinner, additive, or cleaning material calculate the weight fraction of that whole compound in the coating, thinner, additive, or cleaning material. For each volatile compound detected in the gas chromatographic analysis of each coating, thinner, additive, or cleaning material calculate the weight fraction of the carbon in that compound in the coating, thinner, additive, or cleaning material. Calculate the weight fraction carbon content of each coating, thinner, additive, or cleaning material as the ratio of the sum of the carbon weight fractions divided by the sum of the whole compound weight fractions.

- 3.4 Determine the mass fraction of total volatile hydrocarbon (TVH_i) in each coating, thinner, additive, or cleaning material, i, used during each test run using Method 24. The mass fraction of total volatile hydrocarbon equals the weight fraction volatile matter (W_v in Method 24) minus the weight fraction water (W_w in Method 24), if any, present in the coating. The ASTM Method D6053-00, "Standard Test Method for Determination of Volatile Organic Compound (VOC) Content of Electrical Insulating Varnishes" (incorporated by reference, see § 63.14), may be used as an alternative to Method 24 for magnet wire enamels. The specimen size for testing magnet wire enamels with ASTM Method D6053-00 must be 2.0 \pm 0.1 grams.
- 3.5 Determine the volume (VOL_i) or mass ($MASS_i$) of each coating, thinner, additive, or cleaning material, i, used during each test run.
- 3.6 Calculate the total volatile hydrocarbon input (TVHC_{inlet}) to the control device during each test run, as carbon, using Equation 1:

$$TVHC_{inlet} = \sum_{i=1}^{n} (TVH_i \times VOL_i \times D_i \times CD_i)$$
 (Eq. 1)

where:

TVH_i = Mass fraction of TVH in coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run.

VOL_i = Volume of coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, liters

 D_i = Density of coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, kg per liter.

CD_i = Weight fraction carbon content of the distillate from coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, percent.

n = Number of coating, thinner, additive, and cleaning materials used in the coating operation during the test run.

- 3.7 If the mass, $MASS_i$, of each coating, solvent, additive, or cleaning material, i, used during the test run is measured directly then $MASS_i$ can be substituted for $VOL_i \times D_i$ in Equation 1 in section 3.6.
- 3.8 Determine the TVHC output (TVHC $_{outlet}$) from the control device, as carbon, during each test run using the methods in § 63.3966(a) and the procedure for determining M $_{fo}$ in § 63.3966(d). TVHC $_{outlet}$ equals M $_{fo}$ times the length of the test run in hours.
- 3.9 Determine the control device efficiency (DRE) for each test run using Equation 2:

$$DRE = \frac{\left(TVHC_{\textit{inlet}} - TVHC_{\textit{outlet}}\right)}{TVHC_{\textit{inlet}}} \times 100 \qquad \text{(Eq. 2)}$$

- 3.10 The efficiency of the control device is the average of the three individual test run values determined in section 3.9.
- 3.11 As an alternative to establishing and monitoring the destruction efficiency operating parameters for catalytic oxidizers in § 63.3967(b), the monitoring described in sections 3.12 and 3.13 may be used for magnet wire coating machines equipped with catalytic oxidizers.
- 3.12 During the performance test, you must monitor and record the temperature either just before or just after the catalyst bed at least once every 15 minutes during each of the three test runs. Use the data collected during the

performance test to calculate and record the average temperature either just before or just after the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer and for the catalytic oxidizers in identical or very similar magnet wire coating machines represented by the tested magnet wire coating machine.

- 3.13 You must develop and implement an inspection and maintenance plan for your catalytic oxidizer(s). The plan must address, at a minimum, the elements specified in sections 3.14 and 3.15, and the elements specified in either (a) section 3.16 or (b) sections 3.17 and 3.18.
- 3.14 You must conduct a monthly external inspection of each catalytic oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures.
- 3.15 You must conduct an annual internal inspection of each accessible catalyst bed to check for channeling, abrasion, and settling. If problems are found, you must replace the catalyst bed or take corrective action consistent with the manufacturer's recommendations. This provision does not apply to internal catalysts which cannot be accessed without disassembling the magnet wire oven.
- 3.16 You must take a sample of each catalyst bed and perform an analysis of the catalyst activity (*i.e.*, conversion efficiency) following the manufacturer's or catalyst supplier's recommended procedures. This sampling and analysis must be done within the time period shown in Table 1 below of the most recent of the last catalyst activity test or the last catalyst replacement. For example, if the warranty for the catalyst is 3 years and the catalyst was more recently replaced then the sampling and analysis must be done within the earlier of 26,280 operating hours or 5 calendar years of the last catalyst replacement. If the warranty for the catalyst is 3 years and the catalyst was more recently tested then the sampling and analysis must be done within the earlier of 13,140 operating hours or 3 calendar years of the last catalyst activity test. If problems are found during the catalyst activity test, you must replace the catalyst bed or take corrective action consistent with the manufacturer's recommendations.

Table 1—Catalyst Monitoring Requirements

If the catalyst was last (more recently) replaced and the warranty period is	Then the time between catalyst replacement and the next catalyst activity test cannot exceed the earlier of	And the catalyst was more recently tested, then the time between catalyst activity tests cannot exceed the earlier of
1 year	8,760 operating hours or 5 calendar years	8,760 operating hours or 3 calendar years.
2 years	15,520 operating hours or 5 calendar years	8,760 operating hours or 3 calendar years.
3 years	26,280 operating hours or 5 calendar years	13,100 operating hours or 3 calendar years.
4 years	35,040 operating hours or 5 calendar years	17,520 operating hours or 3 calendar years.
5 or more years	43,800 operating hours or 5 calendar years	21,900 operating hours or 3 calendar years.

- 3.17 During the performance test, you must determine the average concentration of organic compounds as carbon in the magnet wire oven exhaust stack gases (C_c in Equation 1 in § 63.3966(d)) and the destruction efficiency of the catalytic oxidizer, and calculate the operating limit for oven exhaust stack gas concentration as follows. You must identify the highest organic HAP content coating used on this magnet wire coating machine or any identical or very similar magnet wire coating machines to which the same destruction efficiency test results will be applied. Calculate the percent emission reduction necessary to meet the magnet wire coating emission limit when using this coating. Calculate the average concentration of organic compounds as carbon in the magnet wire oven exhaust stack gases that would be equivalent to exactly meeting the magnet wire coating emissions limit when using the highest organic HAP content coating. The maximum operating limit for oven exhaust stack gas concentration equals 90 percent of this calculated concentration.
- 3.18 For each magnet wire coating machine equipped with a catalytic oxidizer you must perform an annual 10 minute test of the oven exhaust stack gases using EPA Method 25A. This test must be performed under steady state

operating conditions similar to those at which the last destruction efficiency test for equipment of that type (either the specific magnet wire coating machine or an identical or very similar magnet wire coating machine) was conducted. If the average exhaust stack gas concentration during the annual test of a magnet wire coating machine equipped with a catalytic oxidizer is greater than the operating limit established in section 3.17 then that is a deviation from the operating limit for that catalytic oxidizer. If problems are found during the annual 10-minute test of the oven exhaust stack gases, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations.

- 3.19 If a catalyst bed is replaced and the replacement catalyst is not of like or better kind and quality as the old catalyst, then you must conduct a new performance test to determine destruction efficiency according to § 63.3966 and establish new operating limits for that catalytic oxidizer unless destruction efficiency test results and operating limits for an identical or very similar unit (including consideration of the replacement catalyst) are available and approved for use for the catalytic oxidizer with the replacement catalyst.
- 3.20 If a catalyst bed is replaced and the replacement catalyst is of like or better kind and quality as the old catalyst, then a new performance test to determine destruction efficiency is not required and you may continue to use the previously established operating limits for that catalytic oxidizer.

Attachment B to Part 70 Operating Permit Renewal No. T003-30777-00269

[Downloaded from the eCFR on May 13, 2013]

40 CFR Part 63, Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Source: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§ 63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§ 63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

- (a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.
- (b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.
- (c) An area source of HAP emissions is a source that is not a major source.
- (d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.
- (e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.
- (f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in § 63.6675, which includes operating according to the provisions specified in § 63.6640(f).
- (1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(iii).

- (2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(ii).
- (3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(ii).

[69 FR 33506, June 15, 2004, as amended at 73 FR 3603, Jan. 18, 2008; 78 FR 6700, Jan. 30, 2013]

§ 63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

- (a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.
- (1) Existing stationary RICE.
- (i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.
- (ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.
- (2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.
- (3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.
- (b) Stationary RICE subject to limited requirements. (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of § 63.6645(f).

- (i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- (ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
- (2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of § 63.6645(f) and the requirements of §§ 63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.
- (3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:
- (i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- (iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
- (c) Stationary RICE subject to Regulations under 40 CFR Part 60. An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.
- (1) A new or reconstructed stationary RICE located at an area source;
- (2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
- (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
- (6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

Page 4 of 62 T003-30777-00269

(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9674, Mar. 3, 2010; 75 FR 37733, June 30, 2010; 75 FR 51588, Aug. 20, 2010; 78 FR 6700, Jan. 30, 2013]

§ 63.6595 When do I have to comply with this subpart?

- (a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.
- (2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.
- (3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.
- (1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.
- (2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.
- (c) If you own or operate an affected source, you must meet the applicable notification requirements in § 63.6645 and in 40 CFR part 63, subpart A.

Page 5 of 62 T003-30777-00269

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 78 FR 6701, Jan. 30, 2013]

Emission and Operating Limitations

§ 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.
- (b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.
- (c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.
- (d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010]

§ 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010]

§ 63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§ 63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.
- (b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.
- (1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).
- (2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.
- (i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.
- (ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.
- (iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.
- (c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:
- (1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in § 63.6625(i) in order to extend the specified oil change requirement.
- (2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.
- (3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.
- (4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.
- (d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system

requirements in § 63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in § 63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

- (e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart IIII instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.
- (f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in § 63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in § 63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in § 63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

[75 FR 9675, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6701, Jan. 30, 2013]

§ 63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

- (a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.
- (b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in § 63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
- (c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
- (d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2), or are on offshore vessels that meet § 63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013]

General Compliance Requirements

§ 63.6605 What are my general requirements for complying with this subpart?

- (a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.
- (b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

[75 FR 9675, Mar. 3, 2010, as amended at 78 FR 6702, Jan. 30, 2013]

Testing and Initial Compliance Requirements

§ 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).
- (b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).
- (c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).
- (d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.
- (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
- (2) The test must not be older than 2 years.
- (3) The test must be reviewed and accepted by the Administrator.
- (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§ 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).
- (b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.
- (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
- (2) The test must not be older than 2 years.
- (3) The test must be reviewed and accepted by the Administrator.
- (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

[75 FR 9676, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

Essex Group, Inc. Fort Wayne, Indiana

Attachment B 40 CFR 63, Subpart ZZZZ

Page 10 of 62 T003-30777-00269

- (b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.
- (1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.
- (3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (c) [Reserved]
- (d) You must conduct three separate test runs for each performance test required in this section, as specified in § 63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.
- (e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_O}{C_i} \times 100 = R \quad (Eq. 1)$$

Where:

C_i = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

 C_o = concentration of CO, THC, or formaldehyde at the control device outlet, and

R = percent reduction of CO, THC, or formaldehyde emissions.

- (2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO₂). If pollutant concentrations are to be corrected to 15 percent oxygen and CO₂ concentration is measured in lieu of oxygen concentration measurement, a CO₂ correction factor is needed. Calculate the CO₂ correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.
- (i) Calculate the fuel-specific F_o value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_O = \frac{0.209 \ F_d}{F_C}$$
 (Eq. 2)

Where:

 F_o = Fuel factor based on the ratio of oxygen volume to the ultimate CO_2 volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is oxygen, percent/100.

Page 11 of 62 T003-30777-00269

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³ /J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO_2 produced to the gross calorific value of the fuel from Method 19, dsm³ /J (dscf/10⁶ Btu)

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

$$X_{CO2} = \frac{5.9}{F_O}$$
 (Eq. 3)

Where:

 $X_{CO2} = CO_2$ correction factor, percent.

5.9 = 20.9 percent O_2 —15 percent O_2 , the defined O_2 correction value, percent.

(iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

$$C_{adj} = C_d \frac{X_{CO2}}{\$CO_2} \quad (Eq. \, 4)$$

Where:

C_{adj} = Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent O₂.

C_d = Measured concentration of CO, THC, or formaldehyde, uncorrected.

 $X_{CO2} = CO_2$ correction factor, percent.

 $%CO_2$ = Measured CO_2 concentration measured, dry basis, percent.

- (f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.
- (g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.
- (1) Identification of the specific parameters you propose to use as operating limitations;
- (2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;
- (3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
- (4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and
- (5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

- (h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.
- (1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;
- (2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;
- (3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;
- (4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;
- (5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;
- (6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and
- (7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.
- (i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9676, Mar. 3, 2010; 78 FR 6702, Jan. 30, 2013]

§ 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

- (a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O₂ or CO₂ according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.
- (1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.
- (2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in § 63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
- (3) As specified in § 63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

- (4) The CEMS data must be reduced as specified in § 63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.
- (b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.
- (1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in § 63.8(d). As specified in § 63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.
- (i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;
- (ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements:
- (iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;
- (iv) Ongoing operation and maintenance procedures in accordance with provisions in § 63.8(c)(1)(ii) and (c)(3); and
- (v) Ongoing reporting and recordkeeping procedures in accordance with provisions in § 63.10(c), (e)(1), and (e)(2)(i).
- (2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.
- (3) The CPMS must collect data at least once every 15 minutes (see also § 63.6635).
- (4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.
- (5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.
- (6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.
- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.
- (d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.
- (e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:
- (1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

- (2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;
- (3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;
- (4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;
- (5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;
- (6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.
- (7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions:
- (8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions:
- (9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and
- (10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.
- (f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.
- (g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet § 63.6603(c) do not have to meet the requirements of this paragraph (g).
- (1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or
- (2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.
- (h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.
- (i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from

the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6703, Jan. 30, 2013]

§ 63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.
- (b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.
- (c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.6645.
- (d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.
- (e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
- (1) The compliance demonstration must consist of at least three test runs.
- (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.
- (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

- (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.
- (5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration.
- (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O_2 emissions simultaneously at the inlet and outlet of the control device.

[69 FR 33506, June 15, 2004, as amended at 78 FR 6704, Jan. 30, 2013]

Continuous Compliance Requirements

§ 63.6635 How do I monitor and collect data to demonstrate continuous compliance?

- (a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.
- (b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§ 63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.
- (b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in § 63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.
- (c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
- (1) The compliance demonstration must consist of at least one test run.
- (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

- (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.
- (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.
- (5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration.
- (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O_2 emissions simultaneously at the inlet and outlet of the control device.
- (7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.
- (d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).
- (e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.
- (f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
- (1) There is no time limit on the use of emergency stationary RICE in emergency situations.
- (2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).
- (i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional

transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

- (ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see § 63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.
- (iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
- (3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
- (4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
- (i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.
- (ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
- (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.
- (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
- (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
- (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
- (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6704, Jan. 30, 2013]

Notifications, Reports, and Records

§ 63.6645 What notifications must I submit and when?

- (a) You must submit all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following;
- (1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.
- (2) An existing stationary RICE located at an area source of HAP emissions.
- (3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
- (4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.
- (5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.
- (b) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.
- (c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.
- (d) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.
- (e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.
- (f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with § 63.6590(b), your notification should include the information in § 63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).
- (g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in § 63.7(b)(1).
- (h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to § 63.9(h)(2)(ii).
- (1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.
- (2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to § 63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in § 63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in § 63.6603(d) and identifying the state or local regulation that the engine is subject to.

[73 FR 3606, Jan. 18, 2008, as amended at 75 FR 9677, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6705, Jan. 30, 2013]

§ 63.6650 What reports must I submit and when?

- (a) You must submit each report in Table 7 of this subpart that applies to you.
- (b) Unless the Administrator has approved a different schedule for submission of reports under § 63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.
- (1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in § 63.6595.
- (2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in § 63.6595.
- (3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
- (4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
- (5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.
- (6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on December 31.
- (7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in § 63.6595.
- (8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.
- (9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.
- (c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.
- (1) Company name and address.

- (2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.
- (3) Date of report and beginning and ending dates of the reporting period.
- (4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with § 63.6605(b), including actions taken to correct a malfunction.
- (5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.
- (6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.
- (d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.
- (1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.
- (2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- (e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.
- (1) The date and time that each malfunction started and stopped.
- (2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.
- (3) The date, time, and duration that each CMS was out-of-control, including the information in § 63.8(c)(8).
- (4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.
- (5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.
- (6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
- (7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.
- (8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.
- (9) A brief description of the stationary RICE.
- (10) A brief description of the CMS.

- (11) The date of the latest CMS certification or audit.
- (12) A description of any changes in CMS, processes, or controls since the last reporting period.
- (f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.
- (g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.
- (1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.
- (2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.
- (3) Any problems or errors suspected with the meters.
- (h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in § 63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.
- (1) The report must contain the following information:
- (i) Company name and address where the engine is located.
- (ii) Date of the report and beginning and ending dates of the reporting period.
- (iii) Engine site rating and model year.
- (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- (v) Hours operated for the purposes specified in § 63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- (vi) Number of hours the engine is contractually obligated to be available for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- (vii) Hours spent for operation for the purpose specified in § 63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
- (viii) If there were no deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

- (ix) If there were deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.
- (2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- (3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 63.13.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9677, Mar. 3, 2010; 78 FR 6705, Jan. 30, 2013]

§ 63.6655 What records must I keep?

- (a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.
- (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in § 63.10(b)(2)(xiv).
- (2) Records of the occurrence and duration of each malfunction of operation (*i.e.*, process equipment) or the air pollution control and monitoring equipment.
- (3) Records of performance tests and performance evaluations as required in § 63.10(b)(2)(viii).
- (4) Records of all required maintenance performed on the air pollution control and monitoring equipment.
- (5) Records of actions taken during periods of malfunction to minimize emissions in accordance with § 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- (b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.
- (1) Records described in § 63.10(b)(2)(vi) through (xi).
- (2) Previous (i.e., superseded) versions of the performance evaluation plan as required in § 63.8(d)(3).
- (3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in § 63.8(f)(6)(i), if applicable.
- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
- (d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.
- (e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;

- (1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.
- (2) An existing stationary emergency RICE.
- (3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.
- (f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in § 63.6640(f)(2)(ii) or (iii) or § 63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.
- (1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.
- (2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 78 FR 6706, Jan. 30, 2013]

§ 63.6660 In what form and how long must I keep my records?

- (a) Your records must be in a form suitable and readily available for expeditious review according to § 63.10(b)(1).
- (b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- (c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1).

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010]

Other Requirements and Information

§ 63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

§ 63.6670 Who implements and enforces this subpart?

- (a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are:
- (1) Approval of alternatives to the non-opacity emission limitations and operating limitations in § 63.6600 under § 63.6(g).
- (2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.
- (3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.
- (4) Approval of major alternatives to recordkeeping and reporting under § 63.10(f) and as defined in § 63.90.
- (5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in § 63.6610(b).

§ 63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(I)(5) (incorporated by reference, see § 63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.
- (4) Fails to satisfy the general duty to minimize emissions established by § 63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO_2 .

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in § 63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in § 63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

- (1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.
- (2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 63.6640(f).
- (3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 63.6640(f)(2)(ii) or (iii) and § 63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Page 27 of 62 T003-30777-00269

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in § 63.2, except that:

- (1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;
- (2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated;
- (3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and
- (4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NO $_{\rm X}$) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NO $_{\rm X}$, CO, and volatile organic compounds (VOC) into CO $_{\rm 2}$, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in § 63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to § 63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to § 63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C₃ H₈.

Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

- (2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.
- (i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
- (ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
- (iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.
- (3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NO_X (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum

Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3607, Jan. 18, 2008; 75 FR 9679, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 76 FR 12867, Mar. 9, 2011; 78 FR 6706, Jan. 30, 2013]

Table 1 a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
1. 4SRB stationary RICE	June 15, 2004, you may reduce formaldehyde	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
	b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂	

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9679, Mar. 3, 2010, as amended at 75 FR 51592, Aug. 20, 2010]

Table 1 b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following operating limitation, except during periods of startup
1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ and using NSCR;	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.1
2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or	Comply with any operating limitations approved by the Administrator.
existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ and not using NSCR.	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2 a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
1. 2SLB stationary RICE	DICE exhaust to 12 ppm/d or loss at 15 percent O. If	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
2. 4SLB stationary RICE	a. Reduce CO emissions by 93 percent or more; or	
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O ₂	

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
3. CI stationary RICE	a. Reduce CO emissions by 70 percent or more; or	
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O ₂	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2 b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§ 63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

For each	You must meet the following operating limitation, except during periods of startup
1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.1
2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and
	b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.
3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and	Comply with any operating limitations approved by the Administrator.
New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and	

For each	You must meet the following operating limitation, except during periods of startup
existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2 c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
Emergency stationary CI RICE and black start stationary CI RICE	a. Change oil and filter every 500 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ³
2. Non-Emergency, non-black start stationary CI RICE <100 HP	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP	Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O ₂ .	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
4. Non-Emergency, non-black start Cl stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
5. Non-Emergency, non-black start stationary CI RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
6. Emergency stationary SI RICE and black start stationary SI RICE. ¹	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary;	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. ³	
8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary;	
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary. ³	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O ₂ .	
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O ₂ .	
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500	Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O ₂ .	
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O ₂ .	

¹ If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]

² Sources have the option to utilize an oil analysis program as described in § 63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

³ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 2 d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§ 63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
1. Non-Emergency, non-black start CI stationary RICE ≤300 HP	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first; b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.
2. Non-Emergency, non-black start Cl stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O ₂ ; or	
	b. Reduce CO emissions by 70 percent or more.	
3. Non-Emergency, non-black start CI stationary RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O ₂ ; or	
	b. Reduce CO emissions by 70 percent or more.	
4. Emergency stationary CI RICE and black start stationary CI RICE. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹	
	b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	
6. Non-emergency, non-black start 2SLB stationary RICE	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.	
7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.	
10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install NSCR to reduce HAP emissions from the stationary RICE.	
13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹ b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	

¹ Sources have the option to utilize an oil analysis program as described in § 63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§ 63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

For each	Complying with the requirement to	You must
1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources	Reduce CO emissions and not using a CEMS	Conduct subsequent performance tests semiannually. ¹
2. 4SRB stationary RICE ≥5,000 HP located at major sources	Reduce formaldehyde emissions	Conduct subsequent performance tests semiannually.1
3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources	Limit the concentration of formaldehyde in the stationary RICE exhaust	Conduct subsequent performance tests semiannually.1
4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE	Limit or reduce CO emissions and not using a CEMS	Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.
5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE	Limit or reduce CO emissions and not using a CEMS	Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.

¹ After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

² If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§ 63.6610, 63.6611, 63.6612, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

For each	Complying with the requirement to	You must	Using	According to the following requirements
1. 2SLB, 4SLB, and CI stationary RICE	a. reduce CO emissions	i. Measure the O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A, or ASTM Method D6522-00 (Reapproved 2005). ^{a c}	(a) Measurements to determine O ₂ must be made at the same time as the measurements for CO concentration.
		ii. Measure the CO at the inlet and the outlet of the control device	(1) ASTM D6522-00 (Reapproved 2005) abcor Method 10 of 40 CFR part 60, appendix A	(a) The CO concentration must be at 15 percent O ₂ , dry basis.
2. 4SRB stationary RICE	a. reduce formaldehyde emissions	i. Select the sampling port location and the number of traverse points; and	(1) Method 1 or 1A of 40 CFR part 60, appendix A § 63.7(d)(1)(i)	(a) sampling sites must be located at the inlet and outlet of the control device.
		ii. Measure O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A, or ASTM Method D6522-00 (Reapproved 2005). ^a	(a) measurements to determine O ₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.
		iii. Measure moisture content at the inlet and outlet of the control device; and	(1) Method 4 of 40 CFR part 60, appendix A, or Test Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03. ^a	(a) measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.
		iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device	(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03, aprovided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(a) formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. If demonstrating compliance with the THC percent reduction requirement, measure THC at the inlet and the outlet of the control device	(1) Method 25A, reported as propane, of 40 CFR part 60, appendix A	(a) THC concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
3. Stationary RICE	a. limit the concentration of formaldehyde or CO in the stationary RICE exhaust	i. Select the sampling port location and the number of traverse points; and	(1) Method 1 or 1A of 40 CFR part 60, appendix A § 63.7(d)(1)(i)	(a) if using a control device, the sampling site must be located at the outlet of the control device.

For each	Complying with the requirement to	You must	Using	According to the following requirements
		ii. Determine the O ₂ concentration of the stationary RICE exhaust at the sampling port location; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A, or ASTM Method D6522-00 (Reapproved 2005). ^a	(a) measurements to determine O ₂ concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration.
		iii. Measure moisture content of the stationary RICE exhaust at the sampling port location; and	(1) Method 4 of 40 CFR part 60, appendix A, or Test Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03. ^a	(a) measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or CO concentration.
		iv. Measure formaldehyde at the exhaust of the stationary RICE; or	(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03, aprovided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(a) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. measure CO at the exhaust of the stationary RICE.	(1) Method 10 of 40 CFR part 60, appendix A, ASTM Method D6522-00 (2005), CMethod 320 of 40 CFR part 63, appendix A, or ASTM D6348- 03.	(a) CO concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

^a Incorporated by reference, see 40 CFR 63.14. You may also obtain copies from University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

[78 FR 6711, Jan. 30, 2013]

^b You may also use Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03.

^c ASTM-D6522-00 (2005) may be used to test both CI and SI stationary RICE.

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§ 63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

For each	Complying with the requirement to	You have demonstrated initial compliance if
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions and using oxidation catalyst, and using a CPMS	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions and not using oxidation catalyst	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.
4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and not using oxidation catalyst	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either O ₂ or CO ₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average reduction of CO calculated using § 63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.
6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either O2or CO2at the outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and
		ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average concentration of CO calculated using § 63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.
7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and

Attachment B 40 CFR 63, Subpart ZZZZ

For each	Complying with the requirement to	You have demonstrated initial compliance if
		ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. The average formaldehyde concentration, corrected to 15 percent O_2 , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR	i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>a. Reduce CO emissions</td><td>i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.</td></hp≤500>	a. Reduce CO emissions	i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.
12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td><td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td></hp≤500>	a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust	i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.
13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install an oxidation catalyst	i. You have conducted an initial compliance demonstration as specified in § 63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.

For each	Complying with the requirement to	You have demonstrated initial compliance if
14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. You have conducted an initial compliance demonstration as specified in \S 63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in § 63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

For each	Complying with the requirement to	You must demonstrate continuous compliance by
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved ^a ; and ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved ^a ; and ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS	i. Collecting the monitoring data according to § 63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to § 63.6620; and ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and
		iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		ii. Reducing these data to 4-hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		ii. Reducing these data to 4-hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP	a. Reduce formaldehyde emissions	Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. ^a

For each	Complying with the requirement to	You must demonstrate continuous compliance by
7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency SI RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE	a. Work or Management practices	i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
12. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
13. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install an oxidation catalyst	i. Conducting annual compliance demonstrations as specified in § 63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ; and either ii. Collecting the catalyst inlet temperature data according to § 63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. Conducting annual compliance demonstrations as specified in § 63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ ,or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst inlet temperature data according to § 63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.

^a After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]

Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in § 63.6650, you must comply with the following requirements for reports:

For each	You must submit a	The report must contain	You must submit the report
1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	Compliance report	a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or	i. Semiannually according to the requirements in § 63.6650(b)(1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in § 63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.

For each	You must submit a	The report must contain	You must submit the report
		b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in § 63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), the information in § 63.6650(e); or	i. Semiannually according to the requirements in § 63.6650(b).
		c. If you had a malfunction during the reporting period, the information in § 63.6650(c)(4).	i. Semiannually according to the requirements in § 63.6650(b).
2. New or reconstructed non- emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Report	a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and	i. Annually, according to the requirements in § 63.6650.
		b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and	i. See item 2.a.i.
		c. Any problems or errors suspected with the meters.	i. See item 2.a.i.
3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Compliance report	a. The results of the annual compliance demonstration, if conducted during the reporting period.	i. Semiannually according to the requirements in § 63.6650(b)(1)-(5).
4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in § 63.6640(f)(4)(ii)	Report	a. The information in § 63.6650(h)(1)	i. annually according to the requirements in § 63.6650(h)(2)-(3).

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in § 63.6665, you must comply with the following applicable general provisions.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.1	General applicability of the General Provisions	Yes.	
§ 63.2	Definitions	Yes	Additional terms defined in § 63.6675.

General provisions citation	Subject of citation	Applies to subpart	Explanation				
§ 63.3	Units and abbreviations	Yes.					
§ 63.4	Prohibited activities and circumvention	Yes.					
§ 63.5	Construction and reconstruction	Yes.					
§ 63.6(a)	Applicability	Yes.					
§ 63.6(b)(1)-(4)	Compliance dates for new and reconstructed sources	Yes.					
§ 63.6(b)(5)	Notification	Yes.					
§ 63.6(b)(6)	[Reserved]						
§ 63.6(b)(7)	Compliance dates for new and reconstructed area sources that become major sources	Yes.					
§ 63.6(c)(1)-(2)	Compliance dates for existing sources	Yes.					
§ 63.6(c)(3)-(4)	[Reserved]						
§ 63.6(c)(5)	Compliance dates for existing area sources that become major sources	Yes.					
§ 63.6(d)	[Reserved]						
§ 63.6(e)	Operation and maintenance	No.					
§ 63.6(f)(1)	Applicability of standards	No.					
§ 63.6(f)(2)	Methods for determining compliance	Yes.					
§ 63.6(f)(3)	Finding of compliance	Yes.					
§ 63.6(g)(1)-(3)	Use of alternate standard	Yes.					
§ 63.6(h)	Opacity and visible emission standards	No	Subpart ZZZZ does not contain opacity or visible emission standards.				
§ 63.6(i)	Compliance extension procedures and criteria	Yes.					
§ 63.6(j)	Presidential compliance exemption	Yes.					
§ 63.7(a)(1)-(2)	Performance test dates	Yes	Subpart ZZZZ contains performance test dates at §§ 63.6610, 63.6611, and 63.6612.				
§ 63.7(a)(3)	CAA section 114 authority	Yes.					
§ 63.7(b)(1)	Notification of performance test	Yes	Except that § 63.7(b)(1) only applies as specified in § 63.6645.				
§ 63.7(b)(2)	Notification of rescheduling	Yes	Except that § 63.7(b)(2) only applies as specified in § 63.6645.				
§ 63.7(c)	Quality assurance/test plan	Yes	Except that § 63.7(c) only applies as specified in § 63.6645.				
§ 63.7(d)	Testing facilities	Yes.					
§ 63.7(e)(1)	Conditions for conducting performance tests	No.	Subpart ZZZZ specifies conditions for conducting performance tests at § 63.6620.				
§ 63.7(e)(2)	Conduct of performance tests and reduction of data	Yes	Subpart ZZZZ specifies test methods at § 63.6620.				
§ 63.7(e)(3)	Test run duration	Yes.					

General provisions citation	Subject of citation	Applies to subpart	Explanation			
§ 63.7(e)(4)	Administrator may require other testing under section 114 of the CAA	Yes.				
§ 63.7(f)	Alternative test method provisions	Yes.				
§ 63.7(g)	Performance test data analysis, recordkeeping, and reporting	Yes.				
§ 63.7(h)	Waiver of tests	Yes.				
§ 63.8(a)(1)	Applicability of monitoring requirements	Yes	Subpart ZZZZ contains specific requirements for monitoring at § 63.6625.			
§ 63.8(a)(2)	Performance specifications	Yes.				
§ 63.8(a)(3)	[Reserved]					
§ 63.8(a)(4)	Monitoring for control devices	No.				
§ 63.8(b)(1)	Monitoring	Yes.				
§ 63.8(b)(2)-(3)	Multiple effluents and multiple monitoring systems	Yes.				
§ 63.8(c)(1)	Monitoring system operation and maintenance	Yes.				
§ 63.8(c)(1)(i)	Routine and predictable SSM	No				
§ 63.8(c)(1)(ii)	SSM not in Startup Shutdown Malfunction Plan	Yes.				
§ 63.8(c)(1)(iii)	Compliance with operation and maintenance requirements	No				
§ 63.8(c)(2)-(3)	Monitoring system installation	Yes.				
§ 63.8(c)(4)	Continuous monitoring system (CMS) requirements	Yes	Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).			
§ 63.8(c)(5)	COMS minimum procedures	No	Subpart ZZZZ does not require COMS.			
§ 63.8(c)(6)-(8)	CMS requirements	Yes	Except that subpart ZZZZ does not require COMS.			
§ 63.8(d)	CMS quality control	Yes.				
§ 63.8(e)	CMS performance evaluation	Yes	Except for § 63.8(e)(5)(ii), which applies to COMS.			
		Except that § 63.8(e) only applies as specified in § 63.6645.				
§ 63.8(f)(1)-(5)	Alternative monitoring method	Yes	Except that § 63.8(f)(4) only applies as specified in § 63.6645.			
§ 63.8(f)(6)	Alternative to relative accuracy test	Yes	Except that § 63.8(f)(6) only applies as specified in § 63.6645.			
§ 63.8(g)	Data reduction	Yes	Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§ 63.6635 and 63.6640.			
§ 63.9(a)	Applicability and State delegation of notification requirements	Yes.				
§ 63.9(b)(1)-(5)	Initial notifications	Yes	Except that § 63.9(b)(3) is reserved.			

General provisions citation	Subject of citation	Applies to subpart	Explanation			
		Except that § 63.9(b) only applies as specified in § 63.6645.				
§ 63.9(c)	Request for compliance extension	Yes	Except that § 63.9(c) only applies as specified in § 63.6645.			
§ 63.9(d)	Notification of special compliance requirements for new sources	Yes	Except that § 63.9(d) only applies as specified in § 63.6645.			
§ 63.9(e)	Notification of performance test	Yes	Except that § 63.9(e) only applies as specified in § 63.6645.			
§ 63.9(f)	Notification of visible emission (VE)/opacity test	No	Subpart ZZZZ does not contain opacity or VE standards.			
§ 63.9(g)(1)	Notification of performance evaluation	Yes	Except that § 63.9(g) only applies as specified in § 63.6645.			
§ 63.9(g)(2)	Notification of use of COMS data	No	Subpart ZZZZ does not contain opacity or VE standards.			
§ 63.9(g)(3)	Notification that criterion for alternative to RATA is exceeded	Yes	If alternative is in use.			
		Except that § 63.9(g) only applies as specified in § 63.6645.				
§ 63.9(h)(1)-(6)	Notification of compliance status	Yes	Except that notifications for sources using a CEMS are due 30 days after completion of performance evaluations. § 63.9(h)(4) is reserved.			
			Except that § 63.9(h) only applies as specified in § 63.6645.			
§ 63.9(i)	Adjustment of submittal deadlines	Yes.				
§ 63.9(j)	Change in previous information	Yes.				
§ 63.10(a)	Administrative provisions for recordkeeping/reporting	Yes.				
§ 63.10(b)(1)	Record retention	Yes	Except that the most recent 2 years of data do not have to be retained on site.			
§ 63.10(b)(2)(i)-(v)	Records related to SSM	No.				
§ 63.10(b)(2)(vi)- (xi)	Records	Yes.				
§ 63.10(b)(2)(xii)	Record when under waiver	Yes.				
§ 63.10(b)(2)(xiii)	Records when using alternative to RATA	Yes	For CO standard if using RATA alternative.			
§ 63.10(b)(2)(xiv)	Records of supporting documentation	Yes.				
§ 63.10(b)(3)	Records of applicability determination	Yes.				
§ 63.10(c)	Additional records for sources using CEMS	Yes	Except that § 63.10(c)(2)-(4) and (9) are reserved.			
§ 63.10(d)(1)	General reporting requirements	Yes.				
§ 63.10(d)(2)	Report of performance test results	Yes.				

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.10(d)(3)	Reporting opacity or VE observations	No	Subpart ZZZZ does not contain opacity or VE standards.
§ 63.10(d)(4)	Progress reports	Yes.	
§ 63.10(d)(5)	Startup, shutdown, and malfunction reports	No.	
§ 63.10(e)(1) and (2)(i)	Additional CMS Reports	Yes.	
§ 63.10(e)(2)(ii)	COMS-related report	No	Subpart ZZZZ does not require COMS.
§ 63.10(e)(3)	Excess emission and parameter exceedances reports	Yes.	Except that § 63.10(e)(3)(i) (C) is reserved.
§ 63.10(e)(4)	Reporting COMS data	No	Subpart ZZZZ does not require COMS.
§ 63.10(f)	Waiver for recordkeeping/reporting	Yes.	
§ 63.11	Flares	No.	
§ 63.12	State authority and delegations	Yes.	
§ 63.13	Addresses	Yes.	
§ 63.14	Incorporation by reference	Yes.	
§ 63.15	Availability of information	Yes.	

[75 FR 9688, Mar. 3, 2010, as amended at 78 FR 6720, Jan. 30, 2013]

Appendix A—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O₂) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O2).

Analyte	CAS No.	Sensitivity
Carbon monoxide (CO)		Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.
Oxygen (O ₂)	7782-44- 7	

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O_2 , or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O₂ gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

- 3.1 Measurement System. The total equipment required for the measurement of CO and O₂ concentrations. The measurement system consists of the following major subsystems:
- 3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.
- 3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.
- 3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.
- 3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.
- 3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.
- 3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.
- 3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.
- 3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.
- 3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

- 3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.
- 3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.
- 3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.
- 3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O₂ and moisture in the electrolyte reserve and provides a mechanism to degas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre- sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.
- 3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.
- 3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.
- 3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO_2 are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

- 6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.
- 6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

- 6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.
- 6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.
- 6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.
- 6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.
- 6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.
- 6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O₂ concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.
- 6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.
- 6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.
 - 7.0 Reagents and Standards. What calibration gases are needed?
- 7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O_2 . Use CO calibration gases with labeled concentration values certified by the manufacturer to be within \pm 5 percent of the label value. Dry ambient air (20.9 percent O_2) is acceptable for calibration of the O_2 cell. If needed, any lower percentage O_2 calibration gas must be a mixture of O_2 in nitrogen.
- 7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.
- 7.1.2 Up-Scale O 2 Calibration Gas Concentration.

Select an O_2 gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O_2 . When the average exhaust gas O_2 readings are above 6 percent, you may use dry ambient air (20.9 percent O_2) for the up-scale O_2 calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO₂).

8.0 Sample Collection and Analysis

- 8.1 Selection of Sampling Sites.
- 8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.
- 8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.
- 8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct that the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the "sample conditioning phase" once per minute until constant readings are obtained. Then begin the "measurement data phase" and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the "measurement data phase" readings to calculate the average stack gas CO and O₂ concentrations.
- 8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than \pm 10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than \pm 3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)

10.0 Calibration and Standardization

- 10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.
- 10.1.1 Zero Calibration. For both the O_2 and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.
- 10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to \pm 3 percent of the up-scale gas value or \pm 1 ppm, whichever is less restrictive, for the CO channel and less than or equal to \pm 0.3 percent O₂ for the O₂ channel.
- 10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this "sample conditioning phase" once per minute until readings are constant for at least two minutes. Then begin the "measurement data phase" and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

- 10.1.4 Up-Scale Calibration Error. The mean of the difference of the "measurement data phase" readings from the reported standard gas value must be less than or equal to \pm 5 percent or \pm 1 ppm for CO or \pm 0.5 percent O₂, whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single "measurement data phase" reading must be less than or equal to \pm 2 percent or \pm 1 ppm for CO or \pm 0.5 percent O₂, whichever is less restrictive, respectively.
- 10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the CO and O₂ concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the "measurement data phase".

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the "measurement data phase". The maximum allowable deviation from the mean for each of the individual readings is ± 2 percent, or ± 1 ppm, whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than \pm 2 percent or \pm 1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed).

- 13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO_2 gas standards that are generally recognized as representative of diesel-fueled engine NO and NO_2 emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.
- 13.2.1 Interference Response. The combined NO and NO_2 interference response should be less than or equal to \pm 5 percent of the up-scale CO calibration gas concentration.
- 13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.
- 13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.
- 13.3.2 Repeatability Check Calculations. Determine the highest and lowest average "measurement data phase" CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The

Attachment B 40 CFR 63, Subpart ZZZZ

Page 61 of 62 T003-30777-00269

absolute value of the difference between the maximum and minimum average values recorded must not vary more than \pm 3 percent or \pm 1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 Pollution Prevention (Reserved)

15.0 Waste Management (Reserved)

16.0 Alternative Procedures (Reserved)

17.0 References

- (1) "Development of an Electrochemical Cell Emission Analyzer Test Protocol", Topical Report, Phil Juneau, Emission Monitoring, Inc., July 1997.
- (2) "Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Emissions from Natural Gas-Fired Engines, Boilers, and Process Heaters Using Portable Analyzers", EMC Conditional Test Protocol 30 (CTM-30), Gas Research Institute Protocol GRI-96/0008, Revision 7, October 13, 1997.
- (3) "ICAC Test Protocol for Periodic Monitoring", EMC Conditional Test Protocol 34 (CTM-034), The Institute of Clean Air Companies, September 8, 1999.
- (4) "Code of Federal Regulations", Protection of Environment, 40 CFR, Part 60, Appendix A, Methods 1-4; 10.

Table 1: Appendix A—Sampling Run Data.

		Fac	cility			Engine I.D			Date			
Run Type:		(_)			(_)			(_)			(_)	
(X)	Pre-Sa	ample Ca	alibratio	n	Stack Gas Sample		•	Post-Sample Cal. Check		Repeatability Check		
Run #	1	1	2	2		3	4	4	Time	Scr O	ub. K	Flow- Rate
Gas	O ₂	СО	O ₂	CC	O ₂	СО	O ₂	СО				
Sample Cond. Phase												
" #												
" #												
"												
Measurement Data Phase												
"												
"												
"												
"												
"												
"							Ш					
"												
" #												
" #												
Mean							Ш					
Refresh Phase												
"												
"												
"												
"						<u></u>						

[78 FR 6721, Jan. 30, 2013]

Attachment C to Part 70 Operating Permit Renewal No. T003-30777-00269

[Downloaded from the eCFR on May 13, 2013]

40 CFR 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

§ 60.40c Applicability and delegation of authority.

- (a) Except as provided in paragraphs (d), (e), (f), and (g) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/h)) or less, but greater than or equal to 2.9 MW (10 MMBtu/h).
- (b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, § 60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.
- (c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO_2) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§ 60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in § 60.41c.
- (d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under § 60.14.
- (e) Affected facilities (*i.e.* heat recovery steam generators and fuel heaters) that are associated with stationary combustion turbines and meet the applicability requirements of subpart KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators, fuel heaters, and other affected facilities that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam generator, fuel heater, or other affected facility is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The stationary combustion turbine emissions are subject to subpart GG or KKKK, as applicable, of this part.)
- (f) Any affected facility that meets the applicability requirements of and is subject to subpart AAAA or subpart CCCC of this part is not subject to this subpart.
- (g) Any facility that meets the applicability requirements and is subject to an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBB of this part is not subject to this subpart.
- (h) Affected facilities that also meet the applicability requirements under subpart J or subpart Ja of this part are subject to the PM and NO_X standards under this subpart and the SO₂ standards under subpart J or subpart Ja of this part, as applicable.
- (i) Temporary boilers are not subject to this subpart.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009; 77 FR 9461, Feb. 16, 2012]

§ 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see § 60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal not meeting the definition of natural gas, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb) on a dry basis.

Combined cycle system means a system in which a separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (i.e. , the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see § 60.17), diesel fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see § 60.17), kerosine, as defined by the American Society of Testing and Materials in ASTM D3699 (incorporated by reference, see § 60.17), biodiesel as defined by the American Society of Testing and Materials in ASTM D6751 (incorporated by reference, see § 60.17), or biodiesel blends as defined by the American Society of Testing and Materials in ASTM D7467 (incorporated by reference, see § 60.17).

Dry flue gas desulfurization technology means a SO₂ control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.

Emerging technology means any SO₂ control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under § 60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Page 3 of 20 T003-30777-00269

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bed combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

Natural gas means:

- (1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or
- (2) Liquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see § 60.17); or
- (3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 34 and 43 megajoules (MJ) per dry standard cubic meter (910 and 1,150 Btu per dry standard cubic foot).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Oil means crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO₂ emissions (nanograms per joule (ng/J) or lb/MMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

Process heater means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see § 60.17).

Steam generating unit means a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Temporary boiler means a steam generating unit that combusts natural gas or distillate oil with a potential SO₂ emissions rate no greater than 26 ng/J (0.060 lb/MMBtu), and the unit is designed to, and is capable of, being carried

or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A steam generating unit is not a temporary boiler if any one of the following conditions exists:

- (1) The equipment is attached to a foundation.
- (2) The steam generating unit or a replacement remains at a location for more than 180 consecutive days. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.
- (3) The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.
- (4) The equipment is moved from one location to another in an attempt to circumvent the residence time requirements of this definition.

Wet flue gas desulfurization technology means an SO₂ control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or SO_2 .

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sanderdust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009; 77 FR 9461, Feb. 16, 2012]

§ 60.42c Standard for sulfur dioxide (SO2).

- (a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO₂ emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO₂ emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.
- (b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that:
- (1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO₂ emission rate (80 percent reduction); nor
- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of SO_2 in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is

Page 5 of 20 T003-30777-00269

subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO_2 emissions limit or the 90 percent SO_2 reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.

- (2) Combusts only coal and that uses an emerging technology for the control of SO₂ emissions shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 50 percent (0.50) of the potential SO₂ emission rate (50 percent reduction); nor
- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO_2 reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.
- (c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of the emission limit determined pursuant to paragraph (e)(2) of this section. Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).
- (1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/h) or less;
- (2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.
- (3) Affected facilities located in a noncontinental area; or
- (4) Affected facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.
- (d) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts oil shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 215 ng/J (0.50 lb/MMBtu) heat input from oil; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.
- (e) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of the following:
- (1) The percent of potential SO_2 emission rate or numerical SO_2 emission rate required under paragraph (a) or (b)(2) of this section, as applicable, for any affected facility that
- (i) Combusts coal in combination with any other fuel;
- (ii) Has a heat input capacity greater than 22 MW (75 MMBtu/h); and
- (iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and
- (2) The emission limit determined according to the following formula for any affected facility that combusts coal, oil, or coal and oil with any other fuel:

$$E_{c} = \frac{\left(K_{a}H_{a} + K_{b}H_{b} + K_{c}H_{c}\right)}{\left(H_{a} + H_{b} + H_{c}\right)}$$

Where:

E_s = SO₂ emission limit, expressed in ng/J or lb/MMBtu heat input;

 $K_a = 520 \text{ ng/J } (1.2 \text{ lb/MMBtu});$

 $K_b = 260 \text{ ng/J } (0.60 \text{ lb/MMBtu});$

 $K_c = 215 \text{ ng/J } (0.50 \text{ lb/MMBtu});$

 H_a = Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];

H_b = Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and

 H_c = Heat input from the combustion of oil, in J (MMBtu).

- (f) Reduction in the potential SO₂ emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:
- (1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential SO₂ emission rate; and
- (2) Emissions from the pretreated fuel (without either combustion or post-combustion SO₂ control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.
- (g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.
- (h) For affected facilities listed under paragraphs (h)(1), (2), (3), or (4) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under § 60.48c(f), as applicable.
- (1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).
- (2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).
- (3) Coal-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).
- (4) Other fuels-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).
- (i) The SO₂ emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.
- (j) For affected facilities located in noncontinental areas and affected facilities complying with the percent reduction standard, only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009; 77 FR 9462, Feb. 16, 2012]

Attachment C 40 CFR 60, Subpart Dc

Page 7 of 20 T003-30777-00269

§ 60.43c Standard for particulate matter (PM).

- (a) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:
- (1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.
- (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.
- (b) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:
- (1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or
- (2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.
- (c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. Owners and operators of an affected facility that elect to install, calibrate, maintain, and operate a continuous emissions monitoring system (CEMS) for measuring PM emissions according to the requirements of this subpart and are subject to a federally enforceable PM limit of 0.030 lb/MMBtu or less are exempt from the opacity standard specified in this paragraph (c).
- (d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.
- (e)(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.
- (2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005 shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of both:
- (i) 22 ng/J (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels; and

- (ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.
- (3) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.
- (4) An owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under § 60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO₂ emissions is not subject to the PM limit in this section.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009; 77 FR 9462, Feb. 16, 2012]

§ 60.44c Compliance and performance test methods and procedures for sulfur dioxide.

- (a) Except as provided in paragraphs (g) and (h) of this section and § 60.8(b), performance tests required under § 60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not apply to this section. The 30-day notice required in § 60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.
- (b) The initial performance test required under § 60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO₂ emission limits under § 60.42c shall be determined using a 30-day average. The first operating day included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.
- (c) After the initial performance test required under paragraph (b) of this section and \S 60.8, compliance with the percent reduction requirements and SO_2 emission limits under \S 60.42c is based on the average percent reduction and the average SO_2 emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO_2 emission rate are calculated to show compliance with the standard.
- (d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly SO_2 emission rate (E_{ho}) and the 30-day average SO_2 emission rate (E_{ao}). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate E_{ao} when using daily fuel sampling or Method 6B of appendix A of this part.
- (e) If coal, oil, or coal and oil are combusted with other fuels:
- (1) An adjusted E_{ho} (E_{ho} o) is used in Equation 19-19 of Method 19 of appendix A of this part to compute the adjusted E_{ao} (E_{ao} o). The E_{ho} o is computed using the following formula:

$$E_{bo} \circ = \frac{E_{bo} - E_{w}(1 - X_{b})}{X_{b}}$$

Where:

 E_{ho} o = Adjusted E_{ho} , ng/J (lb/MMBtu);

Page 9 of 20 T003-30777-00269

E_{ho} = Hourly SO₂ emission rate, ng/J (lb/MMBtu);

 $E_w = SO_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$.

 X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

- (2) The owner or operator of an affected facility that qualifies under the provisions of \S 60.42c(c) or (d) (where percent reduction is not required) does not have to measure the parameters E_w or X_k if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.
- (f) Affected facilities subject to the percent reduction requirements under § 60.42c(a) or (b) shall determine compliance with the SO₂ emission limits under § 60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:
- (1) If only coal is combusted, the percent of potential SO_2 emission rate is computed using the following formula:

$$%P_{\epsilon} = 100 \left(1 - \frac{\%R_{g}}{100} \right) \left(1 - \frac{\%R_{f}}{100} \right)$$

Where:

%P_s = Potential SO₂ emission rate, in percent;

 $%R_g = SO_2$ removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent; and

%R_f = SO₂ removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent.

- (2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:
- (i) To compute the $\%P_s$, an adjusted $\%R_g$ ($\%R_g$ o) is computed from E_{ao} o from paragraph (e)(1) of this section and an adjusted average SO_2 inlet rate (E_{ai} o) using the following formula:

$$\%R_{g0} = 100 \left(1 - \frac{E_{\infty}^{\circ}}{E_{\infty}^{\circ}} \right)$$

Where:

 R_q o = Adjusted R_q , in percent;

 E_{ao} o = Adjusted E_{ao} , ng/J (lb/MMBtu); and

E_{ai} o = Adjusted average SO₂ inlet rate, ng/J (lb/MMBtu).

(ii) To compute Eai o, an adjusted hourly SO₂ inlet rate (Ehi o) is used. The Ehi o is computed using the following formula:

$$E_{hi}o = \frac{E_{hi} - E_{w}(1 - X_{1})}{X_{1}}$$

Where:

 E_{hi} o = Adjusted E_{hi} , ng/J (lb/MMBtu);

E_{hi} = Hourly SO₂ inlet rate, ng/J (lb/MMBtu);

 $E_w = SO_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$; and

 X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

- (g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under § 60.46c(d)(2).
- (h) For affected facilities subject to § 60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO₂ standards based on fuel supplier certification, the performance test shall consist of the certification from the fuel supplier, as described in § 60.48c(f), as applicable.
- (i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO_2 standards under \S 60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.
- (j) The owner or operator of an affected facility shall use all valid SO_2 emissions data in calculating $%P_s$ and E_{ho} under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under § 60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating $%P_s$ or E_{ho} pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

§ 60.45c Compliance and performance test methods and procedures for particulate matter.

- (a) The owner or operator of an affected facility subject to the PM and/or opacity standards under § 60.43c shall conduct an initial performance test as required under § 60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.
- (1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.
- (2) Method 3A or 3B of appendix A-2 of this part shall be used for gas analysis when applying Method 5 or 5B of appendix A-3 of this part or 17 of appendix A-6 of this part.

- (3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:
- (i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.
- (ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part only if Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.
- (iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.
- (4) The sampling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.
- (5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at 160 ±14 °C (320±25 °F).
- (6) For determination of PM emissions, an oxygen (O_2) or carbon dioxide (CO_2) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.
- (7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:
- (i) The O₂ or CO₂ measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and
- (iii) The dry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.
- (8) Method 9 of appendix A-4 of this part shall be used for determining the opacity of stack emissions.
- (b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under § 60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.
- (c) In place of PM testing with Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(14) of this section.
- (1) Notify the Administrator 1 month before starting use of the system.
- (2) Notify the Administrator 1 month before stopping use of the system.
- (3) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

- (4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.
- (5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under § 60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.
- (6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using CEMS outlet data.
- (7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (c)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.
- (i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.
- (ii) [Reserved]
- (8) The 1-hour arithmetic averages required under paragraph (c)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.
- (9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (c)(7) of this section are not met.
- (10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part.
- (11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O₂ (or CO₂) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and performance tests conducted using the following test methods.
- (i) For PM, Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall be used; and
- (ii) For O2 (or ${\rm CO_2}$), Method 3A or 3B of appendix A-2 of this part, as applicable shall be used.
- (12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.
- (13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.
- (14) As of January 1, 2012, and within 90 days after the date of completing each performance test, as defined in § 60.8, conducted to demonstrate compliance with this subpart, you must submit relative accuracy test audit (*i.e.*, reference method) data and performance test (*i.e.*, compliance test) data, except opacity data, electronically to EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert tool.html/) or other compatible electronic spreadsheet. Only data collected using test methods compatible with ERT are subject to this requirement to be submitted electronically into EPA's WebFIRE database.
- (d) The owner or operator of an affected facility seeking to demonstrate compliance under § 60.43c(e)(4) shall follow the applicable procedures under § 60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/h).

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009; 76 FR 3523, Jan. 20, 2011; 77 FR 9463, Feb. 16, 2012]

§ 60.46c Emission monitoring for sulfur dioxide.

- (a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO_2 emission limits under § 60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO_2 concentrations and either O_2 or CO_2 concentrations at the outlet of the SO_2 control device (or the outlet of the steam generating unit if no SO_2 control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under § 60.42c shall measure SO_2 concentrations and either SO_2 concentrations at both the inlet and outlet of the SO_2 control device.
- (b) The 1-hour average SO₂ emission rates measured by a CEMS shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the average emission rates under § 60.42c. Each 1-hour average SO₂ emission rate must be based on at least 30 minutes of operation, and shall be calculated using the data points required under § 60.13(h)(2). Hourly SO₂ emission rates are not calculated if the affected facility is operated less than 30 minutes in a 1-hour period and are not counted toward determination of a steam generating unit operating day.
- (c) The procedures under § 60.13 shall be followed for installation, evaluation, and operation of the CEMS.
- (1) All CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.
- (2) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.
- (3) For affected facilities subject to the percent reduction requirements under \S 60.42c, the span value of the SO₂ CEMS at the inlet to the SO₂ control device shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted, and the span value of the SO₂ CEMS at the outlet from the SO₂ control device shall be 50 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.
- (4) For affected facilities that are not subject to the percent reduction requirements of § 60.42c, the span value of the SO₂ CEMS at the outlet from the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.
- (d) As an alternative to operating a CEMS at the inlet to the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO_2 emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO_2 emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.
- (1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO₂ input rate.
- (2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content of subsequent oil shipments is low enough to cause the 30-day rolling average sulfur content to be 0.5 weight percent sulfur or less.

- (3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO₂ at the inlet or outlet of the SO₂ control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO₂ and CO₂ measurement train operated at the candidate location and a second similar train operated according to the procedures in § 3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part, Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).
- (e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to § 60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO₂ standards based on fuel supplier certification, as described under § 60.48c(f), as applicable.
- (f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

§ 60.47c Emission monitoring for particulate matter.

- (a) Except as provided in paragraphs (c), (d), (e), and (f) of this section, the owner or operator of an affected facility combusting coal, oil, or wood that is subject to the opacity standards under § 60.43c shall install, calibrate, maintain, and operate a continuous opacity monitoring system (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility subject to an opacity standard in § 60.43c(c) that is not required to use a COMS due to paragraphs (c), (d), (e), or (f) of this section that elects not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the procedures in § 60.11 to demonstrate compliance with the applicable limit in § 60.43c by April 29, 2011, within 45 days of stopping use of an existing COMS, or within 180 days after initial startup of the facility, whichever is later, and shall comply with either paragraphs (a)(1), (a)(2), or (a)(3) of this section. The observation period for Method 9 of appendix A-4 of this part performance tests may be reduced from 3 hours to 60 minutes if all 6-minute averages are less than 10 percent and all individual 15-second observations are less than or equal to 20 percent during the initial 60 minutes of observation.
- (1) Except as provided in paragraph (a)(2) and (a)(3) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (a) of this section according to the applicable schedule in paragraphs (a)(1)(i) through (a)(1)(iv) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results.
- (i) If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later:
- (ii) If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;
- (iii) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later; or

- (iv) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 45 calendar days from the date that the most recent performance test was conducted.
- (2) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (a)(2)(i) and (ii) of this section.
- (i) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation period (*i.e.*, 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (*i.e.*, 90 seconds per 30 minute period), the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (*i.e.*, 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the procedures in paragraph (a) of this section within 45 calendar days according to the requirements in § 60.45c(a)(8).
- (ii) If no visible emissions are observed for 10 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed.
- (3) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to a site-specific monitoring plan approved by the Administrator. The observations shall be similar, but not necessarily identical, to the requirements in paragraph (a)(2) of this section. For reference purposes in preparing the monitoring plan, see OAQPS "Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems." This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Preliminary Methods.
- (b) All COMS shall be operated in accordance with the applicable procedures under Performance Specification 1 of appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.
- (c) Owners and operators of an affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.060 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO2 or PM emissions and that are subject to an opacity standard in § 60.43c(c) are not required to operate a COMS if they follow the applicable procedures in § 60.48c(f).
- (d) Owners or operators complying with the PM emission limit by using a PM CEMS must calibrate, maintain, operate, and record the output of the system for PM emissions discharged to the atmosphere as specified in § 60.45c(c). The CEMS specified in paragraph § 60.45c(c) shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments.
- (e) Owners and operators of an affected facility that is subject to an opacity standard in § 60.43c(c) and that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO₂, or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur, and is operated such that emissions of CO discharged to the atmosphere from the affected facility are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS. Owners and operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section; or

- (1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.
- (i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in § 60.58b(i)(3) of subpart Eb of this part.
- (ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).
- (iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. The 1-hour averages are calculated using the data points required in § 60.13(h)(2).
- (iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.
- (2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.
- (3) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.
- (4) You must record the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action.
- (f) An owner or operator of an affected facility that is subject to an opacity standard in § 60.43c(c) is not required to operate a COMS provided that the affected facility meets the conditions in either paragraphs (f)(1), (2), or (3) of this section.
- (1) The affected facility uses a fabric filter (baghouse) as the primary PM control device and, the owner or operator operates a bag leak detection system to monitor the performance of the fabric filter according to the requirements in section § 60.48Da of this part.
- (2) The affected facility uses an ESP as the primary PM control device, and the owner or operator uses an ESP predictive model to monitor the performance of the ESP developed in accordance and operated according to the requirements in section § 60.48Da of this part.
- (3) The affected facility burns only gaseous fuels and/or fuel oils that contain no greater than 0.5 weight percent sulfur, and the owner or operator operates the unit according to a written site-specific monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing performed as part of this site-specific monitoring plan, the permitting authority may require as an alternative to the notification and reporting requirements specified in §§ 60.8 and 60.11 that the owner or operator submit any deviations with the excess emissions report required under § 60.48c(c).

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009; 76 FR 3523, Jan. 20, 2011; 77 FR 9463, Feb. 16, 2012]

§ 60.48c Reporting and recordkeeping requirements.

- (a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by § 60.7 of this part. This notification shall include:
- (1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility.
- (2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under § 60.42c, or § 60.43c.
- (3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.
- (4) Notification if an emerging technology will be used for controlling SO₂ emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of § 60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.
- (b) The owner or operator of each affected facility subject to the SO₂ emission limits of § 60.42c, or the PM or opacity limits of § 60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.
- (c) In addition to the applicable requirements in § 60.7, the owner or operator of an affected facility subject to the opacity limits in § 60.43c(c) shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraphs (c)(1) through (3) of this section, as applicable to the visible emissions monitoring method used.
- (1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(1)(i) through (iii) of this section.
- (i) Dates and time intervals of all opacity observation periods;
- (ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and
- (iii) Copies of all visible emission observer opacity field data sheets;
- (2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(2)(i) through (iv) of this section.
- (i) Dates and time intervals of all visible emissions observation periods;
- (ii) Name and affiliation for each visible emission observer participating in the performance test;
- (iii) Copies of all visible emission observer opacity field data sheets; and
- (iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements.
- (3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator

- (d) The owner or operator of each affected facility subject to the SO_2 emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall submit reports to the Administrator.
- (e) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.
- (1) Calendar dates covered in the reporting period.
- (2) Each 30-day average SO₂ emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.
- (3) Each 30-day average percent of potential SO_2 emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.
- (4) Identification of any steam generating unit operating days for which SO_2 or diluent (O_2 or CO_2) data have not been obtained by an approved method for at least 75 percent of the operating hours; justification for not obtaining sufficient data; and a description of corrective actions taken.
- (5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.
- (6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.
- (7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.
- (8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.
- (9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.
- (10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.
- (11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.
- (f) Fuel supplier certification shall include the following information:
- (1) For distillate oil:
- (i) The name of the oil supplier;
- (ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in § 60.41c; and
- (iii) The sulfur content or maximum sulfur content of the oil.
- (2) For residual oil:

- (i) The name of the oil supplier;
- (ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil, specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier's or oil refiner's facility, or other location;
- (iii) The sulfur content of the oil from which the shipment came (or of the shipment itself); and
- (iv) The method used to determine the sulfur content of the oil.
- (3) For coal:
- (i) The name of the coal supplier;
- (ii) The location of the coal when the sample was collected for analysis to determine the properties of the coal, specifically including whether the coal was sampled as delivered to the affected facility or whether the sample was collected from coal in storage at the mine, at a coal preparation plant, at a coal supplier's facility, or at another location. The certification shall include the name of the coal mine (and coal seam), coal storage facility, or coal preparation plant (where the sample was collected);
- (iii) The results of the analysis of the coal from which the shipment came (or of the shipment itself) including the sulfur content, moisture content, ash content, and heat content; and
- (iv) The methods used to determine the properties of the coal.
- (4) For other fuels:
- (i) The name of the supplier of the fuel;
- (ii) The potential sulfur emissions rate or maximum potential sulfur emissions rate of the fuel in ng/J heat input; and
- (iii) The method used to determine the potential sulfur emissions rate of the fuel.
- (g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.
- (2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in § 60.48c(f) to demonstrate compliance with the SO₂ standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.
- (3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in § 60.42C to use fuel certification to demonstrate compliance with the SO₂ standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.
- (h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under § 60.42c or § 60.43c shall calculate the annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.

- (i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.
- (j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

Attachment D to Part 70 Operating Permit Renewal No. T003-30777-00269

[Downloaded from the eCFR on May 10, 2013]

40 CFR Part 63, Subpart DDDDD—National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

Source: 76 FR 15664, Mar. 21, 2011, unless otherwise noted.

What This Subpart Covers

§ 63.7480 What is the purpose of this subpart?

This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and work practice standards.

§ 63.7485 Am I subject to this subpart?

You are subject to this subpart if you own or operate an industrial, commercial, or institutional boiler or process heater as defined in § 63.7575 that is located at, or is part of, a major source of HAP, except as specified in § 63.7491. For purposes of this subpart, a major source of HAP is as defined in § 63.2, except that for oil and natural gas production facilities, a major source of HAP is as defined in § 63.7575.

[78 FR 7162, Jan. 31, 2013]

§ 63.7490 What is the affected source of this subpart?

- (a) This subpart applies to new, reconstructed, and existing affected sources as described in paragraphs (a)(1) and (2) of this section.
- (1) The affected source of this subpart is the collection at a major source of all existing industrial, commercial, and institutional boilers and process heaters within a subcategory as defined in § 63.7575.
- (2) The affected source of this subpart is each new or reconstructed industrial, commercial, or institutional boiler or process heater, as defined in § 63.7575, located at a major source.
- (b) A boiler or process heater is new if you commence construction of the boiler or process heater after June 4, 2010, and you meet the applicability criteria at the time you commence construction.
- (c) A boiler or process heater is reconstructed if you meet the reconstruction criteria as defined in § 63.2, you commence reconstruction after June 4, 2010, and you meet the applicability criteria at the time you commence reconstruction.
- (d) A boiler or process heater is existing if it is not new or reconstructed.
- (e) An existing electric utility steam generating unit (EGU) that meets the applicability requirements of this subpart after the effective date of this final rule due to a change (e.g., fuel switch) is considered to be an existing source under this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7162, Jan. 31, 2013]

§ 63.7491 Are any boilers or process heaters not subject to this subpart?

The types of boilers and process heaters listed in paragraphs (a) through (n) of this section are not subject to this subpart.

- (a) An electric utility steam generating unit (EGU) covered by subpart UUUUU of this part.
- (b) A recovery boiler or furnace covered by subpart MM of this part.
- (c) A boiler or process heater that is used specifically for research and development, including test steam boilers used to provide steam for testing the propulsion systems on military vessels. This does not include units that provide heat or steam to a process at a research and development facility.
- (d) A hot water heater as defined in this subpart.
- (e) A refining kettle covered by subpart X of this part.
- (f) An ethylene cracking furnace covered by subpart YY of this part.
- (g) Blast furnace stoves as described in EPA-453/R-01-005 (incorporated by reference, see § 63.14).
- (h) Any boiler or process heater that is part of the affected source subject to another subpart of this part, such as boilers and process heaters used as control devices to comply with subparts JJJ, OOO, PPP, and U of this part.
- (i) Any boiler or process heater that is used as a control device to comply with another subpart of this part, or part 60, part 61, or part 65 of this chapter provided that at least 50 percent of the average annual heat input during any 3 consecutive calendar years to the boiler or process heater is provided by regulated gas streams that are subject to another standard.
- (j) Temporary boilers as defined in this subpart.
- (k) Blast furnace gas fuel-fired boilers and process heaters as defined in this subpart.
- (I) Any boiler specifically listed as an affected source in any standard(s) established under section 129 of the Clean Air Act.
- (m) A unit that burns hazardous waste covered by Subpart EEE of this part. A unit that is exempt from Subpart EEE as specified in § 63.1200(b) is not covered by Subpart EEE.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7162, Jan. 31, 2013]

EDITORIAL NOTE: At 78 FR 7162, Jan. 31, 2013, § 63.7491 was amended by revising paragraph (n). However, there is no paragraph (n) to revise.

§ 63.7495 When do I have to comply with this subpart?

- (a) If you have a new or reconstructed boiler or process heater, you must comply with this subpart by January 31, 2013, or upon startup of your boiler or process heater, whichever is later.
- (b) If you have an existing boiler or process heater, you must comply with this subpart no later than January 31, 2016, except as provided in § 63.6(i).
- (c) If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, paragraphs (c)(1) and (2) of this section apply to you.

- (1) Any new or reconstructed boiler or process heater at the existing source must be in compliance with this subpart upon startup.
- (2) Any existing boiler or process heater at the existing source must be in compliance with this subpart within 3 years after the source becomes a major source.
- (d) You must meet the notification requirements in § 63.7545 according to the schedule in § 63.7545 and in subpart A of this part. Some of the notifications must be submitted before you are required to comply with the emission limits and work practice standards in this subpart.
- (e) If you own or operate an industrial, commercial, or institutional boiler or process heater and would be subject to this subpart except for the exemption in § 63.7491(I) for commercial and industrial solid waste incineration units covered by part 60, subpart CCCC or subpart DDDD, and you cease combusting solid waste, you must be in compliance with this subpart on the effective date of the switch from waste to fuel.
- (f) If you own or operate an existing EGU that becomes subject to this subpart after January 31, 2013, you must be in compliance with the applicable existing source provisions of this subpart on the effective date such unit becomes subject to this subpart.
- (g) If you own or operate an existing industrial, commercial, or institutional boiler or process heater and would be subject to this subpart except for a exemption in § 63.7491(i) that becomes subject to this subpart after January 31, 2013, you must be in compliance with the applicable existing source provisions of this subpart within 3 years after such unit becomes subject to this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7162, Jan. 31, 2013]

EDITORIAL NOTE: At 78 FR 7162, Jan. 31, 2013, § 63.7495 was amended by adding paragraph (e). However, there is already a paragraph (e).

Emission Limitations and Work Practice Standards

§ 63.7499 What are the subcategories of boilers and process heaters?

The subcategories of boilers and process heaters, as defined in § 63.7575 are:

- (a) Pulverized coal/solid fossil fuel units.
- (b) Stokers designed to burn coal/solid fossil fuel.
- (c) Fluidized bed units designed to burn coal/solid fossil fuel.
- (d) Stokers/sloped grate/other units designed to burn kiln dried biomass/bio-based solid.
- (e) Fluidized bed units designed to burn biomass/bio-based solid.
- (f) Suspension burners designed to burn biomass/bio-based solid.
- (g) Fuel cells designed to burn biomass/bio-based solid.
- (h) Hybrid suspension/grate burners designed to burn wet biomass/bio-based solid.
- (i) Stokers/sloped grate/other units designed to burn wet biomass/bio-based solid.
- (j) Dutch ovens/pile burners designed to burn biomass/bio-based solid.

- (k) Units designed to burn liquid fuel that are non-continental units.
- (I) Units designed to burn gas 1 fuels.
- (m) Units designed to burn gas 2 (other) gases.
- (n) Metal process furnaces.
- (o) Limited-use boilers and process heaters.
- (p) Units designed to burn solid fuel.
- (q) Units designed to burn liquid fuel.
- (r) Units designed to burn coal/solid fossil fuel.
- (s) Fluidized bed units with an integrated fluidized bed heat exchanger designed to burn coal/solid fossil fuel.
- (t) Units designed to burn heavy liquid fuel.
- (u) Units designed to burn light liquid fuel.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]

§ 63.7500 What emission limitations, work practice standards, and operating limits must I meet?

- (a) You must meet the requirements in paragraphs (a)(1) through (3) of this section, except as provided in paragraphs (b), through (e) of this section. You must meet these requirements at all times the affected unit is operating, except as provided in paragraph (f) of this section.
- (1) You must meet each emission limit and work practice standard in Tables 1 through 3, and 11 through 13 to this subpart that applies to your boiler or process heater, for each boiler or process heater at your source, except as provided under § 63.7522. The output-based emission limits, in units of pounds per million Btu of steam output, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers and process heaters that generate steam. The output-based emission limits, in units of pounds per megawatt-hour, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers that generate electricity. If you operate a new boiler or process heater, you can choose to comply with alternative limits as discussed in paragraphs (a)(1)(i) through (a)(1)(iii) of this section, but on or after January 31, 2016, you must comply with the emission limits in Table 1 to this subpart.
- (i) If your boiler or process heater commenced construction or reconstruction after June 4, 2010 and before May 20, 2011, you may comply with the emission limits in Table 1 or 11 to this subpart until January 31, 2016.
- (ii) If your boiler or process heater commenced construction or reconstruction after May 20, 2011 and before December 23, 2011, you may comply with the emission limits in Table 1 or 12 to this subpart until January 31, 2016.
- (iii) If your boiler or process heater commenced construction or reconstruction after December 23, 2011 and before January 31, 2013, you may comply with the emission limits in Table 1 or 13 to this subpart until January 31, 2016.
- (2) You must meet each operating limit in Table 4 to this subpart that applies to your boiler or process heater. If you use a control device or combination of control devices not covered in Table 4 to this subpart, or you wish to establish and monitor an alternative operating limit or an alternative monitoring parameter, you must apply to the EPA Administrator for approval of alternative monitoring under § 63.8(f).
- (3) At all times, you must operate and maintain any affected source (as defined in § 63.7490), including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution

control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

- (b) As provided in § 63.6(g), EPA may approve use of an alternative to the work practice standards in this section.
- (c) Limited-use boilers and process heaters must complete a tune-up every 5 years as specified in § 63.7540. They are not subject to the emission limits in Tables 1 and 2 or 11 through 13 to this subpart, the annual tune-up, or the energy assessment requirements in Table 3 to this subpart, or the operating limits in Table 4 to this subpart.
- (d) Boilers and process heaters with a heat input capacity of less than or equal to 5 million Btu per hour in the units designed to burn gas 2 (other) fuels subcategory or units designed to burn light liquid fuels subcategory must complete a tune-up every 5 years as specified in § 63.7540.
- (e) Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity of less than or equal to 5 million Btu per hour must complete a tune-up every 5 years as specified in § 63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity greater than 5 million Btu per hour and less than 10 million Btu per hour must complete a tune-up every 2 years as specified in § 63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory are not subject to the emission limits in Tables 1 and 2 or 11 through 13 to this subpart, or the operating limits in Table 4 to this subpart.
- (f) These standards apply at all times the affected unit is operating, except during periods of startup and shutdown during which time you must comply only with Table 3 to this subpart.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]

§ 63.7501 Affirmative Defense for Violation of Emission Standards During Malfunction.

In response to an action to enforce the standards set forth in § 63.7500 you may assert an affirmative defense to a claim for civil penalties for violations of such standards that are caused by malfunction, as defined at § 63.2. Appropriate penalties may be assessed if you fail to meet your burden of proving all of the requirements in the affirmative defense. The affirmative defense shall not be available for claims for injunctive relief.

- (a) Assertion of affirmative defense. To establish the affirmative defense in any action to enforce such a standard, you must timely meet the reporting requirements in paragraph (b) of this section, and must prove by a preponderance of evidence that:
- (1) The violation:
- (i) Was caused by a sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner; and
- (ii) Could not have been prevented through careful planning, proper design, or better operation and maintenance practices; and
- (iii) Did not stem from any activity or event that could have been foreseen and avoided, or planned for; and
- (iv) Was not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and
- (2) Repairs were made as expeditiously as possible when a violation occurred; and
- (3) The frequency, amount, and duration of the violation (including any bypass) were minimized to the maximum extent practicable; and

- (4) If the violation resulted from a bypass of control equipment or a process, then the bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and
- (5) All possible steps were taken to minimize the impact of the violation on ambient air quality, the environment, and human health; and
- (6) All emissions monitoring and control systems were kept in operation if at all possible, consistent with safety and good air pollution control practices; and
- (7) All of the actions in response to the violation were documented by properly signed, contemporaneous operating logs; and
- (8) At all times, the affected source was operated in a manner consistent with good practices for minimizing emissions; and
- (9) A written root cause analysis has been prepared, the purpose of which is to determine, correct, and eliminate the primary causes of the malfunction and the violation resulting from the malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering judgment, the amount of any emissions that were the result of the malfunction.
- (b) Report. The owner or operator seeking to assert an affirmative defense shall submit a written report to the Administrator with all necessary supporting documentation, that it has met the requirements set forth in § 63.7500 of this section. This affirmative defense report shall be included in the first periodic compliance, deviation report or excess emission report otherwise required after the initial occurrence of the violation of the relevant standard (which may be the end of any applicable averaging period). If such compliance, deviation report or excess emission report is due less than 45 days after the initial occurrence of the violation, the affirmative defense report may be included in the second compliance, deviation report or excess emission report due after the initial occurrence of the violation of the relevant standard.

[78 FR 7163, Jan. 31, 2013]

General Compliance Requirements

§ 63.7505 What are my general requirements for complying with this subpart?

- (a) You must be in compliance with the emission limits, work practice standards, and operating limits in this subpart. These limits apply to you at all times the affected unit is operating except for the periods noted in § 63.7500(f).
- (b) [Reserved]
- (c) You must demonstrate compliance with all applicable emission limits using performance stack testing, fuel analysis, or continuous monitoring systems (CMS), including a continuous emission monitoring system (CEMS), continuous opacity monitoring system (COMS), continuous parameter monitoring system (CPMS), or particulate matter continuous parameter monitoring system (PM CPMS), where applicable. You may demonstrate compliance with the applicable emission limit for hydrogen chloride (HCl), mercury, or total selected metals (TSM) using fuel analysis if the emission rate calculated according to § 63.7530(c) is less than the applicable emission limit. (For gaseous fuels, you may not use fuel analyses to comply with the TSM alternative standard or the HCl standard.) Otherwise, you must demonstrate compliance for HCl, mercury, or TSM using performance testing, if subject to an applicable emission limit listed in Tables 1. 2. or 11 through 13 to this subpart.
- (d) If you demonstrate compliance with any applicable emission limit through performance testing and subsequent compliance with operating limits (including the use of CPMS), or with a CEMS, or COMS, you must develop a site-specific monitoring plan according to the requirements in paragraphs (d)(1) through (4) of this section for the use of any CEMS, COMS, or CPMS. This requirement also applies to you if you petition the EPA Administrator for alternative monitoring parameters under § 63.8(f).

- (1) For each CMS required in this section (including CEMS, COMS, or CPMS), you must develop, and submit to the Administrator for approval upon request, a site-specific monitoring plan that addresses design, data collection, and the quality assurance and quality control elements outlined in § 63.8(d) and the elements described in paragraphs (d)(1)(i) through (iii) of this section. You must submit this site-specific monitoring plan, if requested, at least 60 days before your initial performance evaluation of your CMS. This requirement to develop and submit a site specific monitoring plan does not apply to affected sources with existing CEMS or COMS operated according to the performance specifications under appendix B to part 60 of this chapter and that meet the requirements of § 63.7525. Using the process described in § 63.8(f)(4), you may request approval of alternative monitoring system quality assurance and quality control procedures in place of those specified in this paragraph and, if approved, include the alternatives in your site-specific monitoring plan.
- (i) Installation of the CMS sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of control of the exhaust emissions (e.g., on or downstream of the last control device);
- (ii) Performance and equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer, and the data collection and reduction systems; and
- (iii) Performance evaluation procedures and acceptance criteria (e.g., calibrations, accuracy audits, analytical drift).
- (2) In your site-specific monitoring plan, you must also address paragraphs (d)(2)(i) through (iii) of this section.
- (i) Ongoing operation and maintenance procedures in accordance with the general requirements of § 63.8(c)(1)(ii), (c)(3), and (c)(4)(ii);
- (ii) Ongoing data quality assurance procedures in accordance with the general requirements of § 63.8(d); and
- (iii) Ongoing recordkeeping and reporting procedures in accordance with the general requirements of § 63.10(c) (as applicable in Table 10 to this subpart), (e)(1), and (e)(2)(i).
- (3) You must conduct a performance evaluation of each CMS in accordance with your site-specific monitoring plan.
- (4) You must operate and maintain the CMS in continuous operation according to the site-specific monitoring plan.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7164, Jan. 31, 2013]

Testing, Fuel Analyses, and Initial Compliance Requirements

§ 63.7510 What are my initial compliance requirements and by what date must I conduct them?

- (a) For each boiler or process heater that is required or that you elect to demonstrate compliance with any of the applicable emission limits in Tables 1 or 2 or 11 through 13 of this subpart through performance testing, your initial compliance requirements include all the following:
- (1) Conduct performance tests according to § 63.7520 and Table 5 to this subpart.
- (2) Conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart, except as specified in paragraphs (a)(2)(i) through (iii) of this section.
- (i) For each boiler or process heater that burns a single type of fuel, you are not required to conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart. For purposes of this subpart, units that use a supplemental fuel only for startup, unit shutdown, and transient flame stability purposes still qualify as units that burn a single type of fuel, and the supplemental fuel is not subject to the fuel analysis requirements under § 63.7521 and Table 6 to this subpart.

- (ii) When natural gas, refinery gas, or other gas 1 fuels are co-fired with other fuels, you are not required to conduct a fuel analysis of those fuels according to § 63.7521 and Table 6 to this subpart. If gaseous fuels other than natural gas, refinery gas, or other gas 1 fuels are co-fired with other fuels and those gaseous fuels are subject to another subpart of this part, part 60, part 61, or part 65, you are not required to conduct a fuel analysis of those fuels according to § 63.7521 and Table 6 to this subpart.
- (iii) You are not required to conduct a chlorine fuel analysis for any gaseous fuels. You must conduct a fuel analysis for mercury on gaseous fuels unless the fuel is exempted in paragraphs (a)(2)(i) and (ii) of this section.
- (3) Establish operating limits according to § 63.7530 and Table 7 to this subpart.
- (4) Conduct CMS performance evaluations according to § 63.7525.
- (b) For each boiler or process heater that you elect to demonstrate compliance with the applicable emission limits in Tables 1 or 2 or 11 through 13 to this subpart for HCl, mercury, or TSM through fuel analysis, your initial compliance requirement is to conduct a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and Table 6 to this subpart and establish operating limits according to § 63.7530 and Table 8 to this subpart. The fuels described in paragraph (a)(2)(i) and (ii) of this section are exempt from these fuel analysis and operating limit requirements. The fuels described in paragraph (a)(2)(ii) of this section are exempt from the chloride fuel analysis and operating limit requirements. Boilers and process heaters that use a CEMS for mercury or HCl are exempt from the performance testing and operating limit requirements specified in paragraph (a) of this section for the HAP for which CEMS are used.
- (c) If your boiler or process heater is subject to a carbon monoxide (CO) limit, your initial compliance demonstration for CO is to conduct a performance test for CO according to Table 5 to this subpart or conduct a performance evaluation of your continuous CO monitor, if applicable, according to § 63.7525(a). Boilers and process heaters that use a CO CEMS to comply with the applicable alternative CO CEMS emission standard listed in Tables 12, or 11 through 13 to this subpart, as specified in § 63.7525(a), are exempt from the initial CO performance testing and oxygen concentration operating limit requirements specified in paragraph (a) of this section.
- (d) If your boiler or process heater is subject to a PM limit, your initial compliance demonstration for PM is to conduct a performance test in accordance with § 63.7520 and Table 5 to this subpart.
- (e) For existing affected sources (as defined in § 63.7490), you must complete the initial compliance demonstration, as specified in paragraphs (a) through (d) of this section, no later than 180 days after the compliance date that is specified for your source in § 63.7495 and according to the applicable provisions in § 63.7(a)(2) as cited in Table 10 to this subpart, except as specified in paragraph (j) of this section. You must complete an initial tune-up by following the procedures described in § 63.7540(a)(10)(i) through (vi) no later than the compliance date specified in § 63.7495, except as specified in paragraph (j) of this section. You must complete the one-time energy assessment specified in Table 3 to this subpart no later than the compliance date specified in § 63.7495, except as specified in paragraph (j) of this section.
- (f) For new or reconstructed affected sources (as defined in § 63.7490), you must complete the initial compliance demonstration with the emission limits no later than July 30, 2013 or within 180 days after startup of the source, whichever is later. If you are demonstrating compliance with an emission limit in Tables 11 through 13 to this subpart that is less stringent (that is, higher) than the applicable emission limit in Table 1 to this subpart, you must demonstrate compliance with the applicable emission limit in Table 1 no later than July 29, 2016.
- (g) For new or reconstructed affected sources (as defined in § 63.7490), you must demonstrate initial compliance with the applicable work practice standards in Table 3 to this subpart within the applicable annual, biennial, or 5-year schedule as specified in § 63.7540(a) following the initial compliance date specified in § 63.7495(a). Thereafter, you are required to complete the applicable annual, biennial, or 5-year tune-up as specified in § 63.7540(a).
- (h) For affected sources (as defined in § 63.7490) that ceased burning solid waste consistent with § 63.7495(e) and for which the initial compliance date has passed, you must demonstrate compliance within 60 days of the effective date of the waste-to-fuel switch. If you have not conducted your compliance demonstration for this subpart within the previous 12 months, you must complete all compliance demonstrations for this subpart before you commence or recommence combustion of solid waste.

Page 9 of 95 T003-30777-00269

- (i) For an existing EGU that becomes subject after January 31, 2013, you must demonstrate compliance within 180 days after becoming an affected source.
- (j) For existing affected sources (as defined in § 63.7490) that have not operated between the effective date of the rule and the compliance date that is specified for your source in § 63.7495, you must complete the initial compliance demonstration, if subject to the emission limits in Table 2 to this subpart, as specified in paragraphs (a) through (d) of this section, no later than 180 days after the re-start of the affected source and according to the applicable provisions in § 63.7(a)(2) as cited in Table 10 to this subpart. You must complete an initial tune-up by following the procedures described in § 63.7540(a)(10)(i) through (vi) no later than 30 days after the re-start of the affected source and, if applicable, complete the one-time energy assessment specified in Table 3 to this subpart, no later than the compliance date specified in § 63.7495.

[78 FR 7164, Jan. 31, 2013]

§ 63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?

- (a) You must conduct all applicable performance tests according to § 63.7520 on an annual basis, except as specified in paragraphs (b) through (e), (g), and (h) of this section. Annual performance tests must be completed no more than 13 months after the previous performance test, except as specified in paragraphs (b) through (e), (g), and (h) of this section.
- (b) If your performance tests for a given pollutant for at least 2 consecutive years show that your emissions are at or below 75 percent of the emission limit (or, in limited instances as specified in Tables 1 and 2 or 11 through 13 to this subpart, at or below the emission limit) for the pollutant, and if there are no changes in the operation of the individual boiler or process heater or air pollution control equipment that could increase emissions, you may choose to conduct performance tests for the pollutant every third year. Each such performance test must be conducted no more than 37 months after the previous performance test. If you elect to demonstrate compliance using emission averaging under § 63.7522, you must continue to conduct performance tests annually. The requirement to test at maximum chloride input level is waived unless the stack test is conducted for HCl. The requirement to test at maximum TSM input level is waived unless the stack test is conducted for TSM.
- (c) If a performance test shows emissions exceeded the emission limit or 75 percent of the emission limit (as specified in Tables 1 and 2 or 11 through 13 to this subpart) for a pollutant, you must conduct annual performance tests for that pollutant until all performance tests over a consecutive 2-year period meet the required level (at or below 75 percent of the emission limit, as specified in Tables 1 and 2 or 11 through 13 to this subpart).
- (d) If you are required to meet an applicable tune-up work practice standard, you must conduct an annual, biennial, or 5-year performance tune-up according to § 63.7540(a)(10), (11), or (12), respectively. Each annual tune-up specified in § 63.7540(a)(10) must be no more than 13 months after the previous tune-up. Each biennial tune-up specified in § 63.7540(a)(11) must be conducted no more than 25 months after the previous tune-up. Each 5-year tune-up specified in § 63.7540(a)(12) must be conducted no more than 61 months after the previous tune-up. For a new or reconstructed affected source (as defined in § 63.7490), the first annual, biennial, or 5-year tune-up must be no later than 13 months, 25 months, or 61 months, respectively, after the initial startup of the new or reconstructed affected source.
- (e) If you demonstrate compliance with the mercury, HCl, or TSM based on fuel analysis, you must conduct a monthly fuel analysis according to § 63.7521 for each type of fuel burned that is subject to an emission limit in Tables 1, 2, or 11 through 13 to this subpart. You may comply with this monthly requirement by completing the fuel analysis any time within the calendar month as long as the analysis is separated from the previous analysis by at least 14 calendar days. If you burn a new type of fuel, you must conduct a fuel analysis before burning the new type of fuel in your boiler or process heater. You must still meet all applicable continuous compliance requirements in § 63.7540. If each of 12 consecutive monthly fuel analyses demonstrates 75 percent or less of the compliance level, you may decrease the fuel analysis frequency to quarterly for that fuel. If any quarterly sample exceeds 75 percent of the compliance level or you begin burning a new type of fuel, you must return to monthly monitoring for that fuel, until 12 months of fuel analyses are again less than 75 percent of the compliance level.
- (f) You must report the results of performance tests and the associated fuel analyses within 60 days after the completion of the performance tests. This report must also verify that the operating limits for each boiler or process

Page 10 of 95 T003-30777-00269

heater have not changed or provide documentation of revised operating limits established according to § 63.7530 and Table 7 to this subpart, as applicable. The reports for all subsequent performance tests must include all applicable information required in § 63.7550.

- (g) For affected sources (as defined in § 63.7490) that have not operated since the previous compliance demonstration and more than one year has passed since the previous compliance demonstration, you must complete the subsequent compliance demonstration, if subject to the emission limits in Tables 1, 2, or 11 through 13 to this subpart, no later than 180 days after the re-start of the affected source and according to the applicable provisions in § 63.7(a)(2) as cited in Table 10 to this subpart. You must complete a subsequent tune-up by following the procedures described in § 63.7540(a)(10)(i) through (vi) and the schedule described in § 63.7540(a)(13) for units that are not operating at the time of their scheduled tune-up.
- (h) If your affected boiler or process heater is in the unit designed to burn light liquid subcategory and you combust ultra low sulfur liquid fuel, you do not need to conduct further performance tests if the pollutants measured during the initial compliance performance tests meet the emission limits in Tables 1 or 2 of this subpart providing you demonstrate ongoing compliance with the emissions limits by monitoring and recording the type of fuel combusted on a monthly basis. If you intend to use a fuel other than ultra low sulfur liquid fuel, natural gas, refinery gas, or other gas 1 fuel, you must conduct new performance tests within 60 days of burning the new fuel type.
- (i) If you operate a CO CEMS that meets the Performance Specifications outlined in § 63.7525(a)(3) of this subpart to demonstrate compliance with the applicable alternative CO CEMS emission standard listed in Tables 1, 2, or 11 through 13 to this subpart, you are not required to conduct CO performance tests and are not subject to the oxygen concentration operating limit requirement specified in § 63.7510(a).

[78 FR 7165, Jan. 31, 2013]

§ 63.7520 What stack tests and procedures must I use?

- (a) You must conduct all performance tests according to § 63.7(c), (d), (f), and (h). You must also develop a site-specific stack test plan according to the requirements in § 63.7(c). You shall conduct all performance tests under such conditions as the Administrator specifies to you based on the representative performance of each boiler or process heater for the period being tested. Upon request, you shall make available to the Administrator such records as may be necessary to determine the conditions of the performance tests.
- (b) You must conduct each performance test according to the requirements in Table 5 to this subpart.
- (c) You must conduct each performance test under the specific conditions listed in Tables 5 and 7 to this subpart. You must conduct performance tests at representative operating load conditions while burning the type of fuel or mixture of fuels that has the highest content of chlorine and mercury, and TSM if you are opting to comply with the TSM alternative standard and you must demonstrate initial compliance and establish your operating limits based on these performance tests. These requirements could result in the need to conduct more than one performance test. Following each performance test and until the next performance test, you must comply with the operating limit for operating load conditions specified in Table 4 to this subpart.
- (d) You must conduct a minimum of three separate test runs for each performance test required in this section, as specified in § 63.7(e)(3). Each test run must comply with the minimum applicable sampling times or volumes specified in Tables 1 and 2 or 11 through 13 to this subpart.
- (e) To determine compliance with the emission limits, you must use the F-Factor methodology and equations in sections 12.2 and 12.3 of EPA Method 19 at 40 CFR part 60, appendix A-7 of this chapter to convert the measured particulate matter (PM) concentrations, the measured HCl concentrations, the measured mercury concentrations, and the measured TSM concentrations that result from the performance test to pounds per million Btu heat input emission rates.
- (f) Except for a 30-day rolling average based on CEMS (or sorbent trap monitoring system) data, if measurement results for any pollutant are reported as below the method detection level (e.g., laboratory analytical results for one or more sample components are below the method defined analytical detection level), you must use the method detection level as the measured emissions level for that pollutant in calculating compliance. The measured result for

Page 11 of 95 T003-30777-00269

a multiple component analysis (e.g., analytical values for multiple Method 29 fractions both for individual HAP metals and for total HAP metals) may include a combination of method detection level data and analytical data reported above the method detection level.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7166, Jan. 31, 2013]

§ 63.7521 What fuel analyses, fuel specification, and procedures must I use?

- (a) For solid and liquid fuels, you must conduct fuel analyses for chloride and mercury according to the procedures in paragraphs (b) through (e) of this section and Table 6 to this subpart, as applicable. For solid fuels and liquid fuels, you must also conduct fuel analyses for TSM if you are opting to comply with the TSM alternative standard. For gas 2 (other) fuels, you must conduct fuel analyses for mercury according to the procedures in paragraphs (b) through (e) of this section and Table 6 to this subpart, as applicable. (For gaseous fuels, you may not use fuel analyses to comply with the TSM alternative standard or the HCl standard.) For purposes of complying with this section, a fuel gas system that consists of multiple gaseous fuels collected and mixed with each other is considered a single fuel type and sampling and analysis is only required on the combined fuel gas system that will feed the boiler or process heater. Sampling and analysis of the individual gaseous streams prior to combining is not required. You are not required to conduct fuel analyses for fuels used for only startup, unit shutdown, and transient flame stability purposes. You are required to conduct fuel analyses only for fuels and units that are subject to emission limits for mercury, HCl, or TSM in Tables 1 and 2 or 11 through 13 to this subpart. Gaseous and liquid fuels are exempt from the sampling requirements in paragraphs (c) and (d) of this section and Table 6 to this subpart.
- (b) You must develop a site-specific fuel monitoring plan according to the following procedures and requirements in paragraphs (b)(1) and (2) of this section, if you are required to conduct fuel analyses as specified in § 63.7510.
- (1) If you intend to use an alternative analytical method other than those required by Table 6 to this subpart, you must submit the fuel analysis plan to the Administrator for review and approval no later than 60 days before the date that you intend to conduct the initial compliance demonstration described in § 63.7510.
- (2) You must include the information contained in paragraphs (b)(2)(i) through (vi) of this section in your fuel analysis plan.
- (i) The identification of all fuel types anticipated to be burned in each boiler or process heater.
- (ii) For each anticipated fuel type, the notification of whether you or a fuel supplier will be conducting the fuel analysis.
- (iii) For each anticipated fuel type, a detailed description of the sample location and specific procedures to be used for collecting and preparing the composite samples if your procedures are different from paragraph (c) or (d) of this section. Samples should be collected at a location that most accurately represents the fuel type, where possible, at a point prior to mixing with other dissimilar fuel types.
- (iv) For each anticipated fuel type, the analytical methods from Table 6, with the expected minimum detection levels, to be used for the measurement of chlorine or mercury.
- (v) If you request to use an alternative analytical method other than those required by Table 6 to this subpart, you must also include a detailed description of the methods and procedures that you are proposing to use. Methods in Table 6 shall be used until the requested alternative is approved.
- (vi) If you will be using fuel analysis from a fuel supplier in lieu of site-specific sampling and analysis, the fuel supplier must use the analytical methods required by Table 6 to this subpart.
- (c) At a minimum, you must obtain three composite fuel samples for each fuel type according to the procedures in paragraph (c)(1) or (2) of this section, or the methods listed in Table 6 to this subpart, or use an automated sampling mechanism that provides representative composite fuel samples for each fuel type that includes both coarse and fine material.

- (1) If sampling from a belt (or screw) feeder, collect fuel samples according to paragraphs (c)(1)(i) and (ii) of this section.
- (i) Stop the belt and withdraw a 6-inch wide sample from the full cross-section of the stopped belt to obtain a minimum two pounds of sample. You must collect all the material (fines and coarse) in the full cross-section. You must transfer the sample to a clean plastic bag.
- (ii) Each composite sample will consist of a minimum of three samples collected at approximately equal one-hour intervals during the testing period for sampling during performance stack testing. For monthly sampling, each composite sample shall be collected at approximately equal 10-day intervals during the month.
- (2) If sampling from a fuel pile or truck, you must collect fuel samples according to paragraphs (c)(2)(i) through (iii) of this section.
- (i) For each composite sample, you must select a minimum of five sampling locations uniformly spaced over the surface of the pile.
- (ii) At each sampling site, you must dig into the pile to a uniform depth of approximately 18 inches. You must insert a clean shovel into the hole and withdraw a sample, making sure that large pieces do not fall off during sampling; use the same shovel to collect all samples.
- (iii) You must transfer all samples to a clean plastic bag for further processing.
- (d) You must prepare each composite sample according to the procedures in paragraphs (d)(1) through (7) of this section.
- (1) You must thoroughly mix and pour the entire composite sample over a clean plastic sheet.
- (2) You must break large sample pieces (e.g., larger than 3 inches) into smaller sizes.
- (3) You must make a pie shape with the entire composite sample and subdivide it into four equal parts.
- (4) You must separate one of the quarter samples as the first subset.
- (5) If this subset is too large for grinding, you must repeat the procedure in paragraph (d)(3) of this section with the quarter sample and obtain a one-quarter subset from this sample.
- (6) You must grind the sample in a mill.
- (7) You must use the procedure in paragraph (d)(3) of this section to obtain a one-quarter subsample for analysis. If the quarter sample is too large, subdivide it further using the same procedure.
- (e) You must determine the concentration of pollutants in the fuel (mercury and/or chlorine and/or TSM) in units of pounds per million Btu of each composite sample for each fuel type according to the procedures in Table 6 to this subpart, for use in Equations 7, 8, and 9 of this subpart.
- (f) To demonstrate that a gaseous fuel other than natural gas or refinery gas qualifies as an other gas 1 fuel, as defined in § 63.7575, you must conduct a fuel specification analyses for mercury according to the procedures in paragraphs (g) through (i) of this section and Table 6 to this subpart, as applicable, except as specified in paragraph (f)(1) through (4) of this section.
- (1) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for natural gas or refinery gas.
- (2) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for gaseous fuels that are subject to another subpart of this part, part 60, part 61, or part 65.

- (3) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section on gaseous fuels for units that are complying with the limits for units designed to burn gas 2 (other) fuels.
- (4) You are not required to conduct the fuel specification analyses in paragraphs (g) through (i) of this section for gas streams directly derived from natural gas at natural gas production sites or natural gas plants.
- (g) You must develop and submit a site-specific fuel analysis plan for other gas 1 fuels to the EPA Administrator for review and approval according to the following procedures and requirements in paragraphs (g)(1) and (2) of this section.
- (1) If you intend to use an alternative analytical method other than those required by Table 6 to this subpart, you must submit the fuel analysis plan to the Administrator for review and approval no later than 60 days before the date that you intend to conduct the initial compliance demonstration described in § 63.7510.
- (2) You must include the information contained in paragraphs (g)(2)(i) through (vi) of this section in your fuel analysis plan.
- (i) The identification of all gaseous fuel types other than those exempted from fuel specification analysis under (f)(1) through (3) of this section anticipated to be burned in each boiler or process heater.
- (ii) For each anticipated fuel type, the notification of whether you or a fuel supplier will be conducting the fuel specification analysis.
- (iii) For each anticipated fuel type, a detailed description of the sample location and specific procedures to be used for collecting and preparing the samples if your procedures are different from the sampling methods contained in Table 6 to this subpart. Samples should be collected at a location that most accurately represents the fuel type, where possible, at a point prior to mixing with other dissimilar fuel types. If multiple boilers or process heaters are fueled by a common fuel stream it is permissible to conduct a single gas specification at the common point of gas distribution.
- (iv) For each anticipated fuel type, the analytical methods from Table 6 to this subpart, with the expected minimum detection levels, to be used for the measurement of mercury.
- (v) If you request to use an alternative analytical method other than those required by Table 6 to this subpart, you must also include a detailed description of the methods and procedures that you are proposing to use. Methods in Table 6 to this subpart shall be used until the requested alternative is approved.
- (vi) If you will be using fuel analysis from a fuel supplier in lieu of site-specific sampling and analysis, the fuel supplier must use the analytical methods required by Table 6 to this subpart.
- (h) You must obtain a single fuel sample for each fuel type according to the sampling procedures listed in Table 6 for fuel specification of gaseous fuels.
- (i) You must determine the concentration in the fuel of mercury, in units of microgram per cubic meter, dry basis, of each sample for each other gas 1 fuel type according to the procedures in Table 6 to this subpart.

[78 FR 7167, Jan. 31, 2013]

§ 63.7522 Can I use emissions averaging to comply with this subpart?

(a) As an alternative to meeting the requirements of § 63.7500 for PM (or TSM), HCl, or mercury on a boiler or process heater-specific basis, if you have more than one existing boiler or process heater in any subcategories located at your facility, you may demonstrate compliance by emissions averaging, if your averaged emissions are not more than 90 percent of the applicable emission limit, according to the procedures in this section. You may not include new boilers or process heaters in an emissions average.

- (b) For a group of two or more existing boilers or process heaters in the same subcategory that each vent to a separate stack, you may average PM (or TSM), HCI, or mercury emissions among existing units to demonstrate compliance with the limits in Table 2 to this subpart as specified in paragraph (b)(1) through (3) of this section, if you satisfy the requirements in paragraphs (c) through (g) of this section.
- (1) You may average units using a CEMS or PM CPMS for demonstrating compliance.
- (2) For mercury and HCI, averaging is allowed as follows:
- (i) You may average among units in any of the solid fuel subcategories.
- (ii) You may average among units in any of the liquid fuel subcategories.
- (iii) You may average among units in a subcategory of units designed to burn gas 2 (other) fuels.
- (iv) You may not average across the units designed to burn liquid, units designed to burn solid fuel, and units designed to burn gas 2 (other) subcategories.
- (3) For PM (or TSM), averaging is only allowed between units within each of the following subcategories and you may not average across subcategories:
- (i) Units designed to burn coal/solid fossil fuel.
- (ii) Stokers/sloped grate/other units designed to burn kiln dried biomass/bio-based solids.
- (iii) Stokers/sloped grate/other units designed to burn wet biomass/bio-based solids.
- (iv) Fluidized bed units designed to burn biomass/bio-based solid.
- (v) Suspension burners designed to burn biomass/bio-based solid.
- (vi) Dutch ovens/pile burners designed to burn biomass/bio-based solid.
- (vii) Fuel Cells designed to burn biomass/bio-based solid.
- (viii) Hybrid suspension/grate burners designed to burn wet biomass/bio-based solid.
- (ix) Units designed to burn heavy liquid fuel.
- (x) Units designed to burn light liquid fuel.
- (xi) Units designed to burn liquid fuel that are non-continental units.
- (xii) Units designed to burn gas 2 (other) gases.
- (c) For each existing boiler or process heater in the averaging group, the emission rate achieved during the initial compliance test for the HAP being averaged must not exceed the emission level that was being achieved on January 31, 2013 or the control technology employed during the initial compliance test must not be less effective for the HAP being averaged than the control technology employed on January 31, 2013.
- (d) The averaged emissions rate from the existing boilers and process heaters participating in the emissions averaging option must not exceed 90 percent of the limits in Table 2 to this subpart at all times the affected units are operating following the compliance date specified in § 63.7495.

- (e) You must demonstrate initial compliance according to paragraph (e)(1) or (2) of this section using the maximum rated heat input capacity or maximum steam generation capacity of each unit and the results of the initial performance tests or fuel analysis.
- (1) You must use Equation 1a or 1b or 1c of this section to demonstrate that the PM (or TSM), HCl, or mercury emissions from all existing units participating in the emissions averaging option for that pollutant do not exceed the emission limits in Table 2 to this subpart. Use Equation 1a if you are complying with the emission limits on a heat input basis, use Equation 1b if you are complying with the emission limits on a steam generation (output) basis, and use Equation 1c if you are complying with the emission limits on a electric generation (output) basis.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times Hm) \div \sum_{i=1}^{n} Hm$$
 (Eq. 1a)

Where:

AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input.

Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in § 63.7530(c).

Hm = Maximum rated heat input capacity of unit, i, in units of million Btu per hour.

n = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times So) \div \sum_{i=1}^{n} So$$
 (Eq.1b)

Where:

AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of steam output.

Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of steam output. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in § 63.7530(c). If you are taking credit for energy conservation measures from a unit according to § 63.7533, use the adjusted emission level for that unit, Eadj, determined according to § 63.7533 for that unit.

So = Maximum steam output capacity of unit, i, in units of million Btu per hour, as defined in § 63.7575.

n = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

$$AveWeightedEmissions = 1.1 \times \sum_{i=1}^{n} (Er \times Eo) \div \sum_{i=1}^{n} Eo \qquad (Eq.1c)$$

Where:

AveWeightedEmissions = Average weighted emissions for PM (or TSM), HCl, or mercury, in units of pounds per megawatt hour.

Er = Emission rate (as determined during the initial compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per megawatt hour. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in § 63.7530(c). If you are taking credit for energy conservation measures from a unit according to § 63.7533, use the adjusted emission level for that unit, Eadj, determined according to § 63.7533 for that unit.

Eo = Maximum electric generating output capacity of unit, i, in units of megawatt hour, as defined in § 63.7575.

n = Number of units participating in the emissions averaging option.

- 1.1 = Required discount factor.
- (2) If you are not capable of determining the maximum rated heat input capacity of one or more boilers that generate steam, you may use Equation 2 of this section as an alternative to using Equation 1a of this section to demonstrate that the PM (or TSM), HCI, or mercury emissions from all existing units participating in the emissions averaging option do not exceed the emission limits for that pollutant in Table 2 to this subpart that are in pounds per million Btu of heat input.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times Sm \times Cfi) \Rightarrow \sum_{i=1}^{n} (Sm \times Cfi)$$
 (Eq. 2)

Where:

AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input.

Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM using the applicable equation in § 63.7530(c).

Sm = Maximum steam generation capacity by unit, i, in units of pounds per hour.

Cfi = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated for unit, i.

- 1.1 = Required discount factor.
- (f) After the initial compliance demonstration described in paragraph (e) of this section, you must demonstrate compliance on a monthly basis determined at the end of every month (12 times per year) according to paragraphs (f)(1) through (3) of this section. The first monthly period begins on the compliance date specified in § 63.7495. If the affected source elects to collect monthly data for up the 11 months preceding the first monthly period, these additional data points can be used to compute the 12-month rolling average in paragraph (f)(3) of this section.
- (1) For each calendar month, you must use Equation 3a or 3b or 3c of this section to calculate the average weighted emission rate for that month. Use Equation 3a and the actual heat input for the month for each existing unit participating in the emissions averaging option if you are complying with emission limits on a heat input basis. Use Equation 3b and the actual steam generation for the month if you are complying with the emission limits on a steam generation (output) basis. Use Equation 3c and the actual steam generation for the month if you are complying with the emission limits on a electrical generation (output) basis.

$$AveWeightedEmissions = 1.1 \times \sum_{i=1}^{n} (Er \times Hb) \div \sum_{i=1}^{n} Hb$$
 (Eq. 3a)

Where:

AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input, for that calendar month.

Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart.

Hb = The heat input for that calendar month to unit, i, in units of million Btu.

n = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times So) \div \sum_{i=1}^{n} So$$
 (Eq. 3b)

Where:

AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of steam output, for that calendar month.

Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of steam output. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart. If you are taking credit for energy conservation measures from a unit according to \S 63.7533, use the adjusted emission level for that unit, E_{adj} , determined according to \S 63.7533 for that unit

So = The steam output for that calendar month from unit, i, in units of million Btu, as defined in § 63.7575.

n = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times Eo) \div \sum_{i=1}^{n} Eo$$
 (Eq. 3c)

Where:

AveWeightedEmissions = Average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per megawatt hour, for that calendar month.

Er = Emission rate (as determined during the most recent compliance demonstration) of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per megawatt hour. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart. If you are taking credit for energy conservation measures from a unit according to § 63.7533, use the adjusted emission level for that unit, E_{adj} , determined according to § 63.7533 for that unit.

Eo = The electric generating output for that calendar month from unit, i, in units of megawatt hour, as defined in § 63.7575.

n = Number of units participating in the emissions averaging option.

1.1 = Required discount factor.

(2) If you are not capable of monitoring heat input, you may use Equation 4 of this section as an alternative to using Equation 3a of this section to calculate the average weighted emission rate using the actual steam generation from the boilers participating in the emissions averaging option.

AveWeightedEmissions =
$$1.1 \times \sum_{i=1}^{n} (Er \times Sa \times Cfi) \div \sum_{i=1}^{n} (Sa \times Cfi)$$
 (Eq. 4)

Where:

AveWeightedEmissions = average weighted emission level for PM (or TSM), HCl, or mercury, in units of pounds per million Btu of heat input for that calendar month.

Er = Emission rate (as determined during the most recent compliance demonstration of PM (or TSM), HCl, or mercury from unit, i, in units of pounds per million Btu of heat input. Determine the emission rate for PM (or TSM), HCl, or mercury by performance testing according to Table 5 to this subpart, or by fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart.

Sa = Actual steam generation for that calendar month by boiler, i, in units of pounds.

Cfi = Conversion factor, as calculated during the most recent compliance test, in units of million Btu of heat input per pounds of steam generated for boiler, i.

1.1 = Required discount factor.

(3) Until 12 monthly weighted average emission rates have been accumulated, calculate and report only the average weighted emission rate determined under paragraph (f)(1) or (2) of this section for each calendar month. After 12 monthly weighted average emission rates have been accumulated, for each subsequent calendar month, use Equation 5 of this section to calculate the 12-month rolling average of the monthly weighted average emission rates for the current calendar month and the previous 11 calendar months.

$$Eavg = \sum_{i=1}^{n} ERi + 12$$
 (Eq. 5)

Where:

Eavg = 12-month rolling average emission rate, (pounds per million Btu heat input)

ERi = Monthly weighted average, for calendar month "i" (pounds per million Btu heat input), as calculated by paragraph (f)(1) or (2) of this section.

- (g) You must develop, and submit upon request to the applicable Administrator for review and approval, an implementation plan for emission averaging according to the following procedures and requirements in paragraphs (g)(1) through (4) of this section.
- (1) You must submit the implementation plan no later than 180 days before the date that the facility intends to demonstrate compliance using the emission averaging option.
- (2) You must include the information contained in paragraphs (g)(2)(i) through (vii) of this section in your implementation plan for all emission sources included in an emissions average:
- (i) The identification of all existing boilers and process heaters in the averaging group, including for each either the applicable HAP emission level or the control technology installed as of January 31, 2013 and the date on which you are requesting emission averaging to commence;

- (ii) The process parameter (heat input or steam generated) that will be monitored for each averaging group;
- (iii) The specific control technology or pollution prevention measure to be used for each emission boiler or process heater in the averaging group and the date of its installation or application. If the pollution prevention measure reduces or eliminates emissions from multiple boilers or process heaters, the owner or operator must identify each boiler or process heater;
- (iv) The test plan for the measurement of PM (or TSM), HCl, or mercury emissions in accordance with the requirements in § 63.7520;
- (v) The operating parameters to be monitored for each control system or device consistent with § 63.7500 and Table 4, and a description of how the operating limits will be determined;
- (vi) If you request to monitor an alternative operating parameter pursuant to § 63.7525, you must also include:
- (A) A description of the parameter(s) to be monitored and an explanation of the criteria used to select the parameter(s); and
- (B) A description of the methods and procedures that will be used to demonstrate that the parameter indicates proper operation of the control device; the frequency and content of monitoring, reporting, and recordkeeping requirements; and a demonstration, to the satisfaction of the Administrator, that the proposed monitoring frequency is sufficient to represent control device operating conditions; and
- (vii) A demonstration that compliance with each of the applicable emission limit(s) will be achieved under representative operating load conditions. Following each compliance demonstration and until the next compliance demonstration, you must comply with the operating limit for operating load conditions specified in Table 4 to this subpart.
- (3) The Administrator shall review and approve or disapprove the plan according to the following criteria:
- (i) Whether the content of the plan includes all of the information specified in paragraph (g)(2) of this section; and
- (ii) Whether the plan presents sufficient information to determine that compliance will be achieved and maintained.
- (4) The applicable Administrator shall not approve an emission averaging implementation plan containing any of the following provisions:
- (i) Any averaging between emissions of differing pollutants or between differing sources; or
- (ii) The inclusion of any emission source other than an existing unit in the same subcategories.
- (h) For a group of two or more existing affected units, each of which vents through a single common stack, you may average PM (or TSM), HCl, or mercury emissions to demonstrate compliance with the limits for that pollutant in Table 2 to this subpart if you satisfy the requirements in paragraph (i) or (j) of this section.
- (i) For a group of two or more existing units in the same subcategories, each of which vents through a common emissions control system to a common stack, that does not receive emissions from units in other subcategories or categories, you may treat such averaging group as a single existing unit for purposes of this subpart and comply with the requirements of this subpart as if the group were a single unit.
- (j) For all other groups of units subject to the common stack requirements of paragraph (h) of this section, including situations where the exhaust of affected units are each individually controlled and then sent to a common stack, the owner or operator may elect to:

(1) Conduct performance tests according to procedures specified in § 63.7520 in the common stack if affected units from other subcategories vent to the common stack. The emission limits that the group must comply with are determined by the use of Equation 6 of this section.

$$En = \sum_{i=1}^{n} (ELi \times Hi) \div \sum_{i=1}^{n} Hi \qquad (Eq. 6)$$

Where:

En = HAP emission limit, pounds per million British thermal units (lb/MMBtu), parts per million (ppm), or nanograms per dry standard cubic meter (ng/dscm).

ELi = Appropriate emission limit from Table 2 to this subpart for unit i, in units of lb/MMBtu, ppm or ng/dscm.

Hi = Heat input from unit i, MMBtu.

- (2) Conduct performance tests according to procedures specified in § 63.7520 in the common stack. If affected units and non-affected units vent to the common stack, the non-affected units must be shut down or vented to a different stack during the performance test unless the facility determines to demonstrate compliance with the non-affected units venting to the stack; and
- (3) Meet the applicable operating limit specified in § 63.7540 and Table 8 to this subpart for each emissions control system (except that, if each unit venting to the common stack has an applicable opacity operating limit, then a single continuous opacity monitoring system may be located in the common stack instead of in each duct to the common stack).
- (k) The common stack of a group of two or more existing boilers or process heaters in the same subcategories subject to paragraph (h) of this section may be treated as a separate stack for purposes of paragraph (b) of this section and included in an emissions averaging group subject to paragraph (b) of this section.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7168, Jan. 31, 2013]

§ 63.7525 What are my monitoring, installation, operation, and maintenance requirements?

- (a) If your boiler or process heater is subject to a CO emission limit in Tables 1, 2, or 11 through 13 to this subpart, you must install, operate, and maintain an oxygen analyzer system, as defined in § 63.7575, or install, certify, operate and maintain continuous emission monitoring systems for CO and oxygen according to the procedures in paragraphs (a)(1) through (7) of this section.
- (1) Install the CO CEMS and oxygen analyzer by the compliance date specified in § 63.7495. The CO and oxygen levels shall be monitored at the same location at the outlet of the boiler or process heater.
- (2) To demonstrate compliance with the applicable alternative CO CEMS emission standard listed in Tables 1, 2, or 11 through 13 to this subpart, you must install, certify, operate, and maintain a CO CEMS and an oxygen analyzer according to the applicable procedures under Performance Specification 4, 4A, or 4B at 40 CFR part 60, appendix B, the site-specific monitoring plan developed according to § 63.7505(d), and the requirements in § 63.7540(a)(8) and paragraph (a) of this section. Any boiler or process heater that has a CO CEMS that is compliant with Performance Specification 4, 4A, or 4B at 40 CFR part 60, appendix B, a site-specific monitoring plan developed according to § 63.7505(d), and the requirements in § 63.7540(a)(8) and paragraph (a) of this section must use the CO CEMS to comply with the applicable alternative CO CEMS emission standard listed in Tables 1, 2, or 11 through 13 to this subpart.
- (i) You must conduct a performance evaluation of each CO CEMS according to the requirements in § 63.8(e) and according to Performance Specification 4, 4A, or 4B at 40 CFR part 60, appendix B.

- (ii) During each relative accuracy test run of the CO CEMS, you must be collect emission data for CO concurrently (or within a 30- to 60-minute period) by both the CO CEMS and by Method 10, 10A, or 10B at 40 CFR part 60, appendix A-4. The relative accuracy testing must be at representative operating conditions.
- (iii) You must follow the quality assurance procedures (e.g., quarterly accuracy determinations and daily calibration drift tests) of Procedure 1 of appendix F to part 60. The measurement span value of the CO CEMS must be two times the applicable CO emission limit, expressed as a concentration.
- (iv) Any CO CEMS that does not comply with § 63.7525(a) cannot be used to meet any requirement in this subpart to demonstrate compliance with a CO emission limit listed in Tables 1, 2, or 11 through 13 to this subpart.
- (v) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.
- (3) Complete a minimum of one cycle of CO and oxygen CEMS operation (sampling, analyzing, and data recording) for each successive 15-minute period. Collect CO and oxygen data concurrently. Collect at least four CO and oxygen CEMS data values representing the four 15-minute periods in an hour, or at least two 15-minute data values during an hour when CEMS calibration, quality assurance, or maintenance activities are being performed.
- (4) Reduce the CO CEMS data as specified in § 63.8(g)(2).
- (5) Calculate one-hour arithmetic averages, corrected to 3 percent oxygen from each hour of CO CEMS data in parts per million CO concentration. The one-hour arithmetic averages required shall be used to calculate the 30-day or 10-day rolling average emissions. Use Equation 19-19 in section 12.4.1 of Method 19 of 40 CFR part 60, appendix A-7 for calculating the average CO concentration from the hourly values.
- (6) For purposes of collecting CO data, operate the CO CEMS as specified in § 63.7535(b). You must use all the data collected during all periods in calculating data averages and assessing compliance, except that you must exclude certain data as specified in § 63.7535(c). Periods when CO data are unavailable may constitute monitoring deviations as specified in § 63.7535(d).
- (7) Operate an oxygen trim system with the oxygen level set no lower than the lowest hourly average oxygen concentration measured during the most recent CO performance test as the operating limit for oxygen according to Table 7 to this subpart.
- (b) If your boiler or process heater is in the unit designed to burn coal/solid fossil fuel subcategory or the unit designed to burn heavy liquid subcategory and has an average annual heat input rate greater than 250 MMBtu per hour from solid fossil fuel and/or heavy liquid, and you demonstrate compliance with the PM limit instead of the alternative TSM limit, you must install, certify, maintain, and operate a PM CPMS monitoring emissions discharged to the atmosphere and record the output of the system as specified in paragraphs (b)(1) through (4) of this section. As an alternative to use of a PM CPMS to demonstrate compliance with the PM limit, you may choose to use a PM CEMS. If you choose to use a PM CEMS to demonstrate compliance with the PM limit instead of the alternative TSM limit, you must install, certify, maintain, and operate a PM CEMS monitoring emissions discharged to the atmosphere and record the output of the system as specified in paragraph (b)(5) through (8) of this section. For other boilers or process heaters, you may elect to use a PM CPMS or PM CEMS operated in accordance with this section in lieu of using other CMS for monitoring PM compliance (e.g., bag leak detectors, ESP secondary power, PM scrubber pressure). Owners of boilers and process heaters who elect to comply with the alternative TSM limit are not required to install a PM CPMS.
- (1) Install, certify, operate, and maintain your PM CPMS according to the procedures in your approved site-specific monitoring plan developed in accordance with § 63.7505(d), the requirements in § 63.7540(a)(9), and paragraphs (b)(1)(i) through (iii) of this section.
- (i) The operating principle of the PM CPMS must be based on in-stack or extractive light scatter, light scintillation, beta attenuation, or mass accumulation detection of PM in the exhaust gas or representative exhaust gas sample. The reportable measurement output from the PM CPMS must be expressed as milliamps.

- (ii) The PM CPMS must have a cycle time (i.e., period required to complete sampling, measurement, and reporting for each measurement) no longer than 60 minutes.
- (iii) The PM CPMS must be capable of detecting and responding to PM concentrations of no greater than 0.5 milligram per actual cubic meter.
- (2) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.
- (3) Collect PM CPMS hourly average output data for all boiler or process heater operating hours except as indicated in § 63.7535(a) through (d). Express the PM CPMS output as milliamps.
- (4) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CPMS output data collected during all boiler or process heater operating hours (milliamps).
- (5) Install, certify, operate, and maintain your PM CEMS according to the procedures in your approved site-specific monitoring plan developed in accordance with § 63.7505(d), the requirements in § 63.7540(a)(9), and paragraphs (b)(5)(i) through (iv) of this section.
- (i) You shall conduct a performance evaluation of the PM CEMS according to the applicable requirements of § 60.8(e), and Performance Specification 11 at 40 CFR part 60, appendix B of this chapter.
- (ii) During each PM correlation testing run of the CEMS required by Performance Specification 11 at 40 CFR part 60, appendix B of this chapter, you shall collect PM and oxygen (or carbon dioxide) data concurrently (or within a 30-to 60-minute period) by both the CEMS and conducting performance tests using Method 5 at 40 CFR part 60, appendix A-3 or Method 17 at 40 CFR part 60, appendix A-6 of this chapter.
- (iii) You shall perform quarterly accuracy determinations and daily calibration drift tests in accordance with Procedure 2 at 40 CFR part 60, appendix F of this chapter. You must perform Relative Response Audits annually and perform Response Correlation Audits every 3 years.
- (iv) Within 60 days after the date of completing each CEMS relative accuracy test audit or performance test conducted to demonstrate compliance with this subpart, you must submit the relative accuracy test audit data and performance test data to the EPA by successfully submitting the data electronically into the EPA's Central Data Exchange by using the Electronic Reporting Tool (see http://www.epa.gov/ttn/chief/ert/erttool.html/).
- (6) For a new unit, complete the initial performance evaluation no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, complete the initial performance evaluation no later than July 29, 2016.
- (7) Collect PM CEMS hourly average output data for all boiler or process heater operating hours except as indicated in § 63.7535(a) through (d).
- (8) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CEMS output data collected during all boiler or process heater operating hours.
- (c) If you have an applicable opacity operating limit in this rule, and are not otherwise required or elect to install and operate a PM CPMS, PM CEMS, or a bag leak detection system, you must install, operate, certify and maintain each COMS according to the procedures in paragraphs (c)(1) through (7) of this section by the compliance date specified in § 63.7495.
- (1) Each COMS must be installed, operated, and maintained according to Performance Specification 1 at appendix B to part 60 of this chapter.
- (2) You must conduct a performance evaluation of each COMS according to the requirements in § 63.8(e) and according to Performance Specification 1 at appendix B to part 60 of this chapter.

- (3) As specified in § 63.8(c)(4)(i), each COMS must complete a minimum of one cycle of sampling and analyzing for each successive 10-second period and one cycle of data recording for each successive 6-minute period.
- (4) The COMS data must be reduced as specified in § 63.8(g)(2).
- (5) You must include in your site-specific monitoring plan procedures and acceptance criteria for operating and maintaining each COMS according to the requirements in § 63.8(d). At a minimum, the monitoring plan must include a daily calibration drift assessment, a quarterly performance audit, and an annual zero alignment audit of each COMS.
- (6) You must operate and maintain each COMS according to the requirements in the monitoring plan and the requirements of § 63.8(e). You must identify periods the COMS is out of control including any periods that the COMS fails to pass a daily calibration drift assessment, a quarterly performance audit, or an annual zero alignment audit. Any 6-minute period for which the monitoring system is out of control and data are not available for a required calculation constitutes a deviation from the monitoring requirements.
- (7) You must determine and record all the 6-minute averages (and daily block averages as applicable) collected for periods during which the COMS is not out of control.
- (d) If you have an operating limit that requires the use of a CMS other than a PM CPMS or COMS, you must install, operate, and maintain each CMS according to the procedures in paragraphs (d)(1) through (5) of this section by the compliance date specified in § 63.7495.
- (1) The CPMS must complete a minimum of one cycle of operation every 15-minutes. You must have a minimum of four successive cycles of operation, one representing each of the four 15-minute periods in an hour, to have a valid hour of data.
- (2) You must operate the monitoring system as specified in § 63.7535(b), and comply with the data calculation requirements specified in § 63.7535(c).
- (3) Any 15-minute period for which the monitoring system is out-of-control and data are not available for a required calculation constitutes a deviation from the monitoring requirements. Other situations that constitute a monitoring deviation are specified in § 63.7535(d).
- (4) You must determine the 30-day rolling average of all recorded readings, except as provided in § 63.7535(c).
- (5) You must record the results of each inspection, calibration, and validation check.
- (e) If you have an operating limit that requires the use of a flow monitoring system, you must meet the requirements in paragraphs (d) and (e)(1) through (4) of this section.
- (1) You must install the flow sensor and other necessary equipment in a position that provides a representative flow.
- (2) You must use a flow sensor with a measurement sensitivity of no greater than 2 percent of the design flow rate.
- (3) You must minimize, consistent with good engineering practices, the effects of swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
- (4) You must conduct a flow monitoring system performance evaluation in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
- (f) If you have an operating limit that requires the use of a pressure monitoring system, you must meet the requirements in paragraphs (d) and (f)(1) through (6) of this section.
- (1) Install the pressure sensor(s) in a position that provides a representative measurement of the pressure (e.g. , PM scrubber pressure drop).

- (2) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion consistent with good engineering practices.
- (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of water or a minimum tolerance of 1 percent of the pressure monitoring system operating range, whichever is less.
- (4) Perform checks at least once each process operating day to ensure pressure measurements are not obstructed (*e.g.*, check for pressure tap pluggage daily).
- (5) Conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
- (6) If at any time the measured pressure exceeds the manufacturer's specified maximum operating pressure range, conduct a performance evaluation of the pressure monitoring system in accordance with your monitoring plan and confirm that the pressure monitoring system continues to meet the performance requirements in you monitoring plan. Alternatively, install and verify the operation of a new pressure sensor.
- (g) If you have an operating limit that requires a pH monitoring system, you must meet the requirements in paragraphs (d) and (g)(1) through (4) of this section.
- (1) Install the pH sensor in a position that provides a representative measurement of scrubber effluent pH.
- (2) Ensure the sample is properly mixed and representative of the fluid to be measured.
- (3) Conduct a performance evaluation of the pH monitoring system in accordance with your monitoring plan at least once each process operating day.
- (4) Conduct a performance evaluation (including a two-point calibration with one of the two buffer solutions having a pH within 1 of the pH of the operating limit) of the pH monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than quarterly.
- (h) If you have an operating limit that requires a secondary electric power monitoring system for an electrostatic precipitator (ESP) operated with a wet scrubber, you must meet the requirements in paragraphs (h)(1) and (2) of this section.
- (1) Install sensors to measure (secondary) voltage and current to the precipitator collection plates.
- (2) Conduct a performance evaluation of the electric power monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
- (i) If you have an operating limit that requires the use of a monitoring system to measure sorbent injection rate (e.g., weigh belt, weigh hopper, or hopper flow measurement device), you must meet the requirements in paragraphs (d) and (i)(1) through (2) of this section.
- (1) Install the system in a position(s) that provides a representative measurement of the total sorbent injection rate.
- (2) Conduct a performance evaluation of the sorbent injection rate monitoring system in accordance with your monitoring plan at the time of each performance test but no less frequently than annually.
- (j) If you are not required to use a PM CPMS and elect to use a fabric filter bag leak detection system to comply with the requirements of this subpart, you must install, calibrate, maintain, and continuously operate the bag leak detection system as specified in paragraphs (j)(1) through (6) of this section.
- (1) You must install a bag leak detection sensor(s) in a position(s) that will be representative of the relative or absolute PM loadings for each exhaust stack, roof vent, or compartment (e.g., for a positive pressure fabric filter) of the fabric filter.

- (2) Conduct a performance evaluation of the bag leak detection system in accordance with your monitoring plan and consistent with the guidance provided in EPA-454/R-98-015 (incorporated by reference, see § 63.14).
- (3) Use a bag leak detection system certified by the manufacturer to be capable of detecting PM emissions at concentrations of 10 milligrams per actual cubic meter or less.
- (4) Use a bag leak detection system equipped with a device to record continuously the output signal from the sensor.
- (5) Use a bag leak detection system equipped with a system that will alert plant operating personnel when an increase in relative PM emissions over a preset level is detected. The alert must easily recognizable (e.g., heard or seen) by plant operating personnel.
- (6) Where multiple bag leak detectors are required, the system's instrumentation and alert may be shared among detectors.
- (k) For each unit that meets the definition of limited-use boiler or process heater, you must keep fuel use records for the days the boiler or process heater was operating.
- (I) For each unit for which you decide to demonstrate compliance with the mercury or HCl emissions limits in Tables 1 or 2 or 11 through 13 of this subpart by use of a CEMS for mercury or HCl, you must install, certify, maintain, and operate a CEMS measuring emissions discharged to the atmosphere and record the output of the system as specified in paragraphs (I)(1) through (8) of this section. For HCl, this option for an affected unit takes effect on the date a final performance specification for a HCl CEMS is published in the FEDERAL REGISTER or the date of approval of a site-specific monitoring plan.
- (1) Notify the Administrator one month before starting use of the CEMS, and notify the Administrator one month before stopping use of the CEMS.
- (2) Each CEMS shall be installed, certified, operated, and maintained according to the requirements in $\S 63.7540(a)(14)$ for a mercury CEMS and $\S 63.7540(a)(15)$ for a HCI CEMS.
- (3) For a new unit, you must complete the initial performance evaluation of the CEMS by the latest of the dates specified in paragraph (I)(3)(i) through (iii) of this section.
- (i) No later than July 30, 2013.
- (ii) No later 180 days after the date of initial startup.
- (iii) No later 180 days after notifying the Administrator before starting to use the CEMS in place of performance testing or fuel analysis to demonstrate compliance.
- (4) For an existing unit, you must complete the initial performance evaluation by the latter of the two dates specified in paragraph (I)(4)(i) and (ii) of this section.
- (i) No later than July 29, 2016.
- (ii) No later 180 days after notifying the Administrator before starting to use the CEMS in place of performance testing or fuel analysis to demonstrate compliance.
- (5) Compliance with the applicable emissions limit shall be determined based on the 30-day rolling average of the hourly arithmetic average emissions rates using the continuous monitoring system outlet data. The 30-day rolling arithmetic average emission rate (lb/MMBtu) shall be calculated using the equations in EPA Reference Method 19 at 40 CFR part 60, appendix A-7, but substituting the mercury or HCl concentration for the pollutant concentrations normally used in Method 19.

- (6) Collect CEMS hourly averages for all operating hours on a 30-day rolling average basis. Collect at least four CMS data values representing the four 15-minute periods in an hour, or at least two 15-minute data values during an hour when CMS calibration, quality assurance, or maintenance activities are being performed.
- (7) The one-hour arithmetic averages required shall be expressed in lb/MMBtu and shall be used to calculate the boiler 30-day and 10-day rolling average emissions.
- (8) You are allowed to substitute the use of the PM, mercury or HCl CEMS for the applicable fuel analysis, annual performance test, and operating limits specified in Table 4 to this subpart to demonstrate compliance with the PM, mercury or HCl emissions limit, and if you are using an acid gas wet scrubber or dry sorbent injection control technology to comply with the HCl emission limit, you are allowed to substitute the use of a sulfur dioxide (SO₂) CEMS for the applicable fuel analysis, annual performance test, and operating limits specified in Table 4 to this subpart to demonstrate compliance with HCl emissions limit.
- (m) If your unit is subject to a HCl emission limit in Tables 1, 2, or 11 through 13 of this subpart and you have an acid gas wet scrubber or dry sorbent injection control technology and you use an SO₂ CEMS, you must install the monitor at the outlet of the boiler or process heater, downstream of all emission control devices, and you must install, certify, operate, and maintain the CEMS according to part 75 of this chapter.
- (1) The SO₂ CEMS must be installed by the compliance date specified in § 63.7495.
- (2) For on-going quality assurance (QA), the SO₂ CEMS must meet the applicable daily, quarterly, and semiannual or annual requirements in sections 2.1 through 2.3 of appendix B to part 75 of this chapter, with the following addition: You must perform the linearity checks required in section 2.2 of appendix B to part 75 of this chapter if the SO₂ CEMS has a span value of 30 ppm or less.
- (3) For a new unit, the initial performance evaluation shall be completed no later than July 30, 2013, or 180 days after the date of initial startup, whichever is later. For an existing unit, the initial performance evaluation shall be completed no later than July 29, 2016.
- (4) For purposes of collecting SO_2 data, you must operate the SO_2 CEMS as specified in § 63.7535(b). You must use all the data collected during all periods in calculating data averages and assessing compliance, except that you must exclude certain data as specified in § 63.7535(c). Periods when SO_2 data are unavailable may constitute monitoring deviations as specified in § 63.7535(d).
- (5) Collect CEMS hourly averages for all operating hours on a 30-day rolling average basis.
- (6) Use only unadjusted, quality-assured SO₂ concentration values in the emissions calculations; do not apply bias adjustment factors to the part 75 SO₂ data and do not use part 75 substitute data values.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7171, Jan. 31, 2013]

§ 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?

- (a) You must demonstrate initial compliance with each emission limit that applies to you by conducting initial performance tests and fuel analyses and establishing operating limits, as applicable, according to § 63.7520, paragraphs (b) and (c) of this section, and Tables 5 and 7 to this subpart. The requirement to conduct a fuel analysis is not applicable for units that burn a single type of fuel, as specified by § 63.7510(a)(2)(i). If applicable, you must also install, operate, and maintain all applicable CMS (including CEMS, COMS, and CPMS) according to § 63.7525.
- (b) If you demonstrate compliance through performance testing, you must establish each site-specific operating limit in Table 4 to this subpart that applies to you according to the requirements in § 63.7520, Table 7 to this subpart, and paragraph (b)(4) of this section, as applicable. You must also conduct fuel analyses according to § 63.7521 and establish maximum fuel pollutant input levels according to paragraphs (b)(1) through (3) of this section, as applicable, and as specified in § 63.7510(a)(2). (Note that § 63.7510(a)(2) exempts certain fuels from the fuel analysis requirements.) However, if you switch fuel(s) and cannot show that the new fuel(s) does (do) not increase the

Page 27 of 95 T003-30777-00269

chlorine, mercury, or TSM input into the unit through the results of fuel analysis, then you must repeat the performance test to demonstrate compliance while burning the new fuel(s).

- (1) You must establish the maximum chlorine fuel input (Clinput) during the initial fuel analysis according to the procedures in paragraphs (b)(1)(i) through (iii) of this section.
- (i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of chlorine.
- (ii) During the fuel analysis for hydrogen chloride, you must determine the fraction of the total heat input for each fuel type burned (Qi) based on the fuel mixture that has the highest content of chlorine, and the average chlorine concentration of each fuel type burned (Ci).
- (iii) You must establish a maximum chlorine input level using Equation 7 of this section.

$$Clinput = \sum_{i=1}^{n} (Ci \times Qi)$$
 (Eq. 7)

Where:

Clinput = Maximum amount of chlorine entering the boiler or process heater through fuels burned in units of pounds per million Btu.

Ci = Arithmetic average concentration of chlorine in fuel type, i, analyzed according to § 63.7521, in units of pounds per million Btu.

Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest content of chlorine. If you do not burn multiple fuel types during the performance testing, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.

n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of chlorine.

- (2) You must establish the maximum mercury fuel input level (Mercuryinput) during the initial fuel analysis using the procedures in paragraphs (b)(2)(i) through (iii) of this section.
- (i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of mercury.
- (ii) During the compliance demonstration for mercury, you must determine the fraction of total heat input for each fuel burned (Qi) based on the fuel mixture that has the highest content of mercury, and the average mercury concentration of each fuel type burned (HGi).
- (iii) You must establish a maximum mercury input level using Equation 8 of this section.

$$Mercuryinput = \sum_{i=1}^{n} (HGi \times Qi)$$
 (Eq. 8)

Where:

Mercuryinput = Maximum amount of mercury entering the boiler or process heater through fuels burned in units of pounds per million Btu.

HGi = Arithmetic average concentration of mercury in fuel type, i, analyzed according to § 63.7521, in units of pounds per million Btu.

- Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest mercury content. If you do not burn multiple fuel types during the performance test, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.
- n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of mercury.
- (3) If you opt to comply with the alternative TSM limit, you must establish the maximum TSM fuel input (TSMinput) for solid or liquid fuels during the initial fuel analysis according to the procedures in paragraphs (b)(3)(i) through (iii) of this section.
- (i) You must determine the fuel type or fuel mixture that you could burn in your boiler or process heater that has the highest content of TSM.
- (ii) During the fuel analysis for TSM, you must determine the fraction of the total heat input for each fuel type burned (Qi) based on the fuel mixture that has the highest content of TSM, and the average TSM concentration of each fuel type burned (TSMi).
- (iii) You must establish a maximum TSM input level using Equation 9 of this section.

$$TSMinput = \sum_{i=1}^{n} (TSMi \times Qi)$$
 (Eq. 9)

Where:

TSMinput = Maximum amount of TSM entering the boiler or process heater through fuels burned in units of pounds per million Btu.

TSMi = Arithmetic average concentration of TSM in fuel type, i, analyzed according to § 63.7521, in units of pounds per million Btu.

- Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest content of TSM. If you do not burn multiple fuel types during the performance testing, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.
- n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of TSM.
- (4) You must establish parameter operating limits according to paragraphs (b)(4)(i) through (ix) of this section. As indicated in Table 4 to this subpart, you are not required to establish and comply with the operating parameter limits when you are using a CEMS to monitor and demonstrate compliance with the applicable emission limit for that control device parameter.
- (i) For a wet acid gas scrubber, you must establish the minimum scrubber effluent pH and liquid flow rate as defined in § 63.7575, as your operating limits during the performance test during which you demonstrate compliance with your applicable limit. If you use a wet scrubber and you conduct separate performance tests for HCl and mercury emissions, you must establish one set of minimum scrubber effluent pH, liquid flow rate, and pressure drop operating limits. The minimum scrubber effluent pH operating limit must be established during the HCl performance test. If you conduct multiple performance tests, you must set the minimum liquid flow rate operating limit at the higher of the minimum values established during the performance tests.
- (ii) For any particulate control device (e.g., ESP, particulate wet scrubber, fabric filter) for which you use a PM CPMS, you must establish your PM CPMS operating limit and determine compliance with it according to paragraphs (b)(4)(ii)(A) through (F) of this section.
- (A) Determine your operating limit as the average PM CPMS output value recorded during the most recent performance test run demonstrating compliance with the filterable PM emission limit or at the PM CPMS output value

corresponding to 75 percent of the emission limit if your PM performance test demonstrates compliance below 75 percent of the emission limit. You must verify an existing or establish a new operating limit after each repeated performance test. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test.

- (1) Your PM CPMS must provide a 4-20 milliamp output and the establishment of its relationship to manual reference method measurements must be determined in units of milliamps.
- (2) Your PM CPMS operating range must be capable of reading PM concentrations from zero to a level equivalent to at least two times your allowable emission limit. If your PM CPMS is an auto-ranging instrument capable of multiple scales, the primary range of the instrument must be capable of reading PM concentration from zero to a level equivalent to two times your allowable emission limit.
- (3) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record and average all milliamp output values from the PM CPMS for the periods corresponding to the compliance test runs (e.g., average all your PM CPMS output values for three corresponding 2-hour Method 5I test runs).
- (B) If the average of your three PM performance test runs are below 75 percent of your PM emission limit, you must calculate an operating limit by establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the average PM CPMS values corresponding to the three compliance test runs, and the average PM concentration from the Method 5 or performance test with the procedures in paragraphs (b)(4)(ii)(B)(1) through (4) of this section.
- (1) Determine your instrument zero output with one of the following procedures:
- (*i*) Zero point data for *in-situ* instruments should be obtained by removing the instrument from the stack and monitoring ambient air on a test bench.
- (ii) Zero point data for *extractive* instruments should be obtained by removing the extractive probe from the stack and drawing in clean ambient air.
- (iii) The zero point may also be established by performing manual reference method measurements when the flue gas is free of PM emissions or contains very low PM concentrations (e.g., when your process is not operating, but the fans are operating or your source is combusting only natural gas) and plotting these with the compliance data to find the zero intercept.
- (*iv*) If none of the steps in paragraphs (b)(4)(ii)(B)(1)(i) through (*iii*) of this section are possible, you must use a zero output value provided by the manufacturer.
- (2) Determine your PM CPMS instrument average in milliamps, and the average of your corresponding three PM compliance test runs, using equation 10.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} X_{1i} \overline{y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$
 (Eq. 10)

Where:

 X_1 = the PM CPMS data points for the three runs constituting the performance test,

Y₁ = the PM concentration value for the three runs constituting the performance test, and

n = the number of data points.

(3) With your instrument zero expressed in milliamps, your three run average PM CPMS milliamp value, and your three run average PM concentration from your three compliance tests, determine a relationship of lb/MMBtu per milliamp with equation 11.

$$R = \frac{Y_1}{(X_1 - z)} \quad (Eq. 11)$$

Where:

R = the relative lb/MMBtu per milliamp for your PM CPMS,

 Y_1 = the three run average lb/MMBtu PM concentration,

 X_1 = the three run average milliamp output from you PM CPMS, and

z =the milliamp equivalent of your instrument zero determined from (B)(i).

(4) Determine your source specific 30-day rolling average operating limit using the lb/MMBtu per milliamp value from Equation 11 in equation 12, below. This sets your operating limit at the PM CPMS output value corresponding to 75 percent of your emission limit.

$$Q_i = E + \frac{0.78(1)}{R}$$
 (Eq. 12)

Where:

 O_1 = the operating limit for your PM CPMS on a 30-day rolling average, in milliamps.

L = your source emission limit expressed in lb/MMBtu,

z = your instrument zero in milliamps, determined from (B)(i), and

R = the relative lb/MMBtu per milliamp for your PM CPMS, from Equation 11.

(C) If the average of your three PM compliance test runs is at or above 75 percent of your PM emission limit you must determine your 30-day rolling average operating limit by averaging the PM CPMS milliamp output corresponding to your three PM performance test runs that demonstrate compliance with the emission limit using equation 13 and you must submit all compliance test and PM CPMS data according to the reporting requirements in paragraph (b)(4)(ii)(F) of this section.

$$O_{h} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad (Eq. 13)$$

Where:

 X_1 = the PM CPMS data points for all runs i,

n = the number of data points, and

O_h = your site specific operating limit, in milliamps.

(D) To determine continuous compliance, you must record the PM CPMS output data for all periods when the process is operating and the PM CPMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic

average operating parameter in units of the operating limit (milliamps) on a 30-day rolling average basis, updated at the end of each new operating hour. Use Equation 14 to determine the 30-day rolling average.

$$30-\text{day} = \frac{\sum_{i=1}^{n} Hpw}{n}$$
 (Eq. 14)

Where:

30-day = 30-day average.

Hpvi = is the hourly parameter value for hour i

n = is the number of valid hourly parameter values collected over the previous 720 operating hours.

- (E) Use EPA Method 5 of appendix A to part 60 of this chapter to determine PM emissions. For each performance test, conduct three separate runs under the conditions that exist when the affected source is operating at the highest load or capacity level reasonably expected to occur. Conduct each test run to collect a minimum sample volume specified in Tables 1, 2, or 11 through 13 to this subpart, as applicable, for determining compliance with a new source limit or an existing source limit. Calculate the average of the results from three runs to determine compliance. You need not determine the PM collected in the impingers ("back half") of the Method 5 particulate sampling train to demonstrate compliance with the PM standards of this subpart. This shall not preclude the permitting authority from requiring a determination of the "back half" for other purposes.
- (F) For PM performance test reports used to set a PM CPMS operating limit, the electronic submission of the test report must also include the make and model of the PM CPMS instrument, serial number of the instrument, analytical principle of the instrument (e.g. beta attenuation), span of the instruments primary analytical range, milliamp value equivalent to the instrument zero output, technique by which this zero value was determined, and the average milliamp signals corresponding to each PM compliance test run. (iii) For a particulate wet scrubber, you must establish the minimum pressure drop and liquid flow rate as defined in § 63.7575, as your operating limits during the three-run performance test during which you demonstrate compliance with your applicable limit. If you use a wet scrubber and you conduct separate performance tests for PM and TSM emissions, you must establish one set of minimum scrubber liquid flow rate and pressure drop operating limits. The minimum scrubber effluent pH operating limit must be established during the HCl performance test. If you conduct multiple performance tests, you must set the minimum liquid flow rate and pressure drop operating limits at the higher of the minimum values established during the performance tests.
- (iii) For an electrostatic precipitator (ESP) operated with a wet scrubber, you must establish the minimum total secondary electric power input, as defined in § 63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit. (These operating limits do not apply to ESP that are operated as dry controls without a wet scrubber.)
- (iv) For a dry scrubber, you must establish the minimum sorbent injection rate for each sorbent, as defined in § 63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit.
- (v) For activated carbon injection, you must establish the minimum activated carbon injection rate, as defined in § 63.7575, as your operating limit during the three-run performance test during which you demonstrate compliance with your applicable limit.
- (vi) The operating limit for boilers or process heaters with fabric filters that demonstrate continuous compliance through bag leak detection systems is that a bag leak detection system be installed according to the requirements in § 63.7525, and that each fabric filter must be operated such that the bag leak detection system alert is not activated more than 5 percent of the operating time during a 6-month period.
- (vii) For a minimum oxygen level, if you conduct multiple performance tests, you must set the minimum oxygen level at the lower of the minimum values established during the performance tests.

- (viii) The operating limit for boilers or process heaters that demonstrate continuous compliance with the HCl emission limit using a SO_2 CEMS is to install and operate the SO_2 according to the requirements in § 63.7525(m) establish a maximum SO_2 emission rate equal to the highest hourly average SO_2 measurement during the most recent three-run performance test for HCl.
- (c) If you elect to demonstrate compliance with an applicable emission limit through fuel analysis, you must conduct fuel analyses according to § 63.7521 and follow the procedures in paragraphs (c)(1) through (5) of this section.
- (1) If you burn more than one fuel type, you must determine the fuel mixture you could burn in your boiler or process heater that would result in the maximum emission rates of the pollutants that you elect to demonstrate compliance through fuel analysis.
- (2) You must determine the 90th percentile confidence level fuel pollutant concentration of the composite samples analyzed for each fuel type using the one-sided t-statistic test described in Equation 15 of this section.

$$P90 = mean + (SD \times t)$$
 (Eq. 15)

Where:

P90 = 90th percentile confidence level pollutant concentration, in pounds per million Btu.

Mean = Arithmetic average of the fuel pollutant concentration in the fuel samples analyzed according to § 63.7521, in units of pounds per million Btu.

- SD = Standard deviation of the mean of pollutant concentration in the fuel samples analyzed according to § 63.7521, in units of pounds per million Btu. SD is calculated as the sample standard deviation divided by the square root of the number of samples.
- t = t distribution critical value for 90th percentile (t_{0.1}) probability for the appropriate degrees of freedom (number of samples minus one) as obtained from a t-Distribution Critical Value Table.
- (3) To demonstrate compliance with the applicable emission limit for HCl, the HCl emission rate that you calculate for your boiler or process heater using Equation 16 of this section must not exceed the applicable emission limit for HCl.

$$HCl = \sum_{i=1}^{n} (Ci90 \times Qi \times 1.028)$$
 (Eq. 16)

Where:

HCI = HCI emission rate from the boiler or process heater in units of pounds per million Btu.

Ci90 = 90th percentile confidence level concentration of chlorine in fuel type, i, in units of pounds per million Btu as calculated according to Equation 11 of this section.

- Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest content of chlorine. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.
- n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest content of chlorine.
- 1.028 = Molecular weight ratio of HCl to chlorine.
- (4) To demonstrate compliance with the applicable emission limit for mercury, the mercury emission rate that you calculate for your boiler or process heater using Equation 17 of this section must not exceed the applicable emission limit for mercury.

$$Mercury = \sum_{i=1}^{n} (Hgi90 \times Qi)$$
 (Eq. 17)

Where:

Mercury = Mercury emission rate from the boiler or process heater in units of pounds per million Btu.

Hgi90 = 90th percentile confidence level concentration of mercury in fuel, i, in units of pounds per million Btu as calculated according to Equation 11 of this section.

Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest mercury content. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.

n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest mercury content.

(5) To demonstrate compliance with the applicable emission limit for TSM for solid or liquid fuels, the TSM emission rate that you calculate for your boiler or process heater from solid fuels using Equation 18 of this section must not exceed the applicable emission limit for TSM.

$$Metals = \sum_{i=1}^{n} (TSM90i \times Qi) \quad (Eq. 18)$$

Where:

Metals = TSM emission rate from the boiler or process heater in units of pounds per million Btu.

TSMi90 = 90th percentile confidence level concentration of TSM in fuel, i, in units of pounds per million Btu as calculated according to Equation 11 of this section.

Qi = Fraction of total heat input from fuel type, i, based on the fuel mixture that has the highest TSM content. If you do not burn multiple fuel types, it is not necessary to determine the value of this term. Insert a value of "1" for Qi.

n = Number of different fuel types burned in your boiler or process heater for the mixture that has the highest TSM content.

- (d) If you own or operate an existing unit with a heat input capacity of less than 10 million Btu per hour or a unit in the unit designed to burn gas 1 subcategory, you must submit a signed statement in the Notification of Compliance Status report that indicates that you conducted a tune-up of the unit.
- (e) You must include with the Notification of Compliance Status a signed certification that the energy assessment was completed according to Table 3 to this subpart and is an accurate depiction of your facility at the time of the assessment.
- (f) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.7545(e).
- (g) If you elect to demonstrate that a gaseous fuel meets the specifications of another gas 1 fuel as defined in § 63.7575, you must conduct an initial fuel specification analyses according to § 63.7521(f) through (i) and according to the frequency listed in § 63.7540(c) and maintain records of the results of the testing as outlined in § 63.7555(g). For samples where the initial mercury specification has not been exceeded, you will include a signed certification with the Notification of Compliance Status that the initial fuel specification test meets the gas specification outlined in the definition of other gas 1 fuels.

- (h) If you own or operate a unit subject to emission limits in Tables 1 or 2 or 11 through 13 to this subpart, you must meet the work practice standard according to Table 3 of this subpart. During startup and shutdown, you must only follow the work practice standards according to item 5 of Table 3 of this subpart.
- (i) If you opt to comply with the alternative SO₂ CEMS operating limit in Tables 4 and 8 to this subpart, you may do so only if your affected boiler or process heater:
- (1) Has a system using wet scrubber or dry sorbent injection and SO₂ CEMS installed on the unit; and
- (2) At all times, you operate the wet scrubber or dry sorbent injection for acid gas control on the unit consistent with § 63.7500(a)(3); and
- (3) You establish a unit-specific maximum SO₂ operating limit by collecting the minimum hourly SO₂ emission rate on the SO₂ CEMS during the paired 3-run test for HCl. The maximum SO₂ operating limit is equal to the highest hourly average SO₂ concentration measured during the most recent HCl performance test.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7174, Jan. 31, 2013]

§ 63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?

- (a) If you elect to comply with the alternative equivalent output-based emission limits, instead of the heat input-based limits listed in Table 2 to this subpart, and you want to take credit for implementing energy conservation measures identified in an energy assessment, you may demonstrate compliance using efficiency credits according to the procedures in this section. You may use this compliance approach for an existing affected boiler for demonstrating initial compliance according to § 63.7522(e) and for demonstrating monthly compliance according to § 63.7522(f). Owners or operators using this compliance approach must establish an emissions benchmark, calculate and document the efficiency credits, develop an Implementation Plan, comply with the general reporting requirements, and apply the efficiency credit according to the procedures in paragraphs (b) through (f) of this section. You cannot use this compliance approach for a new or reconstructed affected boiler. Additional guidance from the Department of Energy on efficiency credits is available at: http://www.epa.gov/ttn/atw/boiler/boilerpg.html .
- (b) For each existing affected boiler for which you intend to apply emissions credits, establish a benchmark from which emission reduction credits may be generated by determining the actual annual fuel heat input to the affected boiler before initiation of an energy conservation activity to reduce energy demand (*i.e.*, fuel usage) according to paragraphs (b)(1) through (4) of this section. The benchmark shall be expressed in trillion Btu per year heat input.
- (1) The benchmark from which efficiency credits may be generated shall be determined by using the most representative, accurate, and reliable process available for the source. The benchmark shall be established for a one-year period before the date that an energy demand reduction occurs, unless it can be demonstrated that a different time period is more representative of historical operations.
- (2) Determine the starting point from which to measure progress. Inventory all fuel purchased and generated on-site (off-gases, residues) in physical units (MMBtu, million cubic feet, etc.).
- (3) Document all uses of energy from the affected boiler. Use the most recent data available.
- (4) Collect non-energy related facility and operational data to normalize, if necessary, the benchmark to current operations, such as building size, operating hours, etc. If possible, use actual data that are current and timely rather than estimated data.
- (c) Efficiency credits can be generated if the energy conservation measures were implemented after January 1, 2008 and if sufficient information is available to determine the appropriate value of credits.
- (1) The following emission points cannot be used to generate efficiency credits:

- (i) Energy conservation measures implemented on or before January 1, 2008, unless the level of energy demand reduction is increased after January 1, 2008, in which case credit will be allowed only for change in demand reduction achieved after January 1, 2008.
- (ii) Efficiency credits on shut-down boilers. Boilers that are shut down cannot be used to generate credits unless the facility provides documentation linking the permanent shutdown to energy conservation measures identified in the energy assessment. In this case, the bench established for the affected boiler to which the credits from the shutdown will be applied must be revised to include the benchmark established for the shutdown boiler.
- (2) For all points included in calculating emissions credits, the owner or operator shall:
- (i) Calculate annual credits for all energy demand points. Use Equation 19 to calculate credits. Energy conservation measures that meet the criteria of paragraph (c)(1) of this section shall not be included, except as specified in paragraph (c)(1)(i) of this section.
- (3) Credits are generated by the difference between the benchmark that is established for each affected boiler, and the actual energy demand reductions from energy conservation measures implemented after January 1, 2008. Credits shall be calculated using Equation 19 of this section as follows:
- (i) The overall equation for calculating credits is:

$$ECredits = \left(\sum_{j=1}^{n} EIS_{inctrol}\right) + EI_{twiseline} \quad (Eq. 19)$$

Where:

ECredits = Energy Input Savings for all energy conservation measures implemented for an affected boiler, expressed as a decimal fraction of the baseline energy input.

EIS_{iactual} = Energy Input Savings for each energy conservation measure, i, implemented for an affected boiler, million Btu per year.

El_{baseline} = Energy Input baseline for the affected boiler, million Btu per year.

n = Number of energy conservation measures included in the efficiency credit for the affected boiler.

- (ii) [Reserved]
- (d) The owner or operator shall develop, and submit for approval upon request by the Administrator, an Implementation Plan containing all of the information required in this paragraph for all boilers to be included in an efficiency credit approach. The Implementation Plan shall identify all existing affected boilers to be included in applying the efficiency credits. The Implementation Plan shall include a description of the energy conservation measures implemented and the energy savings generated from each measure and an explanation of the criteria used for determining that savings. If requested, you must submit the implementation plan for efficiency credits to the Administrator for review and approval no later than 180 days before the date on which the facility intends to demonstrate compliance using the efficiency credit approach.
- (e) The emissions rate as calculated using Equation 20 of this section from each existing boiler participating in the efficiency credit option must be in compliance with the limits in Table 2 to this subpart at all times the affected unit is operating, following the compliance date specified in § 63.7495.
- (f) You must use Equation 20 of this section to demonstrate initial compliance by demonstrating that the emissions from the affected boiler participating in the efficiency credit compliance approach do not exceed the emission limits in Table 2 to this subpart.

$$E_{\alpha\beta} = E_{\alpha} \times (1 - ECredits)$$
 (Eq. 20)

Attachment D 40 CFR 63, Subpart DDDDD

Page 36 of 95 T003-30777-00269

Where:

E_{adj} = Emission level adjusted by applying the efficiency credits earned, lb per million Btu steam output (or lb per MWh) for the affected boiler.

E_m = Emissions measured during the performance test, lb per million Btu steam output (or lb per MWh) for the affected boiler.

ECredits = Efficiency credits from Equation 19 for the affected boiler.

(g) As part of each compliance report submitted as required under § 63.7550, you must include documentation that the energy conservation measures implemented continue to generate the credit for use in demonstrating compliance with the emission limits.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7178, Jan. 31, 2013]

Continuous Compliance Requirements

§ 63.7535 Is there a minimum amount of monitoring data I must obtain?

- (a) You must monitor and collect data according to this section and the site-specific monitoring plan required by § 63.7505(d).
- (b) You must operate the monitoring system and collect data at all required intervals at all times that each boiler or process heater is operating and compliance is required, except for periods of monitoring system malfunctions or out of control periods (see § 63.8(c)(7) of this part), and required monitoring system quality assurance or control activities, including, as applicable, calibration checks, required zero and span adjustments, and scheduled CMS maintenance as defined in your site-specific monitoring plan. A monitoring system malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring system failures that are caused in part by poor maintenance or careless operation are not malfunctions. You are required to complete monitoring system repairs in response to monitoring system malfunctions or out-of-control periods and to return the monitoring system to operation as expeditiously as practicable.
- (c) You may not use data recorded during monitoring system malfunctions or out-of-control periods, repairs associated with monitoring system malfunctions or out-of-control periods, or required monitoring system quality assurance or control activities in data averages and calculations used to report emissions or operating levels. You must record and make available upon request results of CMS performance audits and dates and duration of periods when the CMS is out of control to completion of the corrective actions necessary to return the CMS to operation consistent with your site-specific monitoring plan. You must use all the data collected during all other periods in assessing compliance and the operation of the control device and associated control system.
- (d) Except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits, calibration checks, and required zero and span adjustments), failure to collect required data is a deviation of the monitoring requirements. In calculating monitoring results, do not use any data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities. You must calculate monitoring results using all other monitoring data collected while the process is operating. You must report all periods when the monitoring system is out of control in your annual report.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7179, Jan. 31, 2013]

§ 63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?

- (a) You must demonstrate continuous compliance with each emission limit in Tables 1 and 2 or 11 through 13 to this subpart, the work practice standards in Table 3 to this subpart, and the operating limits in Table 4 to this subpart that applies to you according to the methods specified in Table 8 to this subpart and paragraphs (a)(1) through (19) of this section.
- (1) Following the date on which the initial compliance demonstration is completed or is required to be completed under §§ 63.7 and 63.7510, whichever date comes first, operation above the established maximum or below the established minimum operating limits shall constitute a deviation of established operating limits listed in Table 4 of this subpart except during performance tests conducted to determine compliance with the emission limits or to establish new operating limits. Operating limits must be confirmed or reestablished during performance tests.
- (2) As specified in § 63.7550(c), you must keep records of the type and amount of all fuels burned in each boiler or process heater during the reporting period to demonstrate that all fuel types and mixtures of fuels burned would result in either of the following:
- (i) Lower emissions of HCI, mercury, and TSM than the applicable emission limit for each pollutant, if you demonstrate compliance through fuel analysis.
- (ii) Lower fuel input of chlorine, mercury, and TSM than the maximum values calculated during the last performance test, if you demonstrate compliance through performance testing.
- (3) If you demonstrate compliance with an applicable HCl emission limit through fuel analysis for a solid or liquid fuel and you plan to burn a new type of solid or liquid fuel, you must recalculate the HCl emission rate using Equation 12 of § 63.7530 according to paragraphs (a)(3)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the HCl emission rate.
- (i) You must determine the chlorine concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to § 63.7521(b).
- (ii) You must determine the new mixture of fuels that will have the highest content of chlorine.
- (iii) Recalculate the HCl emission rate from your boiler or process heater under these new conditions using Equation 12 of § 63.7530. The recalculated HCl emission rate must be less than the applicable emission limit.
- (4) If you demonstrate compliance with an applicable HCl emission limit through performance testing and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the maximum chlorine input using Equation 7 of § 63.7530. If the results of recalculating the maximum chlorine input using Equation 7 of § 63.7530 are greater than the maximum chlorine input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in § 63.7520 to demonstrate that the HCl emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in § 63.7530(b). In recalculating the maximum chlorine input and establishing the new operating limits, you are not required to conduct fuel analyses for and include the fuels described in § 63.7510(a)(2)(i) through (iii).
- (5) If you demonstrate compliance with an applicable mercury emission limit through fuel analysis, and you plan to burn a new type of fuel, you must recalculate the mercury emission rate using Equation 13 of § 63.7530 according to the procedures specified in paragraphs (a)(5)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the mercury emission rate.
- (i) You must determine the mercury concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to § 63.7521(b).

- (ii) You must determine the new mixture of fuels that will have the highest content of mercury.
- (iii) Recalculate the mercury emission rate from your boiler or process heater under these new conditions using Equation 13 of § 63.7530. The recalculated mercury emission rate must be less than the applicable emission limit.
- (6) If you demonstrate compliance with an applicable mercury emission limit through performance testing, and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the maximum mercury input using Equation 8 of § 63.7530. If the results of recalculating the maximum mercury input using Equation 8 of § 63.7530 are higher than the maximum mercury input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in § 63.7520 to demonstrate that the mercury emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in § 63.7530(b). You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the mercury emission rate.
- (7) If your unit is controlled with a fabric filter, and you demonstrate continuous compliance using a bag leak detection system, you must initiate corrective action within 1 hour of a bag leak detection system alert and complete corrective actions as soon as practical, and operate and maintain the fabric filter system such that the periods which would cause an alert are no more than 5 percent of the operating time during a 6-month period. You must also keep records of the date, time, and duration of each alert, the time corrective action was initiated and completed, and a brief description of the cause of the alert and the corrective action taken. You must also record the percent of the operating time during each 6-month period that the conditions exist for an alert. In calculating this operating time percentage, if inspection of the fabric filter demonstrates that no corrective action is required, no alert time is counted. If corrective action is required, each alert shall be counted as a minimum of 1 hour. If you take longer than 1 hour to initiate corrective action, the alert time shall be counted as the actual amount of time taken to initiate corrective action.
- (8) To demonstrate compliance with the applicable alternative CO CEMS emission limit listed in Tables 1, 2, or 11 through 13 to this subpart, you must meet the requirements in paragraphs (a)(8)(i) through (iv) of this section.
- (i) Continuously monitor CO according to §§ 63.7525(a) and 63.7535.
- (ii) Maintain a CO emission level below or at your applicable alternative CO CEMS-based standard in Tables 1 or 2 or 11 through 13 to this subpart at all times the affected unit is operating.
- (iii) Keep records of CO levels according to § 63.7555(b).
- (iv) You must record and make available upon request results of CO CEMS performance audits, dates and duration of periods when the CO CEMS is out of control to completion of the corrective actions necessary to return the CO CEMS to operation consistent with your site-specific monitoring plan.
- (9) The owner or operator of a boiler or process heater using a PM CPMS or a PM CEMS to meet requirements of this subpart shall install, certify, operate, and maintain the PM CPMS or PM CEMS in accordance with your site-specific monitoring plan as required in § 63.7505(d).
- (10) If your boiler or process heater has a heat input capacity of 10 million Btu per hour or greater, you must conduct an annual tune-up of the boiler or process heater to demonstrate continuous compliance as specified in paragraphs (a)(10)(i) through (vi) of this section. This frequency does not apply to limited-use boilers and process heaters, as defined in § 63.7575, or units with continuous oxygen trim systems that maintain an optimum air to fuel ratio.
- (i) As applicable, inspect the burner, and clean or replace any components of the burner as necessary (you may delay the burner inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the burner inspection until the first outage, not to exceed 36 months from the previous inspection. At units where entry into a piece of process equipment or into a storage vessel is required to complete the tune-up inspections, inspections are required only during planned entries into the storage vessel or process equipment;
- (ii) Inspect the flame pattern, as applicable, and adjust the burner as necessary to optimize the flame pattern. The adjustment should be consistent with the manufacturer's specifications, if available;

- (iii) Inspect the system controlling the air-to-fuel ratio, as applicable, and ensure that it is correctly calibrated and functioning properly (you may delay the inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the inspection until the first outage, not to exceed 36 months from the previous inspection;
- (iv) Optimize total emissions of CO. This optimization should be consistent with the manufacturer's specifications, if available, and with any NO_X requirement to which the unit is subject;
- (v) Measure the concentrations in the effluent stream of CO in parts per million, by volume, and oxygen in volume percent, before and after the adjustments are made (measurements may be either on a dry or wet basis, as long as it is the same basis before and after the adjustments are made). Measurements may be taken using a portable CO analyzer; and
- (vi) Maintain on-site and submit, if requested by the Administrator, an annual report containing the information in paragraphs (a)(10)(vi)(A) through (C) of this section,
- (A) The concentrations of CO in the effluent stream in parts per million by volume, and oxygen in volume percent, measured at high fire or typical operating load, before and after the tune-up of the boiler or process heater;
- (B) A description of any corrective actions taken as a part of the tune-up; and
- (C) The type and amount of fuel used over the 12 months prior to the tune-up, but only if the unit was physically and legally capable of using more than one type of fuel during that period. Units sharing a fuel meter may estimate the fuel used by each unit.
- (11) If your boiler or process heater has a heat input capacity of less than 10 million Btu per hour (except as specified in paragraph (a)(12) of this section), you must conduct a biennial tune-up of the boiler or process heater as specified in paragraphs (a)(10)(i) through (vi) of this section to demonstrate continuous compliance.
- (12) If your boiler or process heater has a continuous oxygen trim system that maintains an optimum air to fuel ratio, or a heat input capacity of less than or equal to 5 million Btu per hour and the unit is in the units designed to burn gas 1; units designed to burn gas 2 (other); or units designed to burn light liquid subcategories, or meets the definition of limited-use boiler or process heater in § 63.7575, you must conduct a tune-up of the boiler or process heater every 5 years as specified in paragraphs (a)(10)(i) through (vi) of this section to demonstrate continuous compliance. You may delay the burner inspection specified in paragraph (a)(10)(i) of this section until the next scheduled or unscheduled unit shutdown, but you must inspect each burner at least once every 72 months.
- (13) If the unit is not operating on the required date for a tune-up, the tune-up must be conducted within 30 calendar days of startup.
- (14) If you are using a CEMS measuring mercury emissions to meet requirements of this subpart you must install, certify, operate, and maintain the mercury CEMS as specified in paragraphs (a)(14)(i) and (ii) of this section.
- (i) Operate the mercury CEMS in accordance with performance specification 12A of 40 CFR part 60, appendix B or operate a sorbent trap based integrated monitor in accordance with performance specification 12B of 40 CFR part 60, appendix B. The duration of the performance test must be the maximum of 30 unit operating days or 720 hours. For each day in which the unit operates, you must obtain hourly mercury concentration data, and stack gas volumetric flow rate data.
- (ii) If you are using a mercury CEMS, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the mercury mass emissions rate to the atmosphere according to the requirements of performance specifications 6 and 12A of 40 CFR part 60, appendix B, and quality assurance procedure 6 of 40 CFR part 60, appendix F.
- (15) If you are using a CEMS to measure HCl emissions to meet requirements of this subpart, you must install, certify, operate, and maintain the HCl CEMS as specified in paragraphs (a)(15)(i) and (ii) of this section. This option for an affected unit takes effect on the date a final performance specification for an HCl CEMS is published in the FEDERAL REGISTER or the date of approval of a site-specific monitoring plan.

- (i) Operate the continuous emissions monitoring system in accordance with the applicable performance specification in 40 CFR part 60, appendix B. The duration of the performance test must be the maximum of 30 unit operating days or 720 hours. For each day in which the unit operates, you must obtain hourly HCl concentration data, and stack gas volumetric flow rate data.
- (ii) If you are using a HCl CEMS, you must install, operate, calibrate, and maintain an instrument for continuously measuring and recording the HCl mass emissions rate to the atmosphere according to the requirements of the applicable performance specification of 40 CFR part 60, appendix B, and the quality assurance procedures of 40 CFR part 60, appendix F.
- (16) If you demonstrate compliance with an applicable TSM emission limit through performance testing, and you plan to burn a new type of fuel or a new mixture of fuels, you must recalculate the maximum TSM input using Equation 9 of § 63.7530. If the results of recalculating the maximum TSM input using Equation 9 of § 63.7530 are higher than the maximum total selected input level established during the previous performance test, then you must conduct a new performance test within 60 days of burning the new fuel type or fuel mixture according to the procedures in § 63.7520 to demonstrate that the TSM emissions do not exceed the emission limit. You must also establish new operating limits based on this performance test according to the procedures in § 63.7530(b). You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the TSM emission rate.
- (17) If you demonstrate compliance with an applicable TSM emission limit through fuel analysis for solid or liquid fuels, and you plan to burn a new type of fuel, you must recalculate the TSM emission rate using Equation 14 of § 63.7530 according to the procedures specified in paragraphs (a)(5)(i) through (iii) of this section. You are not required to conduct fuel analyses for the fuels described in § 63.7510(a)(2)(i) through (iii). You may exclude the fuels described in § 63.7510(a)(2)(i) through (iii) when recalculating the TSM emission rate.
- (i) You must determine the TSM concentration for any new fuel type in units of pounds per million Btu, based on supplier data or your own fuel analysis, according to the provisions in your site-specific fuel analysis plan developed according to § 63.7521(b).
- (ii) You must determine the new mixture of fuels that will have the highest content of TSM.
- (iii) Recalculate the TSM emission rate from your boiler or process heater under these new conditions using Equation 14 of § 63.7530. The recalculated TSM emission rate must be less than the applicable emission limit.
- (18) If you demonstrate continuous PM emissions compliance with a PM CPMS you will use a PM CPMS to establish a site-specific operating limit corresponding to the results of the performance test demonstrating compliance with the PM limit. You will conduct your performance test using the test method criteria in Table 5 of this subpart. You will use the PM CPMS to demonstrate continuous compliance with this operating limit. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test
- (i) To determine continuous compliance, you must record the PM CPMS output data for all periods when the process is operating and the PM CPMS is not out-of-control. You must demonstrate continuous compliance by using all quality-assured hourly average data collected by the PM CPMS for all operating hours to calculate the arithmetic average operating parameter in units of the operating limit (milliamps) on a 30-day rolling average basis, updated at the end of each new boiler or process heater operating hour.
- (ii) For any deviation of the 30-day rolling PM CPMS average value from the established operating parameter limit, you must:
- (A) Within 48 hours of the deviation, visually inspect the air pollution control device (APCD);
- (B) If inspection of the APCD identifies the cause of the deviation, take corrective action as soon as possible and return the PM CPMS measurement to within the established value; and
- (C) Within 30 days of the deviation or at the time of the annual compliance test, whichever comes first, conduct a PM emissions compliance test to determine compliance with the PM emissions limit and to verify or re-establish the

CPMS operating limit. You are not required to conduct additional testing for any deviations that occur between the time of the original deviation and the PM emissions compliance test required under this paragraph.

- (iii) PM CPMS deviations from the operating limit leading to more than four required performance tests in a 12-month operating period constitute a separate violation of this subpart.
- (19) If you choose to comply with the PM filterable emissions limit by using PM CEMS you must install, certify, operate, and maintain a PM CEMS and record the output of the PM CEMS as specified in paragraphs (a)(19)(i) through (vii) of this section. The compliance limit will be expressed as a 30-day rolling average of the numerical emissions limit value applicable for your unit in Tables 1 or 2 or 11 through 13 of this subpart.
- (i) Install and certify your PM CEMS according to the procedures and requirements in Performance Specification 11—Specifications and Test Procedures for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources in Appendix B to part 60 of this chapter, using test criteria outlined in Table V of this rule. The reportable measurement output from the PM CEMS must be expressed in units of the applicable emissions limit (e.g., lb/MMBtu, lb/MWh).
- (ii) Operate and maintain your PM CEMS according to the procedures and requirements in Procedure 2— Quality Assurance Requirements for Particulate Matter Continuous Emission Monitoring Systems at Stationary Sources in Appendix F to part 60 of this chapter.
- (A) You must conduct the relative response audit (RRA) for your PM CEMS at least once annually.
- (B) You must conduct the relative correlation audit (RCA) for your PM CEMS at least once every 3 years.
- (iii) Collect PM CEMS hourly average output data for all boiler operating hours except as indicated in paragraph (i) of this section.
- (iv) Calculate the arithmetic 30-day rolling average of all of the hourly average PM CEMS output data collected during all nonexempt boiler or process heater operating hours.
- (v) You must collect data using the PM CEMS at all times the unit is operating and at the intervals specified this paragraph (a), except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities.
- (vi) You must use all the data collected during all boiler or process heater operating hours in assessing the compliance with your operating limit except:
- (A) Any data collected during monitoring system malfunctions, repairs associated with monitoring system malfunctions, or required monitoring system quality assurance or control activities conducted during monitoring system malfunctions in calculations and report any such periods in your annual deviation report:
- (B) Any data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, repairs associated with periods when the monitoring system is out of control, or required monitoring system quality assurance or control activities conducted during out of control periods in calculations used to report emissions or operating levels and report any such periods in your annual deviation report;
- (C) Any data recorded during periods of startup or shutdown.
- (vii) You must record and make available upon request results of PM CEMS system performance audits, dates and duration of periods when the PM CEMS is out of control to completion of the corrective actions necessary to return the PM CEMS to operation consistent with your site-specific monitoring plan.
- (b) You must report each instance in which you did not meet each emission limit and operating limit in Tables 1 through 4 or 11 through 13 to this subpart that apply to you. These instances are deviations from the emission limits or operating limits, respectively, in this subpart. These deviations must be reported according to the requirements in § 63.7550.

- (c) If you elected to demonstrate that the unit meets the specification for mercury for the unit designed to burn gas 1 subcategory, you must follow the sampling frequency specified in paragraphs (c)(1) through (4) of this section and conduct this sampling according to the procedures in § 63.7521(f) through (i).
- (1) If the initial mercury constituents in the gaseous fuels are measured to be equal to or less than half of the mercury specification as defined in § 63.7575, you do not need to conduct further sampling.
- (2) If the initial mercury constituents are greater than half but equal to or less than 75 percent of the mercury specification as defined in § 63.7575, you will conduct semi-annual sampling. If 6 consecutive semi-annual fuel analyses demonstrate 50 percent or less of the mercury specification, you do not need to conduct further sampling. If any semi-annual sample exceeds 75 percent of the mercury specification, you must return to monthly sampling for that fuel, until 12 months of fuel analyses again are less than 75 percent of the compliance level.
- (3) If the initial mercury constituents are greater than 75 percent of the mercury specification as defined in § 63.7575, you will conduct monthly sampling. If 12 consecutive monthly fuel analyses demonstrate 75 percent or less of the mercury specification, you may decrease the fuel analysis frequency to semi-annual for that fuel.
- (4) If the initial sample exceeds the mercury specification as defined in § 63.7575, each affected boiler or process heater combusting this fuel is not part of the unit designed to burn gas 1 subcategory and must be in compliance with the emission and operating limits for the appropriate subcategory. You may elect to conduct additional monthly sampling while complying with these emissions and operating limits to demonstrate that the fuel qualifies as another gas 1 fuel. If 12 consecutive monthly fuel analyses samples are at or below the mercury specification as defined in § 63.7575, each affected boiler or process heater combusting the fuel can elect to switch back into the unit designed to burn gas 1 subcategory until the mercury specification is exceeded.
- (d) For startup and shutdown, you must meet the work practice standards according to item 5 of Table 3 of this subpart.

[78 FR 7179, Jan. 31, 2013]

§ 63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?

- (a) Following the compliance date, the owner or operator must demonstrate compliance with this subpart on a continuous basis by meeting the requirements of paragraphs (a)(1) through (5) of this section.
- (1) For each calendar month, demonstrate compliance with the average weighted emissions limit for the existing units participating in the emissions averaging option as determined in § 63.7522(f) and (g).
- (2) You must maintain the applicable opacity limit according to paragraphs (a)(2)(i) and (ii) of this section.
- (i) For each existing unit participating in the emissions averaging option that is equipped with a dry control system and not vented to a common stack, maintain opacity at or below the applicable limit.
- (ii) For each group of units participating in the emissions averaging option where each unit in the group is equipped with a dry control system and vented to a common stack that does not receive emissions from non-affected units, maintain opacity at or below the applicable limit at the common stack.
- (3) For each existing unit participating in the emissions averaging option that is equipped with a wet scrubber, maintain the 30-day rolling average parameter values at or above the operating limits established during the most recent performance test.
- (4) For each existing unit participating in the emissions averaging option that has an approved alternative operating parameter, maintain the 30-day rolling average parameter values consistent with the approved monitoring plan.
- (5) For each existing unit participating in the emissions averaging option venting to a common stack configuration containing affected units from other subcategories, maintain the appropriate operating limit for each unit as specified in Table 4 to this subpart that applies.

Page 43 of 95 T003-30777-00269

(b) Any instance where the owner or operator fails to comply with the continuous monitoring requirements in paragraphs (a)(1) through (5) of this section is a deviation.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7182, Jan. 31, 2013]

Notification, Reports, and Records

§ 63.7545 What notifications must I submit and when?

- (a) You must submit to the Administrator all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (6), and 63.9(b) through (h) that apply to you by the dates specified.
- (b) As specified in § 63.9(b)(2), if you startup your affected source before January 31, 2013, you must submit an Initial Notification not later than 120 days after January 31, 2013.
- (c) As specified in § 63.9(b)(4) and (5), if you startup your new or reconstructed affected source on or after January 31, 2013, you must submit an Initial Notification not later than 15 days after the actual date of startup of the affected source.
- (d) If you are required to conduct a performance test you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin.
- (e) If you are required to conduct an initial compliance demonstration as specified in § 63.7530, you must submit a Notification of Compliance Status according to § 63.9(h)(2)(ii). For the initial compliance demonstration for each boiler or process heater, you must submit the Notification of Compliance Status, including all performance test results and fuel analyses, before the close of business on the 60th day following the completion of all performance test and/or other initial compliance demonstrations for all boiler or process heaters at the facility according to § 63.10(d)(2). The Notification of Compliance Status report must contain all the information specified in paragraphs (e)(1) through (8), as applicable. If you are not required to conduct an initial compliance demonstration as specified in § 63.7530(a), the Notification of Compliance Status must only contain the information specified in paragraphs (e)(1) and (8).
- (1) A description of the affected unit(s) including identification of which subcategories the unit is in, the design heat input capacity of the unit, a description of the add-on controls used on the unit to comply with this subpart, description of the fuel(s) burned, including whether the fuel(s) were a secondary material determined by you or the EPA through a petition process to be a non-waste under § 241.3 of this chapter, whether the fuel(s) were a secondary material processed from discarded non-hazardous secondary materials within the meaning of § 241.3 of this chapter, and justification for the selection of fuel(s) burned during the compliance demonstration.
- (2) Summary of the results of all performance tests and fuel analyses, and calculations conducted to demonstrate initial compliance including all established operating limits, and including:
- (i) Identification of whether you are complying with the PM emission limit or the alternative TSM emission limit.
- (ii) Identification of whether you are complying with the output-based emission limits or the heat input-based (i.e., lb/MMBtu or ppm) emission limits,
- (3) A summary of the maximum CO emission levels recorded during the performance test to show that you have met any applicable emission standard in Tables 1, 2, or 11 through 13 to this subpart, if you are not using a CO CEMS to demonstrate compliance.
- (4) Identification of whether you plan to demonstrate compliance with each applicable emission limit through performance testing, a CEMS, or fuel analysis.
- (5) Identification of whether you plan to demonstrate compliance by emissions averaging and identification of whether you plan to demonstrate compliance by using efficiency credits through energy conservation:

- (i) If you plan to demonstrate compliance by emission averaging, report the emission level that was being achieved or the control technology employed on January 31, 2013.
- (ii) [Reserved]
- (6) A signed certification that you have met all applicable emission limits and work practice standards.
- (7) If you had a deviation from any emission limit, work practice standard, or operating limit, you must also submit a description of the deviation, the duration of the deviation, and the corrective action taken in the Notification of Compliance Status report.
- (8) In addition to the information required in § 63.9(h)(2), your notification of compliance status must include the following certification(s) of compliance, as applicable, and signed by a responsible official:
- (i) "This facility complies with the required initial tune-up according to the procedures in § 63.7540(a)(10)(i) through (vi)."
- (ii) "This facility has had an energy assessment performed according to § 63.7530(e)."
- (iii) Except for units that burn only natural gas, refinery gas, or other gas 1 fuel, or units that qualify for a statutory exemption as provided in section 129(g)(1) of the Clean Air Act, include the following: "No secondary materials that are solid waste were combusted in any affected unit."
- (f) If you operate a unit designed to burn natural gas, refinery gas, or other gas 1 fuels that is subject to this subpart, and you intend to use a fuel other than natural gas, refinery gas, gaseous fuel subject to another subpart of this part, part 60, 61, or 65, or other gas 1 fuel to fire the affected unit during a period of natural gas curtailment or supply interruption, as defined in § 63.7575, you must submit a notification of alternative fuel use within 48 hours of the declaration of each period of natural gas curtailment or supply interruption, as defined in § 63.7575. The notification must include the information specified in paragraphs (f)(1) through (5) of this section.
- (1) Company name and address.
- (2) Identification of the affected unit.
- (3) Reason you are unable to use natural gas or equivalent fuel, including the date when the natural gas curtailment was declared or the natural gas supply interruption began.
- (4) Type of alternative fuel that you intend to use.
- (5) Dates when the alternative fuel use is expected to begin and end.
- (g) If you intend to commence or recommence combustion of solid waste, you must provide 30 days prior notice of the date upon which you will commence or recommence combustion of solid waste. The notification must identify:
- (1) The name of the owner or operator of the affected source, as defined in § 63.7490, the location of the source, the boiler(s) or process heater(s) that will commence burning solid waste, and the date of the notice.
- (2) The currently applicable subcategories under this subpart.
- (3) The date on which you became subject to the currently applicable emission limits.
- (4) The date upon which you will commence combusting solid waste.

- (h) If you have switched fuels or made a physical change to the boiler and the fuel switch or physical change resulted in the applicability of a different subcategory, you must provide notice of the date upon which you switched fuels or made the physical change within 30 days of the switch/change. The notification must identify:
- (1) The name of the owner or operator of the affected source, as defined in § 63.7490, the location of the source, the boiler(s) and process heater(s) that have switched fuels, were physically changed, and the date of the notice.
- (2) The currently applicable subcategory under this subpart.
- (3) The date upon which the fuel switch or physical change occurred.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7183, Jan. 31, 2013]

§ 63.7550 What reports must I submit and when?

- (a) You must submit each report in Table 9 to this subpart that applies to you.
- (b) Unless the EPA Administrator has approved a different schedule for submission of reports under § 63.10(a), you must submit each report, according to paragraph (h) of this section, by the date in Table 9 to this subpart and according to the requirements in paragraphs (b)(1) through (4) of this section. For units that are subject only to a requirement to conduct an annual, biennial, or 5-year tune-up according to § 63.7540(a)(10), (11), or (12), respectively, and not subject to emission limits or operating limits, you may submit only an annual, biennial, or 5-year compliance report, as applicable, as specified in paragraphs (b)(1) through (4) of this section, instead of a semi-annual compliance report.
- (1) The first compliance report must cover the period beginning on the compliance date that is specified for each boiler or process heater in § 63.7495 and ending on July 31 or January 31, whichever date is the first date that occurs at least 180 days (or 1, 2, or 5 years, as applicable, if submitting an annual, biennial, or 5-year compliance report) after the compliance date that is specified for your source in § 63.7495.
- (2) The first compliance report must be postmarked or submitted no later than July 31 or January 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for each boiler or process heater in § 63.7495. The first annual, biennial, or 5-year compliance report must be postmarked or submitted no later than January 31.
- (3) Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31. Annual, biennial, and 5-year compliance reports must cover the applicable 1-, 2-, or 5-year periods from January 1 to December 31.
- (4) Each subsequent compliance report must be postmarked or submitted no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period. Annual, biennial, and 5-year compliance reports must be postmarked or submitted no later than January 31.
- (c) A compliance report must contain the following information depending on how the facility chooses to comply with the limits set in this rule.
- (1) If the facility is subject to a the requirements of a tune up they must submit a compliance report with the information in paragraphs (c)(5)(i) through (iv) and (xiv) of this section.
- (2) If a facility is complying with the fuel analysis they must submit a compliance report with the information in paragraphs (c)(5)(i) through (iv), (vi), (x), (xii), (xvi) and paragraph (d) of this section.
- (3) If a facility is complying with the applicable emissions limit with performance testing they must submit a compliance report with the information in (c)(5)(i) through (iv), (vi), (vii), (vii), (xii), (xiii), (xv) and paragraph (d) of this section.

- (4) If a facility is complying with an emissions limit using a CMS the compliance report must contain the information required in paragraphs (c)(5)(i) through (vi), (xi), (xii), (xv) through (xvii), and paragraph (e) of this section.
- (5)(i) Company and Facility name and address.
- (ii) Process unit information, emissions limitations, and operating parameter limitations.
- (iii) Date of report and beginning and ending dates of the reporting period.
- (iv) The total operating time during the reporting period.
- (v) If you use a CMS, including CEMS, COMS, or CPMS, you must include the monitoring equipment manufacturer(s) and model numbers and the date of the last CMS certification or audit.
- (vi) The total fuel use by each individual boiler or process heater subject to an emission limit within the reporting period, including, but not limited to, a description of the fuel, whether the fuel has received a non-waste determination by the EPA or your basis for concluding that the fuel is not a waste, and the total fuel usage amount with units of measure.
- (vii) If you are conducting performance tests once every 3 years consistent with § 63.7515(b) or (c), the date of the last 2 performance tests and a statement as to whether there have been any operational changes since the last performance test that could increase emissions.
- (viii) A statement indicating that you burned no new types of fuel in an individual boiler or process heater subject to an emission limit. Or, if you did burn a new type of fuel and are subject to a HCl emission limit, you must submit the calculation of chlorine input, using Equation 7 of § 63.7530, that demonstrates that your source is still within its maximum chlorine input level established during the previous performance testing (for sources that demonstrate compliance through performance testing) or you must submit the calculation of HCI emission rate using Equation 12 of § 63.7530 that demonstrates that your source is still meeting the emission limit for HCl emissions (for boilers or process heaters that demonstrate compliance through fuel analysis). If you burned a new type of fuel and are subject to a mercury emission limit, you must submit the calculation of mercury input, using Equation 8 of § 63.7530, that demonstrates that your source is still within its maximum mercury input level established during the previous performance testing (for sources that demonstrate compliance through performance testing), or you must submit the calculation of mercury emission rate using Equation 13 of § 63.7530 that demonstrates that your source is still meeting the emission limit for mercury emissions (for boilers or process heaters that demonstrate compliance through fuel analysis). If you burned a new type of fuel and are subject to a TSM emission limit, you must submit the calculation of TSM input, using Equation 9 of § 63.7530, that demonstrates that your source is still within its maximum TSM input level established during the previous performance testing (for sources that demonstrate compliance through performance testing), or you must submit the calculation of TSM emission rate, using Equation 14 of § 63.7530, that demonstrates that your source is still meeting the emission limit for TSM emissions (for boilers or process heaters that demonstrate compliance through fuel analysis).
- (ix) If you wish to burn a new type of fuel in an individual boiler or process heater subject to an emission limit and you cannot demonstrate compliance with the maximum chlorine input operating limit using Equation 7 of § 63.7530 or the maximum mercury input operating limit using Equation 8 of § 63.7530, or the maximum TSM input operating limit using Equation 9 of § 63.7530 you must include in the compliance report a statement indicating the intent to conduct a new performance test within 60 days of starting to burn the new fuel.
- (x) A summary of any monthly fuel analyses conducted to demonstrate compliance according to §§ 63.7521 and 63.7530 for individual boilers or process heaters subject to emission limits, and any fuel specification analyses conducted according to §§ 63.7521(f) and 63.7530(g).
- (xi) If there are no deviations from any emission limits or operating limits in this subpart that apply to you, a statement that there were no deviations from the emission limits or operating limits during the reporting period.
- (xii) If there were no deviations from the monitoring requirements including no periods during which the CMSs, including CEMS, COMS, and CPMS, were out of control as specified in § 63.8(c)(7), a statement that there were no deviations and no periods during which the CMS were out of control during the reporting period.

- (xiii) If a malfunction occurred during the reporting period, the report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by you during a malfunction of a boiler, process heater, or associated air pollution control device or CMS to minimize emissions in accordance with § 63.7500(a)(3), including actions taken to correct the malfunction.
- (xiv) Include the date of the most recent tune-up for each unit subject to only the requirement to conduct an annual, biennial, or 5-year tune-up according to § 63.7540(a)(10), (11), or (12) respectively. Include the date of the most recent burner inspection if it was not done annually, biennially, or on a 5-year period and was delayed until the next scheduled or unscheduled unit shutdown.
- (xv) If you plan to demonstrate compliance by emission averaging, certify the emission level achieved or the control technology employed is no less stringent than the level or control technology contained in the notification of compliance status in § 63.7545(e)(5)(i).
- (xvi) For each reporting period, the compliance reports must include all of the calculated 30 day rolling average values based on the daily CEMS (CO and mercury) and CPMS (PM CPMS output, scrubber pH, scrubber liquid flow rate, scrubber pressure drop) data.
- (xvii) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
- (d) For each deviation from an emission limit or operating limit in this subpart that occurs at an individual boiler or process heater where you are not using a CMS to comply with that emission limit or operating limit, the compliance report must additionally contain the information required in paragraphs (d)(1) through (3) of this section.
- (1) A description of the deviation and which emission limit or operating limit from which you deviated.
- (2) Information on the number, duration, and cause of deviations (including unknown cause), as applicable, and the corrective action taken.
- (3) If the deviation occurred during an annual performance test, provide the date the annual performance test was completed.
- (e) For each deviation from an emission limit, operating limit, and monitoring requirement in this subpart occurring at an individual boiler or process heater where you are using a CMS to comply with that emission limit or operating limit, the compliance report must additionally contain the information required in paragraphs (e)(1) through (9) of this section. This includes any deviations from your site-specific monitoring plan as required in § 63.7505(d).
- (1) The date and time that each deviation started and stopped and description of the nature of the deviation (i.e., what you deviated from).
- (2) The date and time that each CMS was inoperative, except for zero (low-level) and high-level checks.
- (3) The date, time, and duration that each CMS was out of control, including the information in § 63.8(c)(8).
- (4) The date and time that each deviation started and stopped.
- (5) A summary of the total duration of the deviation during the reporting period and the total duration as a percent of the total source operating time during that reporting period.
- (6) A characterization of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
- (7) A summary of the total duration of CMS's downtime during the reporting period and the total duration of CMS downtime as a percent of the total source operating time during that reporting period.

- (8) A brief description of the source for which there was a deviation.
- (9) A description of any changes in CMSs, processes, or controls since the last reporting period for the source for which there was a deviation.
- (f)-(g) [Reserved]
- (h) You must submit the reports according to the procedures specified in paragraphs (h)(1) through (3) of this section.
- (1) Within 60 days after the date of completing each performance test (defined in § 63.2) as required by this subpart you must submit the results of the performance tests, including any associated fuel analyses, required by this subpart and the compliance reports required in § 63.7550(b) to the EPA's WebFIRE database by using the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through the EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). Performance test data must be submitted in the file format generated through use of the EPA's Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/index.html). Only data collected using test methods on the ERT Web site are subject to this requirement for submitting reports electronically to WebFIRE. Owners or operators who claim that some of the information being submitted for performance tests is confidential business information (CBI) must submit a complete ERT file including information claimed to be CBI on a compact disk or other commonly used electronic storage media (including, but not limited to, flash drives) to the EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAPQS/CORE CBI Office. Attention: WebFIRE Administrator, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same ERT file with the CBI omitted must be submitted to the EPA via CDX as described earlier in this paragraph. At the discretion of the Administrator, you must also submit these reports, including the confidential business information, to the Administrator in the format specified by the Administrator. For any performance test conducted using test methods that are not listed on the ERT Web site, the owner or operator shall submit the results of the performance test in paper submissions to the Administrator.
- (2) Within 60 days after the date of completing each CEMS performance evaluation test (defined in 63.2) you must submit the relative accuracy test audit (RATA) data to the EPA's Central Data Exchange by using CEDRI as mentioned in paragraph (h)(1) of this section. Only RATA pollutants that can be documented with the ERT (as listed on the ERT Web site) are subject to this requirement. For any performance evaluations with no corresponding RATA pollutants listed on the ERT Web site, the owner or operator shall submit the results of the performance evaluation in paper submissions to the Administrator.
- (3) You must submit all reports required by Table 9 of this subpart electronically using CEDRI that is accessed through the EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due the report you must submit the report to the Administrator at the appropriate address listed in § 63.13. At the discretion of the Administrator, you must also submit these reports, to the Administrator in the format specified by the Administrator.

[78 FR 7183, Jan. 31, 2013]

§ 63.7555 What records must I keep?

- (a) You must keep records according to paragraphs (a)(1) and (2) of this section.
- (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status or semiannual compliance report that you submitted, according to the requirements in § 63.10(b)(2)(xiv).
- (2) Records of performance tests, fuel analyses, or other compliance demonstrations and performance evaluations as required in § 63.10(b)(2)(viii).
- (b) For each CEMS, COMS, and continuous monitoring system you must keep records according to paragraphs (b)(1) through (5) of this section.
- (1) Records described in § 63.10(b)(2)(vii) through (xi).

- (2) Monitoring data for continuous opacity monitoring system during a performance evaluation as required in § 63.6(h)(7)(i) and (ii).
- (3) Previous (i.e., superseded) versions of the performance evaluation plan as required in § 63.8(d)(3).
- (4) Request for alternatives to relative accuracy test for CEMS as required in § 63.8(f)(6)(i).
- (5) Records of the date and time that each deviation started and stopped.
- (c) You must keep the records required in Table 8 to this subpart including records of all monitoring data and calculated averages for applicable operating limits, such as opacity, pressure drop, pH, and operating load, to show continuous compliance with each emission limit and operating limit that applies to you.
- (d) For each boiler or process heater subject to an emission limit in Tables 1, 2, or 11 through 13 to this subpart, you must also keep the applicable records in paragraphs (d)(1) through (11) of this section.
- (1) You must keep records of monthly fuel use by each boiler or process heater, including the type(s) of fuel and amount(s) used.
- (2) If you combust non-hazardous secondary materials that have been determined not to be solid waste pursuant to § 241.3(b)(1) and (2) of this chapter, you must keep a record that documents how the secondary material meets each of the legitimacy criteria under § 241.3(d)(1) of this chapter. If you combust a fuel that has been processed from a discarded non-hazardous secondary material pursuant to § 241.3(b)(4) of this chapter, you must keep records as to how the operations that produced the fuel satisfy the definition of processing in § 241.2 of this chapter. If the fuel received a non-waste determination pursuant to the petition process submitted under § 241.3(c) of this chapter, you must keep a record that documents how the fuel satisfies the requirements of the petition process. For operating units that combust non-hazardous secondary materials as fuel per § 241.4 of this chapter, you must keep records documenting that the material is listed as a non-waste under § 241.4(a) of this chapter. Units exempt from the incinerator standards under section 129(g)(1) of the Clean Air Act because they are qualifying facilities burning a homogeneous waste stream do not need to maintain the records described in this paragraph (d)(2).
- (3) For units in the limited use subcategory, you must keep a copy of the federally enforceable permit that limits the annual capacity factor to less than or equal to 10 percent and fuel use records for the days the boiler or process heater was operating.
- (4) A copy of all calculations and supporting documentation of maximum chlorine fuel input, using Equation 7 of § 63.7530, that were done to demonstrate continuous compliance with the HCl emission limit, for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of HCl emission rates, using Equation 12 of § 63.7530, that were done to demonstrate compliance with the HCl emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum chlorine fuel input or HCl emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate chlorine fuel input, or HCl emission rate, for each boiler and process heater.
- (5) A copy of all calculations and supporting documentation of maximum mercury fuel input, using Equation 8 of § 63.7530, that were done to demonstrate continuous compliance with the mercury emission limit for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of mercury emission rates, using Equation 13 of § 63.7530, that were done to demonstrate compliance with the mercury emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum mercury fuel input or mercury emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate mercury fuel input, or mercury emission rates, for each boiler and process heater.
- (6) If, consistent with § 63.7515(b), you choose to stack test less frequently than annually, you must keep a record that documents that your emissions in the previous stack test(s) were less than 75 percent of the applicable emission limit (or, in specific instances noted in Tables 1 and 2 or 11 through 13 to this subpart, less than the applicable

Page 50 of 95 T003-30777-00269

emission limit), and document that there was no change in source operations including fuel composition and operation of air pollution control equipment that would cause emissions of the relevant pollutant to increase within the past year.

- (7) Records of the occurrence and duration of each malfunction of the boiler or process heater, or of the associated air pollution control and monitoring equipment.
- (8) Records of actions taken during periods of malfunction to minimize emissions in accordance with the general duty to minimize emissions in § 63.7500(a)(3), including corrective actions to restore the malfunctioning boiler or process heater, air pollution control, or monitoring equipment to its normal or usual manner of operation.
- (9) A copy of all calculations and supporting documentation of maximum TSM fuel input, using Equation 9 of § 63.7530, that were done to demonstrate continuous compliance with the TSM emission limit for sources that demonstrate compliance through performance testing. For sources that demonstrate compliance through fuel analysis, a copy of all calculations and supporting documentation of TSM emission rates, using Equation 14 of § 63.7530, that were done to demonstrate compliance with the TSM emission limit. Supporting documentation should include results of any fuel analyses and basis for the estimates of maximum TSM fuel input or TSM emission rates. You can use the results from one fuel analysis for multiple boilers and process heaters provided they are all burning the same fuel type. However, you must calculate TSM fuel input, or TSM emission rates, for each boiler and process heater.
- (10) You must maintain records of the calendar date, time, occurrence and duration of each startup and shutdown.
- (11) You must maintain records of the type(s) and amount(s) of fuels used during each startup and shutdown.
- (e) If you elect to average emissions consistent with § 63.7522, you must additionally keep a copy of the emission averaging implementation plan required in § 63.7522(g), all calculations required under § 63.7522, including monthly records of heat input or steam generation, as applicable, and monitoring records consistent with § 63.7541.
- (f) If you elect to use efficiency credits from energy conservation measures to demonstrate compliance according to § 63.7533, you must keep a copy of the Implementation Plan required in § 63.7533(d) and copies of all data and calculations used to establish credits according to § 63.7533(b), (c), and (f).
- (g) If you elected to demonstrate that the unit meets the specification for mercury for the unit designed to burn gas 1 subcategory, you must maintain monthly records (or at the frequency required by § 63.7540(c)) of the calculations and results of the fuel specification for mercury in Table 6.
- (h) If you operate a unit in the unit designed to burn gas 1 subcategory that is subject to this subpart, and you use an alternative fuel other than natural gas, refinery gas, gaseous fuel subject to another subpart under this part, other gas 1 fuel, or gaseous fuel subject to another subpart of this part or part 60, 61, or 65, you must keep records of the total hours per calendar year that alternative fuel is burned and the total hours per calendar year that the unit operated during periods of gas curtailment or gas supply emergencies.
- (i) You must maintain records of the calendar date, time, occurrence and duration of each startup and shutdown.
- (j) You must maintain records of the type(s) and amount(s) of fuels used during each startup and shutdown.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7185, Jan. 31, 2013]

§ 63.7560 In what form and how long must I keep my records?

- (a) Your records must be in a form suitable and readily available for expeditious review, according to § 63.10(b)(1).
- (b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record on site, or they must be accessible from on site (for example, through a computer network), for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1). You can keep the records off site for the remaining 3 years.

Other Requirements and Information

§ 63.7565 What parts of the General Provisions apply to me?

Table 10 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you.

§ 63.7570 Who implements and enforces this subpart?

- (a) This subpart can be implemented and enforced by the EPA, or an Administrator such as your state, local, or tribal agency. If the EPA Administrator has delegated authority to your state, local, or tribal agency, then that agency (as well as the EPA) has the authority to implement and enforce this subpart. You should contact your EPA Regional Office to find out if this subpart is delegated to your state, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a state, local, or tribal agency under 40 CFR part 63, subpart E, the authorities listed in paragraphs (b)(1) through (5) of this section are retained by the EPA Administrator and are not transferred to the state, local, or tribal agency, however, the EPA retains oversight of this subpart and can take enforcement actions, as appropriate.
- (1) Approval of alternatives to the non-opacity emission limits and work practice standards in § 63.7500(a) and (b) under § 63.6(g).
- (2) Approval of alternative opacity emission limits in § 63.7500(a) under § 63.6(h)(9).
- (3) Approval of major change to test methods in Table 5 to this subpart under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90, and alternative analytical methods requested under § 63.7521(b)(2).
- (4) Approval of major change to monitoring under § 63.8(f) and as defined in § 63.90, and approval of alternative operating parameters under § 63.7500(a)(2) and § 63.7522(g)(2).
- (5) Approval of major change to recordkeeping and reporting under § 63.10(e) and as defined in § 63.90.

[76 FR 15664, Mar. 21, 2011 as amended at 78 FR 7186, Jan. 31, 2013]

§ 63.7575 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act, in § 63.2 (the General Provisions), and in this section as follows:

10-day rolling average means the arithmetic mean of the previous 240 hours of valid operating data. Valid data excludes hours during startup and shutdown, data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities, and periods when this unit is not operating. The 240 hours should be consecutive, but not necessarily continuous if operations were intermittent.

30-day rolling average means the arithmetic mean of the previous 720 hours of valid operating data. Valid data excludes hours during startup and shutdown, data collected during periods when the monitoring system is out of control as specified in your site-specific monitoring plan, while conducting repairs associated with periods when the monitoring system is out of control, or while conducting required monitoring system quality assurance or quality control activities, and periods when this unit is not operating. The 720 hours should be consecutive, but not necessarily continuous if operations were intermittent.

Page 52 of 95 T003-30777-00269

Affirmative defense means, in the context of an enforcement proceeding, a response or defense put forward by a defendant, regarding which the defendant has the burden of proof, and the merits of which are independently and objectively evaluated in a judicial or administrative proceeding.

Annual capacity factor means the ratio between the actual heat input to a boiler or process heater from the fuels burned during a calendar year and the potential heat input to the boiler or process heater had it been operated for 8,760 hours during a year at the maximum steady state design heat input capacity.

Annual heat input means the heat input for the 12 months preceding the compliance demonstration.

Average annual heat input rate means total heat input divided by the hours of operation for the 12 months preceding the compliance demonstration.

Bag leak detection system means a group of instruments that are capable of monitoring particulate matter loadings in the exhaust of a fabric filter (i.e., baghouse) in order to detect bag failures. A bag leak detection system includes, but is not limited to, an instrument that operates on electrodynamic, triboelectric, light scattering, light transmittance, or other principle to monitor relative particulate matter loadings.

Benchmark means the fuel heat input for a boiler or process heater for the one-year period before the date that an energy demand reduction occurs, unless it can be demonstrated that a different time period is more representative of historical operations.

Biodiesel means a mono-alkyl ester derived from biomass and conforming to ASTM D6751-11b, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (incorporated by reference, see § 63.14).

Biomass or bio-based solid fuel means any biomass-based solid fuel that is not a solid waste. This includes, but is not limited to, wood residue; wood products (e.g., trees, tree stumps, tree limbs, bark, lumber, sawdust, sander dust, chips, scraps, slabs, millings, and shavings); animal manure, including litter and other bedding materials; vegetative agricultural and silvicultural materials, such as logging residues (slash), nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice, and wheat), bagasse, orchard prunings, corn stalks, coffee bean hulls and grounds. This definition of biomass is not intended to suggest that these materials are or are not solid waste.

Blast furnace gas fuel-fired boiler or process heater means an industrial/commercial/institutional boiler or process heater that receives 90 percent or more of its total annual gas volume from blast furnace gas.

Boiler means an enclosed device using controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled flame combustion refers to a steady-state, or near steady-state, process wherein fuel and/or oxidizer feed rates are controlled. A device combusting solid waste, as defined in § 241.3 of this chapter, is not a boiler unless the device is exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act. Waste heat boilers are excluded from this definition.

Boiler system means the boiler and associated components, such as, the feed water system, the combustion air system, the fuel system (including burners), blowdown system, combustion control systems, steam systems, and condensate return systems.

Calendar year means the period between January 1 and December 31, inclusive, for a given year.

Coal means all solid fuels classifiable as anthracite, bituminous, sub-bituminous, or lignite by ASTM D388 (incorporated by reference, see § 63.14), coal refuse, and petroleum coke. For the purposes of this subpart, this definition of "coal" includes synthetic fuels derived from coal, including but not limited to, solvent-refined coal, coal-oil mixtures, and coal-water mixtures. Coal derived gases are excluded from this definition.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (6,000 Btu per pound) on a dry basis.

Attachment D 40 CFR 63, Subpart DDDDD

Page 53 of 95 T003-30777-00269

Commercial/institutional boiler means a boiler used in commercial establishments or institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, elementary and secondary schools, libraries, religious establishments, governmental buildings, hotels, restaurants, and laundries to provide electricity, steam, and/or hot water.

Common stack means the exhaust of emissions from two or more affected units through a single flue. Affected units with a common stack may each have separate air pollution control systems located before the common stack, or may have a single air pollution control system located after the exhausts come together in a single flue.

Cost-effective energy conservation measure means a measure that is implemented to improve the energy efficiency of the boiler or facility that has a payback (return of investment) period of 2 years or less.

Daily block average means the arithmetic mean of all valid emission concentrations or parameter levels recorded when a unit is operating measured over the 24-hour period from 12 a.m. (midnight) to 12 a.m. (midnight), except for periods of startup and shutdown or downtime.

Deviation. (1) Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (i) Fails to meet any applicable requirement or obligation established by this subpart including, but not limited to, any emission limit, operating limit, or work practice standard; or
- (ii) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit.
- (2) A deviation is not always a violation.

Dioxins/furans means tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofurans.

Distillate oil means fuel oils that contain 0.05 weight percent nitrogen or less and comply with the specifications for fuel oil numbers 1 and 2, as defined by the American Society of Testing and Materials in ASTM D396 (incorporated by reference, see § 63.14) or diesel fuel oil numbers 1 and 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see § 63.14), kerosene, and biodiesel as defined by the American Society of Testing and Materials in ASTM D6751-11b (incorporated by reference, see § 60.14).

Dry scrubber means an add-on air pollution control system that injects dry alkaline sorbent (dry injection) or sprays an alkaline sorbent (spray dryer) to react with and neutralize acid gas in the exhaust stream forming a dry powder material. Sorbent injection systems used as control devices in fluidized bed boilers and process heaters are included in this definition. A dry scrubber is a dry control system.

Dutch oven means a unit having a refractory-walled cell connected to a conventional boiler setting. Fuel materials are introduced through an opening in the roof of the dutch oven and burn in a pile on its floor. Fluidized bed boilers are not part of the dutch oven design category.

Efficiency credit means emission reductions above those required by this subpart. Efficiency credits generated may be used to comply with the emissions limits. Credits may come from pollution prevention projects that result in reduced fuel use by affected units. Boilers that are shut down cannot be used to generate credits unless the facility provides documentation linking the permanent shutdown to implementation of the energy conservation measures identified in the energy assessment.

Electric utility steam generating unit (EGU) means a fossil fuel-fired combustion unit of more than 25 megawatts electric (MWe) that serves a generator that produces electricity for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one-third of its potential electric output capacity and more than 25 MWe output to any utility power distribution system for sale is considered an electric utility steam generating unit. To be "capable of combusting" fossil fuels, an EGU would need to have these fuels allowed in their operating permits and have the appropriate fuel handling facilities on-site or otherwise available (e.g., coal handling equipment, including coal storage area, belts and conveyers, pulverizers, etc.; oil storage facilities). In addition, fossil fuel-fired EGU means any EGU

Page 54 of 95 T003-30777-00269

that fired fossil fuel for more than 10.0 percent of the average annual heat input in any 3 consecutive calendar years or for more than 15.0 percent of the annual heat input during any one calendar year after April 16, 2012.

Electrostatic precipitator (ESP) means an add-on air pollution control device used to capture particulate matter by charging the particles using an electrostatic field, collecting the particles using a grounded collecting surface, and transporting the particles into a hopper. An electrostatic precipitator is usually a dry control system.

Energy assessment means the following for the emission units covered by this subpart:

- (1) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity of less than 0.3 trillion Btu (TBtu) per year will be 8 on-site technical labor hours in length maximum, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s) and any on-site energy use system(s) accounting for at least 50 percent of the affected boiler(s) energy (e.g., steam, hot water, process heat, or electricity) production, as applicable, will be evaluated to identify energy savings opportunities, within the limit of performing an 8-hour on-site energy assessment.
- (2) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity of 0.3 to 1.0 TBtu/year will be 24 on-site technical labor hours in length maximum, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s) and any on-site energy use system(s) accounting for at least 33 percent of the energy (e.g., steam, hot water, process heat, or electricity) production, as applicable, will be evaluated to identify energy savings opportunities, within the limit of performing a 24-hour on-site energy assessment.
- (3) The energy assessment for facilities with affected boilers and process heaters with a combined heat input capacity greater than 1.0 TBtu/year will be up to 24 on-site technical labor hours in length for the first TBtu/yr plus 8 on-site technical labor hours for every additional 1.0 TBtu/yr not to exceed 160 on-site technical hours, but may be longer at the discretion of the owner or operator of the affected source. The boiler system(s), process heater(s), and any on-site energy use system(s) accounting for at least 20 percent of the energy (e.g., steam, process heat, hot water, or electricity) production, as applicable, will be evaluated to identify energy savings opportunities.
- (4) The on-site energy use systems serving as the basis for the percent of affected boiler(s) and process heater(s) energy production in paragraphs (1), (2), and (3) of this definition may be segmented by production area or energy use area as most logical and applicable to the specific facility being assessed (e.g., product X manufacturing area; product Y drying area; Building Z).

Energy management practices means the set of practices and procedures designed to manage energy use that are demonstrated by the facility's energy policies, a facility energy manager and other staffing responsibilities, energy performance measurement and tracking methods, an energy saving goal, action plans, operating procedures, internal reporting requirements, and periodic review intervals used at the facility.

Energy management program means a program that includes a set of practices and procedures designed to manage energy use that are demonstrated by the facility's energy policies, a facility energy manager and other staffing responsibilities, energy performance measurement and tracking methods, an energy saving goal, action plans, operating procedures, internal reporting requirements, and periodic review intervals used at the facility. Facilities may establish their program through energy management systems compatible with ISO 50001.

Energy use system includes the following systems located on-site that use energy (steam, hot water, or electricity) provided by the affected boiler or process heater: process heating; compressed air systems; machine drive (motors, pumps, fans); process cooling; facility heating, ventilation, and air-conditioning systems; hot water systems; building envelop; and lighting; or other systems that use steam, hot water, process heat, or electricity provided by the affected boiler or process heater. Energy use systems are only those systems using energy clearly produced by affected boilers and process heaters.

Equivalent means the following only as this term is used in Table 6 to this subpart:

(1) An equivalent sample collection procedure means a published voluntary consensus standard or practice (VCS) or EPA method that includes collection of a minimum of three composite fuel samples, with each composite consisting of a minimum of three increments collected at approximately equal intervals over the test period.

- (2) An equivalent sample compositing procedure means a published VCS or EPA method to systematically mix and obtain a representative subsample (part) of the composite sample.
- (3) An equivalent sample preparation procedure means a published VCS or EPA method that: Clearly states that the standard, practice or method is appropriate for the pollutant and the fuel matrix; or is cited as an appropriate sample preparation standard, practice or method for the pollutant in the chosen VCS or EPA determinative or analytical method.
- (4) An equivalent procedure for determining heat content means a published VCS or EPA method to obtain gross calorific (or higher heating) value.
- (5) An equivalent procedure for determining fuel moisture content means a published VCS or EPA method to obtain moisture content. If the sample analysis plan calls for determining metals (especially the mercury, selenium, or arsenic) using an aliquot of the dried sample, then the drying temperature must be modified to prevent vaporizing these metals. On the other hand, if metals analysis is done on an "as received" basis, a separate aliquot can be dried to determine moisture content and the metals concentration mathematically adjusted to a dry basis.
- (6) An equivalent pollutant (mercury, HCI) determinative or analytical procedure means a published VCS or EPA method that clearly states that the standard, practice, or method is appropriate for the pollutant and the fuel matrix and has a published detection limit equal or lower than the methods listed in Table 6 to this subpart for the same purpose.

Fabric filter means an add-on air pollution control device used to capture particulate matter by filtering gas streams through filter media, also known as a baghouse. A fabric filter is a dry control system.

Federally enforceable means all limitations and conditions that are enforceable by the EPA Administrator, including, but not limited to, the requirements of 40 CFR parts 60, 61, 63, and 65, requirements within any applicable state implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 40 CFR 51.24.

Fluidized bed boiler means a boiler utilizing a fluidized bed combustion process that is not a pulverized coal boiler.

Fluidized bed boiler with an integrated fluidized bed heat exchanger means a boiler utilizing a fluidized bed combustion where the entire tube surface area is located outside of the furnace section at the exit of the cyclone section and exposed to the flue gas stream for conductive heat transfer. This design applies only to boilers in the unit designed to burn coal/solid fossil fuel subcategory that fire coal refuse.

Fluidized bed combustion means a process where a fuel is burned in a bed of granulated particles, which are maintained in a mobile suspension by the forward flow of air and combustion products.

Fuel cell means a boiler type in which the fuel is dropped onto suspended fixed grates and is fired in a pile. The refractory-lined fuel cell uses combustion air preheating and positioning of secondary and tertiary air injection ports to improve boiler efficiency. Fluidized bed, dutch oven, pile burner, hybrid suspension grate, and suspension burners are not part of the fuel cell subcategory.

Fuel type means each category of fuels that share a common name or classification. Examples include, but are not limited to, bituminous coal, sub-bituminous coal, lignite, anthracite, biomass, distillate oil, residual oil. Individual fuel types received from different suppliers are not considered new fuel types.

Gaseous fuel includes, but is not limited to, natural gas, process gas, landfill gas, coal derived gas, refinery gas, and biogas. Blast furnace gas and process gases that are regulated under another subpart of this part, or part 60, part 61, or part 65 of this chapter, are exempted from this definition.

Heat input means heat derived from combustion of fuel in a boiler or process heater and does not include the heat input from preheated combustion air, recirculated flue gases, returned condensate, or exhaust gases from other sources such as gas turbines, internal combustion engines, kilns, etc.

Page 56 of 95 T003-30777-00269

Heavy liquid includes residual oil and any other liquid fuel not classified as a light liquid.

Hourly average means the arithmetic average of at least four CMS data values representing the four 15-minute periods in an hour, or at least two 15-minute data values during an hour when CMS calibration, quality assurance, or maintenance activities are being performed.

Hot water heater means a closed vessel with a capacity of no more than 120 U.S. gallons in which water is heated by combustion of gaseous, liquid, or biomass/bio-based solid fuel and is withdrawn for use external to the vessel. Hot water boilers (i.e., not generating steam) combusting gaseous, liquid, or biomass fuel with a heat input capacity of less than 1.6 million Btu per hour are included in this definition. The 120 U.S. gallon capacity threshold to be considered a hot water heater is independent of the 1.6 MMBtu/hr heat input capacity threshold for hot water boilers. Hot water heater also means a tankless unit that provides on demand hot water.

Hybrid suspension grate boiler means a boiler designed with air distributors to spread the fuel material over the entire width and depth of the boiler combustion zone. The biomass fuel combusted in these units exceeds a moisture content of 40 percent on an as-fired annual heat input basis. The drying and much of the combustion of the fuel takes place in suspension, and the combustion is completed on the grate or floor of the boiler. Fluidized bed, dutch oven, and pile burner designs are not part of the hybrid suspension grate boiler design category.

Industrial boiler means a boiler used in manufacturing, processing, mining, and refining or any other industry to provide steam, hot water, and/or electricity.

Light liquid includes distillate oil, biodiesel, or vegetable oil.

Limited-use boiler or process heater means any boiler or process heater that burns any amount of solid, liquid, or gaseous fuels and has a federally enforceable average annual capacity factor of no more than 10 percent.

Liquid fuel includes, but is not limited to, light liquid, heavy liquid, any form of liquid fuel derived from petroleum, used oil, liquid biofuels, biodiesel, vegetable oil, and comparable fuels as defined under 40 CFR 261.38.

Load fraction means the actual heat input of a boiler or process heater divided by heat input during the performance test that established the minimum sorbent injection rate or minimum activated carbon injection rate, expressed as a fraction (e.g., for 50 percent load the load fraction is 0.5).

Major source for oil and natural gas production facilities, as used in this subpart, shall have the same meaning as in § 63.2, except that:

- (1) Emissions from any oil or gas exploration or production well (with its associated equipment, as defined in this section), and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;
- (2) Emissions from processes, operations, or equipment that are not part of the same facility, as defined in this section, shall not be aggregated; and
- (3) For facilities that are production field facilities, only HAP emissions from glycol dehydration units and storage vessels with the potential for flash emissions shall be aggregated for a major source determination. For facilities that are not production field facilities, HAP emissions from all HAP emission units shall be aggregated for a major source determination.

Metal process furnaces are a subcategory of process heaters, as defined in this subpart, which include natural gasfired annealing furnaces, preheat furnaces, reheat furnaces, aging furnaces, heat treat furnaces, and homogenizing

Million Btu (MMBtu) means one million British thermal units.

Attachment D 40 CFR 63, Subpart DDDDD

Page 57 of 95 T003-30777-00269

Minimum activated carbon injection rate means load fraction multiplied by the lowest hourly average activated carbon injection rate measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum oxygen level means the lowest hourly average oxygen level measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum pressure drop means the lowest hourly average pressure drop measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum scrubber effluent pH means the lowest hourly average sorbent liquid pH measured at the inlet to the wet scrubber according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable hydrogen chloride emission limit.

Minimum scrubber liquid flow rate means the lowest hourly average liquid flow rate (e.g., to the PM scrubber or to the acid gas scrubber) measured according to Table 7 to this subpart during the most recent performance stack test demonstrating compliance with the applicable emission limit.

Minimum scrubber pressure drop means the lowest hourly average scrubber pressure drop measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limit.

Minimum sorbent injection rate means:

- (1) The load fraction multiplied by the lowest hourly average sorbent injection rate for each sorbent measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limits; or
- (2) For fluidized bed combustion, the lowest average ratio of sorbent to sulfur measured during the most recent performance test.

Minimum total secondary electric power means the lowest hourly average total secondary electric power determined from the values of secondary voltage and secondary current to the electrostatic precipitator measured according to Table 7 to this subpart during the most recent performance test demonstrating compliance with the applicable emission limits.

Natural gas means:

- (1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or
- (2) Liquefied petroleum gas, as defined in ASTM D1835 (incorporated by reference, see § 63.14); or
- (3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 35 and 41 megajoules (MJ) per dry standard cubic meter (950 and 1,100 Btu per dry standard cubic foot); or
- (4) Propane or propane derived synthetic natural gas. Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C_3 H_8 .

Opacity means the degree to which emissions reduce the transmission of light and obscure the view of an object in the background.

Operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the boiler or process heater unit. It is not necessary for fuel to be combusted for the entire 24-hour period.

Page 58 of 95 T003-30777-00269

Other combustor means a unit designed to burn solid fuel that is not classified as a dutch oven, fluidized bed, fuel cell, hybrid suspension grate boiler, pulverized coal boiler, stoker, sloped grate, or suspension boiler as defined in this subpart.

Other gas 1 fuel means a gaseous fuel that is not natural gas or refinery gas and does not exceed a maximum concentration of 40 micrograms/cubic meters of mercury.

Oxygen analyzer system means all equipment required to determine the oxygen content of a gas stream and used to monitor oxygen in the boiler or process heater flue gas, boiler or process heater, firebox, or other appropriate location. This definition includes oxygen trim systems. The source owner or operator must install, calibrate, maintain, and operate the oxygen analyzer system in accordance with the manufacturer's recommendations.

Oxygen trim system means a system of monitors that is used to maintain excess air at the desired level in a combustion device. A typical system consists of a flue gas oxygen and/or CO monitor that automatically provides a feedback signal to the combustion air controller.

Particulate matter (PM) means any finely divided solid or liquid material, other than uncombined water, as measured by the test methods specified under this subpart, or an approved alternative method.

Period of gas curtailment or supply interruption means a period of time during which the supply of gaseous fuel to an affected boiler or process heater is restricted or halted for reasons beyond the control of the facility. The act of entering into a contractual agreement with a supplier of natural gas established for curtailment purposes does not constitute a reason that is under the control of a facility for the purposes of this definition. An increase in the cost or unit price of natural gas due to normal market fluctuations not during periods of supplier delivery restriction does not constitute a period of natural gas curtailment or supply interruption. On-site gaseous fuel system emergencies or equipment failures qualify as periods of supply interruption when the emergency or failure is beyond the control of the facility.

Pile burner means a boiler design incorporating a design where the anticipated biomass fuel has a high relative moisture content. Grates serve to support the fuel, and underfire air flowing up through the grates provides oxygen for combustion, cools the grates, promotes turbulence in the fuel bed, and fires the fuel. The most common form of pile burning is the dutch oven.

Process heater means an enclosed device using controlled flame, and the unit's primary purpose is to transfer heat indirectly to a process material (liquid, gas, or solid) or to a heat transfer material (e.g., glycol or a mixture of glycol and water) for use in a process unit, instead of generating steam. Process heaters are devices in which the combustion gases do not come into direct contact with process materials. A device combusting solid waste, as defined in § 241.3 of this chapter, is not a process heater unless the device is exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act. Process heaters do not include units used for comfort heat or space heat, food preparation for on-site consumption, or autoclaves. Waste heat process heaters are excluded from this definition.

Pulverized coal boiler means a boiler in which pulverized coal or other solid fossil fuel is introduced into an air stream that carries the coal to the combustion chamber of the boiler where it is fired in suspension.

Qualified energy assessor means:

- (1) Someone who has demonstrated capabilities to evaluate energy savings opportunities for steam generation and major energy using systems, including, but not limited to:
- (i) Boiler combustion management.
- (ii) Boiler thermal energy recovery, including
- (A) Conventional feed water economizer,
- (B) Conventional combustion air preheater, and

Attachment D 40 CFR 63, Subpart DDDDD

Page 59 of 95 T003-30777-00269

- (C) Condensing economizer.
- (iii) Boiler blowdown thermal energy recovery.
- (iv) Primary energy resource selection, including
- (A) Fuel (primary energy source) switching, and
- (B) Applied steam energy versus direct-fired energy versus electricity.
- (v) Insulation issues.
- (vi) Steam trap and steam leak management.
- (vi) Condensate recovery.
- (viii) Steam end-use management.
- (2) Capabilities and knowledge includes, but is not limited to:
- (i) Background, experience, and recognized abilities to perform the assessment activities, data analysis, and report preparation.
- (ii) Familiarity with operating and maintenance practices for steam or process heating systems.
- (iii) Additional potential steam system improvement opportunities including improving steam turbine operations and reducing steam demand.
- (iv) Additional process heating system opportunities including effective utilization of waste heat and use of proper process heating methods.
- (v) Boiler-steam turbine cogeneration systems.
- (vi) Industry specific steam end-use systems.

Refinery gas means any gas that is generated at a petroleum refinery and is combusted. Refinery gas includes natural gas when the natural gas is combined and combusted in any proportion with a gas generated at a refinery. Refinery gas includes gases generated from other facilities when that gas is combined and combusted in any proportion with gas generated at a refinery.

Regulated gas stream means an offgas stream that is routed to a boiler or process heater for the purpose of achieving compliance with a standard under another subpart of this part or part 60, part 61, or part 65 of this chapter.

Residential boiler means a boiler used to provide heat and/or hot water and/or as part of a residential combined heat and power system. This definition includes boilers located at an institutional facility (e.g., university campus, military base, church grounds) or commercial/industrial facility (e.g., farm) used primarily to provide heat and/or hot water for:

- (1) A dwelling containing four or fewer families; or
- (2) A single unit residence dwelling that has since been converted or subdivided into condominiums or apartments.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society of Testing and Materials in ASTM D396-10 (incorporated by reference, see § 63.14(b)).

Page 60 of 95 T003-30777-00269

Responsible official means responsible official as defined in § 70.2.

Secondary material means the material as defined in § 241.2 of this chapter.

Shutdown means the cessation of operation of a boiler or process heater for any purpose. Shutdown begins either when none of the steam from the boiler is supplied for heating and/or producing electricity, or for any other purpose, or at the point of no fuel being fired in the boiler or process heater, whichever is earlier. Shutdown ends when there is no steam and no heat being supplied and no fuel being fired in the boiler or process heater.

Sloped grate means a unit where the solid fuel is fed to the top of the grate from where it slides downwards; while sliding the fuel first dries and then ignites and burns. The ash is deposited at the bottom of the grate. Fluidized bed, dutch oven, pile burner, hybrid suspension grate, suspension burners, and fuel cells are not considered to be a sloped grate design.

Solid fossil fuel includes, but is not limited to, coal, coke, petroleum coke, and tire derived fuel.

Solid fuel means any solid fossil fuel or biomass or bio-based solid fuel.

Startup means either the first-ever firing of fuel in a boiler or process heater for the purpose of supplying steam or heat for heating and/or producing electricity, or for any other purpose, or the firing of fuel in a boiler after a shutdown event for any purpose. Startup ends when any of the steam or heat from the boiler or process heater is supplied for heating, and/or producing electricity, or for any other purpose.

Steam output means:

- (1) For a boiler that produces steam for process or heating only (no power generation), the energy content in terms of MMBtu of the boiler steam output,
- (2) For a boiler that cogenerates process steam and electricity (also known as combined heat and power), the total energy output, which is the sum of the energy content of the steam exiting the turbine and sent to process in MMBtu and the energy of the electricity generated converted to MMBtu at a rate of 10,000 Btu per kilowatt-hour generated (10 MMBtu per megawatt-hour), and
- (3) For a boiler that generates only electricity, the alternate output-based emission limits would be calculated using Equations 21 through 25 of this section, as appropriate:
- (i) For emission limits for boilers in the unit designed to burn solid fuel subcategory use Equation 21 of this section:

```
EL_{CBE} = EL_T \times 12.7 \text{ MMBtu/Mwh} (Eq. 21)
```

Where:

ELOBE = Emission limit in units of pounds per megawatt-hour.

EL_T = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(ii) For PM and CO emission limits for boilers in one of the subcategories of units designed to burn coal use Equation 22 of this section:

```
EL_{OBE} = EL_T \times 12.2 \text{ MMBtu/Mwh} (Eq. 22)
```

Where:

EL_{OBE} = Emission limit in units of pounds per megawatt-hour.

Page 61 of 95 T003-30777-00269

EL_T = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(iii) For PM and CO emission limits for boilers in one of the subcategories of units designed to burn biomass use Equation 23 of this section:

$$EL_{OBE} = EL_T \times 13.9 \text{ MMBtu/Mwh}$$
 (Eq. 23)

Where:

EL_{OBE} = Emission limit in units of pounds per megawatt-hour.

EL_T = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(iv) For emission limits for boilers in one of the subcategories of units designed to burn liquid fuels use Equation 24 of this section:

```
EL_{OBE} = EL_T \times 13.8 \text{ MMBtu/Mwh} (Eq. 24)
```

Where:

ELOBE = Emission limit in units of pounds per megawatt-hour.

EL_T = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

(v) For emission limits for boilers in the unit designed to burn gas 2 (other) subcategory, use Equation 25 of this section:

```
EL_{OBE} = EL_T \times 10.4 \text{ MMBtu/Mwh} (Eq. 25)
```

Where:

EL_{OBE} = Emission limit in units of pounds per megawatt-hour.

EL_T = Appropriate emission limit from Table 1 or 2 of this subpart in units of pounds per million Btu heat input.

Stoker means a unit consisting of a mechanically operated fuel feeding mechanism, a stationary or moving grate to support the burning of fuel and admit under-grate air to the fuel, an overfire air system to complete combustion, and an ash discharge system. This definition of stoker includes air swept stokers. There are two general types of stokers: Underfeed and overfeed. Overfeed stokers include mass feed and spreader stokers. Fluidized bed, dutch oven, pile burner, hybrid suspension grate, suspension burners, and fuel cells are not considered to be a stoker design.

Stoker/sloped grate/other unit designed to burn kiln dried biomass means the unit is in the units designed to burn biomass/bio-based solid subcategory that is either a stoker, sloped grate, or other combustor design and is not in the stoker/sloped grate/other units designed to burn wet biomass subcategory.

Stoker/sloped grate/other unit designed to burn wet biomass means the unit is in the units designed to burn biomass/bio-based solid subcategory that is either a stoker, sloped grate, or other combustor design and any of the biomass/bio-based solid fuel combusted in the unit exceeds 20 percent moisture on an annual heat input basis.

Suspension burner means a unit designed to fire dry biomass/biobased solid particles in suspension that are conveyed in an airstream to the furnace like pulverized coal. The combustion of the fuel material is completed on a grate or floor below. The biomass/biobased fuel combusted in the unit shall not exceed 20 percent moisture on an annual heat input basis. Fluidized bed, dutch oven, pile burner, and hybrid suspension grate units are not part of the suspension burner subcategory.

Attachment D 40 CFR 63, Subpart DDDDD

Page 62 of 95 T003-30777-00269

Temporary boiler means any gaseous or liquid fuel boiler that is designed to, and is capable of, being carried or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A boiler is not a temporary boiler if any one of the following conditions exists:

- (1) The equipment is attached to a foundation.
- (2) The boiler or a replacement remains at a location within the facility and performs the same or similar function for more than 12 consecutive months, unless the regulatory agency approves an extension. An extension may be granted by the regulating agency upon petition by the owner or operator of a unit specifying the basis for such a request. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.
- (3) The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.
- (4) The equipment is moved from one location to another within the facility but continues to perform the same or similar function and serve the same electricity, steam, and/or hot water system in an attempt to circumvent the residence time requirements of this definition.

Total selected metals (TSM) means the sum of the following metallic hazardous air pollutants: arsenic, beryllium, cadmium, chromium, lead, manganese, nickel and selenium.

Traditional fuel means the fuel as defined in § 241.2 of this chapter.

Tune-up means adjustments made to a boiler or process heater in accordance with the procedures outlined in § 63.7540(a)(10).

Ultra low sulfur liquid fuel means a distillate oil that has less than or equal to 15 ppm sulfur.

Unit designed to burn biomass/bio-based solid subcategory includes any boiler or process heater that burns at least 10 percent biomass or bio-based solids on an annual heat input basis in combination with solid fossil fuels, liquid fuels, or gaseous fuels.

Unit designed to burn coal/solid fossil fuel subcategory includes any boiler or process heater that burns any coal or other solid fossil fuel alone or at least 10 percent coal or other solid fossil fuel on an annual heat input basis in combination with liquid fuels, gaseous fuels, or less than 10 percent biomass and bio-based solids on an annual heat input basis.

Unit designed to burn gas 1 subcategory includes any boiler or process heater that burns only natural gas, refinery gas, and/or other gas 1 fuels. Gaseous fuel boilers and process heaters that burn liquid fuel for periodic testing of liquid fuel, maintenance, or operator training, not to exceed a combined total of 48 hours during any calendar year, are included in this definition. Gaseous fuel boilers and process heaters that burn liquid fuel during periods of gas curtailment or gas supply interruptions of any duration are also included in this definition.

Unit designed to burn gas 2 (other) subcategory includes any boiler or process heater that is not in the unit designed to burn gas 1 subcategory and burns any gaseous fuels either alone or in combination with less than 10 percent coal/solid fossil fuel, and less than 10 percent biomass/bio-based solid fuel on an annual heat input basis, and no liquid fuels. Gaseous fuel boilers and process heaters that are not in the unit designed to burn gas 1 subcategory and that burn liquid fuel for periodic testing of liquid fuel, maintenance, or operator training, not to exceed a combined total of 48 hours during any calendar year, are included in this definition. Gaseous fuel boilers and process heaters that are not in the unit designed to burn gas 1 subcategory and that burn liquid fuel during periods of gas curtailment or gas supply interruption of any duration are also included in this definition.

Unit designed to burn heavy liquid subcategory means a unit in the unit designed to burn liquid subcategory where at least 10 percent of the heat input from liquid fuels on an annual heat input basis comes from heavy liquids.

Unit designed to burn light liquid subcategory means a unit in the unit designed to burn liquid subcategory that is not part of the unit designed to burn heavy liquid subcategory.

Unit designed to burn liquid subcategory includes any boiler or process heater that burns any liquid fuel, but less than 10 percent coal/solid fossil fuel and less than 10 percent biomass/bio-based solid fuel on an annual heat input basis, either alone or in combination with gaseous fuels. Units in the unit design to burn gas 1 or unit designed to burn gas 2 (other) subcategories that burn liquid fuel for periodic testing of liquid fuel, maintenance, or operator training, not to exceed a combined total of 48 hours during any calendar year are not included in this definition. Units in the unit design to burn gas 1 or unit designed to burn gas 2 (other) subcategories during periods of gas curtailment or gas supply interruption of any duration are also not included in this definition.

Unit designed to burn liquid fuel that is a non-continental unit means an industrial, commercial, or institutional boiler or process heater meeting the definition of the unit designed to burn liquid subcategory located in the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Unit designed to burn solid fuel subcategory means any boiler or process heater that burns only solid fuels or at least 10 percent solid fuel on an annual heat input basis in combination with liquid fuels or gaseous fuels.

Vegetable oil means oils extracted from vegetation.

Voluntary Consensus Standards or VCS mean technical standards (e.g., materials specifications, test methods, sampling procedures, business practices) developed or adopted by one or more voluntary consensus bodies. EPA/Office of Air Quality Planning and Standards, by precedent, has only used VCS that are written in English. Examples of VCS bodies are: American Society of Testing and Materials (ASTM 100 Barr Harbor Drive, P.O. Box CB700, West Conshohocken, Pennsylvania 19428-B2959, (800) 262-1373, http://www.astm.org.), American Society of Mechanical Engineers (ASME ASME, Three Park Avenue, New York, NY 10016-5990, (800) 843-2763, http://www.asme.org), International Standards Organization (ISO 1, ch. de la Voie-Creuse, Case postale 56, CH-1211 Geneva 20, Switzerland, +41 22 749 01 11, http://www.iso.org/iso/home.htm), Standards Australia (AS Level 10, The Exchange Centre, 20 Bridge Street, Sydney, GPO Box 476, Sydney NSW 2001, + 61 2 9237 6171 http://www.stadards.org.au), British Standards Institution (BSI, 389 Chiswick High Road, London, W4 4AL, United Kingdom, +44 (0)20 8996 9001, http://www.bsigroup.com), Canadian Standards Association (CSA 5060 Spectrum Way, Suite 100, Mississauga, Ontario L4W 5No, Canada, 800-463-6727, http://www.csa.ca), European Committee for Standardization (CEN CENELEC Management Centre Avenue Marnix 17 B-1000 Brussels, Belgium +32 2 550 08 11, http://www.cen.eu/cen), and German Engineering Standards (VDI VDI Guidelines Department, P.O. Box 10 11 39 40002, Duesseldorf, Germany, +49 211 6214-230, http://www.vdi.eu). The types of standards that are not considered VCS are standards developed by: The United States, e.g., California (CARB) and Texas (TCEQ); industry groups, such as American Petroleum Institute (API), Gas Processors Association (GPA), and Gas Research Institute (GRI); and other branches of the U.S. government, e.g., Department of Defense (DOD) and Department of Transportation (DOT). This does not preclude EPA from using standards developed by groups that are not VCS bodies within their rule. When this occurs, EPA has done searches and reviews for VCS equivalent to these non-EPA methods.

Waste heat boiler means a device that recovers normally unused energy (i.e., hot exhaust gas) and converts it to usable heat. Waste heat boilers are also referred to as heat recovery steam generators. Waste heat boilers are heat exchangers generating steam from incoming hot exhaust gas from an industrial (e.g., thermal oxidizer, kiln, furnace) or power (e.g., combustion turbine, engine) equipment. Duct burners are sometimes used to increase the temperature of the incoming hot exhaust gas.

Waste heat process heater means an enclosed device that recovers normally unused energy (i.e., hot exhaust gas) and converts it to usable heat. Waste heat process heaters are also referred to as recuperative process heaters. This definition includes both fired and unfired waste heat process heaters.

Wet scrubber means any add-on air pollution control device that mixes an aqueous stream or slurry with the exhaust gases from a boiler or process heater to control emissions of particulate matter or to absorb and neutralize acid gases, such as hydrogen chloride. A wet scrubber creates an aqueous stream or slurry as a byproduct of the emissions control process.

Work practice standard means any design, equipment, work practice, or operational standard, or combination thereof, that is promulgated pursuant to section 112(h) of the Clean Air Act.

[78 FR 15664, Mar. 21, 2011, as amended at 78 FR 7163, Jan. 31, 2013]

Table 1 to Subpart DDDDD of Part 63—Emission Limits for New or Reconstructed Boilers and Process Heaters

As stated in § 63.7500, you must comply with the following applicable emission limits:

[Units with heat input capacity of 10 million Btu per hour or greater]

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	Or the emissions must not exceed the following alternative outputbased limits, except during startup and shutdown	Using this specified sampling volume or test run duration
1. Units in all subcategories designed to burn solid fuel.	a. HCl	2.2E-02 lb per MMBtu of heat input	2.5E-02 lb per MMBtu of steam output or 0.28 lb per MWh	For M26A, collect a minimum of 1 dscm per run; for M26 collect a minimum of 120 liters per run.
	b. Mercury	8.0E-07 ^a lb per MMBtu of heat input	8.7E-07 ^a lb per MMBtu of steam output or 1.1E-05 ^a lb per MWh	For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 4 dscm.
2. Units designed to burn coal/solid fossil fuel	a. Filterable PM (or TSM)	1.1E-03 lb per MMBtu of heat input; or (2.3E-05 lb per MMBtu of heat input)	1.1E-03 lb per MMBtu of steam output or 1.4E-02 lb per MWh; or (2.7E-05 lb per MMBtu of steam output or 2.9E-04 lb per MWh)	Collect a minimum of 3 dscm per run.
3. Pulverized coal boilers designed to burn coal/solid fossil fuel	a. Carbon monoxide (CO) (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (320 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.11 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
4. Stokers designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.12 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
5. Fluidized bed units designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.11 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	Or the emissions must not exceed the following alternative outputbased limits, except during startup and shutdown	Using this specified sampling volume or test run duration
6. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel	a. CO (or CEMS)	140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1.2E-01 lb per MMBtu of steam output or 1.5 lb per MWh; 3-run average	1 hr minimum sampling time.
7. Stokers/sloped grate/others designed to burn wet biomass fuel	a. CO (or CEMS)	620 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (390 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	5.8E-01 lb per MMBtu of steam output or 6.8 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.0E-02 lb per MMBtu of heat input; or (2.6E-05 lb per MMBtu of heat input)	3.5E-02 lb per MMBtu of steam output or 4.2E-01 lb per MWh; or (2.7E-05 lb per MMBtu of steam output or 3.7E-04 lb per MWh)	Collect a minimum of 2 dscm per run.
8. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel	a. CO	460 ppm by volume on a dry basis corrected to 3 percent oxygen	4.2E-01 lb per MMBtu of steam output or 5.1 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.0E-02 lb per MMBtu of heat input; or (4.0E-03 lb per MMBtu of heat input)	3.5E-02 lb per MMBtu of steam output or 4.2E-01 lb per MWh; or (4.2E-03 lb per MMBtu of steam output or 5.6E-02 lb per MWh)	Collect a minimum of 2 dscm per run.
9. Fluidized bed units designed to burn biomass/bio-based solids	a. CO (or CEMS)	230 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	2.2E-01 lb per MMBtu of steam output or 2.6 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	9.8E-03 lb per MMBtu of heat input; or (8.3E-05 alb per MMBtu of heat input)	1.2E-02 lb per MMBtu of steam output or 0.14 lb per MWh; or (1.1E-04 ^a lb per MMBtu of steam output or 1.2E-03 ^a lb per MWh)	Collect a minimum of 3 dscm per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	Or the emissions must not exceed the following alternative outputbased limits, except during startup and shutdown	Using this specified sampling volume or test run duration
10. Suspension burners designed to burn biomass/biobased solids	a. CO (or CEMS)	2,400 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (2,000 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1.9 lb per MMBtu of steam output or 27 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.0E-02 lb per MMBtu of heat input; or (6.5E-03 lb per MMBtu of heat input)	3.1E-02 lb per MMBtu of steam output or 4.2E-01 lb per MWh; or (6.6E-03 lb per MMBtu of steam output or 9.1E-02 lb per MWh)	Collect a minimum of 2 dscm per run.
11. Dutch Ovens/Pile burners designed to burn biomass/bio- based solids	a. CO (or CEMS)	330 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (520 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	3.5E-01 lb per MMBtu of steam output or 3.6 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.2E-03 lb per MMBtu of heat input; or (3.9E-05 lb per MMBtu of heat input)	4.3E-03 lb per MMBtu of steam output or 4.5E-02 lb per MWh; or (5.2E-05 lb per MMBtu of steam output or 5.5E-04 lb per MWh)	Collect a minimum of 3 dscm per run.
12. Fuel cell units designed to burn biomass/bio-based solids	a. CO	910 ppm by volume on a dry basis corrected to 3 percent oxygen	1.1 lb per MMBtu of steam output or 1.0E+01 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.0E-02 lb per MMBtu of heat input; or (2.9E-05 ^a lb per MMBtu of heat input)	3.0E-02 lb per MMBtu of steam output or 2.8E-01 lb per MWh; or (5.1E-05 lb per MMBtu of steam output or 4.1E-04 lb per MWh)	Collect a minimum of 2 dscm per run.
13. Hybrid suspension grate boiler designed to burn biomass/bio- based solids	a. CO (or CEMS)	1,100 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (900 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1.4 lb per MMBtu of steam output or 12 lb per MWh; 3-run average	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	Or the emissions must not exceed the following alternative outputbased limits, except during startup and shutdown	Using this specified sampling volume or test run duration
	b. Filterable PM (or TSM)	2.6E-02 lb per MMBtu of heat input; or (4.4E-04 lb per MMBtu of heat input)	3.3E-02 lb per MMBtu of steam output or 3.7E-01 lb per MWh; or (5.5E-04 lb per MMBtu of steam output or 6.2E-03 lb per MWh)	Collect a minimum of 3 dscm per run.
14. Units designed to burn liquid fuel	a. HCl	4.4E-04 lb per MMBtu of heat input	4.8E-04 lb per MMBtu of steam output or 6.1E-03 lb per MWh	For M26A: Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	b. Mercury	4.8E-07 ^a lb per MMBtu of heat input	5.3E-07 ^a lb per MMBtu of steam output or 6.7E-06 ^a lb per MWh	For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 4 dscm.
15. Units designed to burn heavy liquid fuel	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average	0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.3E-02 lb per MMBtu of heat input; or (7.5E-05 lb per MMBtu of heat input)	1.5E-02 lb per MMBtu of steam output or 1.8E-01 lb per MWh; or (8.2E-05 lb per MMBtu of steam output or 1.1E-03 lb per MWh)	Collect a minimum of 3 dscm per run.
16. Units designed to burn light liquid fuel	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen	0.13 lb per MMBtu of steam output or 1.4 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-03 ^a lb per MMBtu of heat input; or (2.9E-05 lb per MMBtu of heat input)	1.2E-03 alb per MMBtu of steam output or 1.6E-02 alb per MWh; or (3.2E-05 lb per MMBtu of steam output or 4.0E- 04 lb per MWh)	Collect a minimum of 3 dscm per run.
17. Units designed to burn liquid fuel that are non-continental units	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average based on stack test	0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.3E-02 lb per MMBtu of heat input; or (8.6E-04 lb per MMBtu of heat input)	2.5E-02 lb per MMBtu of steam output or 3.2E-01 lb per MWh; or (9.4E-04 lb per MMBtu of steam output or 1.2E-02 lb per MWh)	Collect a minimum of 4 dscm per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	Or the emissions must not exceed the following alternative outputbased limits, except during startup and shutdown	Using this specified sampling volume or test run duration
18. Units designed to burn gas 2 (other) gases	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen	0.16 lb per MMBtu of steam output or 1.0 lb per MWh	1 hr minimum sampling time.
	b. HCl	1.7E-03 lb per MMBtu of heat input	2.9E-03 lb per MMBtu of steam output or 1.8E-02 lb per MWh	For M26A, Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	c. Mercury	7.9E-06 lb per MMBtu of heat input	1.4E-05 lb per MMBtu of steam output or 8.3E-05 lb per MWh	For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 3 dscm.
	d. Filterable PM (or TSM)	6.7E-03 lb per MMBtu of heat input; or (2.1E-04 lb per MMBtu of heat input)	1.2E-02 lb per MMBtu of steam output or 7.0E-02 lb per MWh; or (3.5E-04 lb per MMBtu of steam output or 2.2E-03 lb per MWh)	Collect a minimum of 3 dscm per run.

^a If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit, you can skip testing according to § 63.7515 if all of the other provisions of § 63.7515 are met. For all other pollutants that do not contain a footnote "a", your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

[78 FR 7193, Jan. 31, 2013]

^b Incorporated by reference, see § 63.14.

^c If your affected source is a new or reconstructed affected source that commenced construction or reconstruction after June 4, 2010, and before January 31, 2013, you may comply with the emission limits in Tables 11, 12 or 13 to this subpart until January 31, 2016. On and after January 31, 2016, you must comply with the emission limits in Table 1 to this subpart.

Table 2 to Subpart DDDDD of Part 63—Emission Limits for Existing Boilers and Process Heaters

As stated in § 63.7500, you must comply with the following applicable emission limits:

[Units with heat input capacity of 10 million Btu per hour or greater]

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	The emissions must not exceed the following alternative output-based limits, except during startup and shutdown	Using this specified sampling volume or test run duration
Units in all subcategories designed to burn solid fuel	a. HCI	2.2E-02 lb per MMBtu of heat input	2.5E-02 lb per MMBtu of steam output or 0.27 lb per MWh	For M26A, Collect a minimum of 1 dscm per run; for M26, collect a minimum of 120 liters per run.
	b. Mercury	5.7E-06 lb per MMBtu of heat input	6.4E-06 lb per MMBtu of steam output or 7.3E-05 lb per MWh	For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 3 dscm.
2. Units design to burn coal/solid fossil fuel	a. Filterable PM (or TSM)	4.0E-02 lb per MMBtu of heat input; or (5.3E-05 lb per MMBtu of heat input)	4.2E-02 lb per MMBtu of steam output or 4.9E-01 lb per MWh; or (5.6E-05 lb per MMBtu of steam output or 6.5E-04 lb per MWh)	Collect a minimum of 2 dscm per run.
3. Pulverized coal boilers designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (320 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.11 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
4. Stokers designed to burn coal/solid fossil fuel	a. CO (or CEMS)	160 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.14 lb per MMBtu of steam output or 1.7 lb per MWh; 3-run average	1 hr minimum sampling time.
5. Fluidized bed units designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	0.12 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	The emissions must not exceed the following alternative output-based limits, except during startup and shutdown	Using this specified sampling volume or test run duration
6. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel	a. CO (or CEMS)	140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1.3E-01 lb per MMBtu of steam output or 1.5 lb per MWh; 3-run average	1 hr minimum sampling time.
7. Stokers/sloped grate/others designed to burn wet biomass fuel	a. CO (or CEMS)	1,500 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (720 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1.4 lb per MMBtu of steam output or 17 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.7E-02 lb per MMBtu of heat input; or (2.4E-04 lb per MMBtu of heat input)	4.3E-02 lb per MMBtu of steam output or 5.2E-01 lb per MWh; or (2.8E-04 lb per MMBtu of steam output or 3.4E-04 lb per MWh)	Collect a minimum of 2 dscm per run.
8. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel	a. CO	460 ppm by volume on a dry basis corrected to 3 percent oxygen	4.2E-01 lb per MMBtu of steam output or 5.1 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.2E-01 lb per MMBtu of heat input; or (4.0E-03 lb per MMBtu of heat input)	3.7E-01 lb per MMBtu of steam output or 4.5 lb per MWh; or (4.6E- 03 lb per MMBtu of steam output or 5.6E- 02 lb per MWh)	Collect a minimum of 1 dscm per run.
9. Fluidized bed units designed to burn biomass/bio-based solid	a. CO (or CEMS)	470 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	4.6E-01 lb per MMBtu of steam output or 5.2 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-01 lb per MMBtu of heat input; or (1.2E-03 lb per MMBtu of heat input)	1.4E-01 lb per MMBtu of steam output or 1.6 lb per MWh; or (1.5E- 03 lb per MMBtu of steam output or 1.7E- 02 lb per MWh)	Collect a minimum of 1 dscm per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	The emissions must not exceed the following alternative output-based limits, except during startup and shutdown	Using this specified sampling volume or test run duration
10. Suspension burners designed to burn biomass/bio- based solid	a. CO (or CEMS)	2,400 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (2,000 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1.9 lb per MMBtu of steam output or 27 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	5.1E-02 lb per MMBtu of heat input; or (6.5E-03 lb per MMBtu of heat input)	5.2E-02 lb per MMBtu of steam output or 7.1E-01 lb per MWh; or (6.6E-03 lb per MMBtu of steam output or 9.1E-02 lb per MWh)	Collect a minimum of 2 dscm per run.
11. Dutch Ovens/Pile burners designed to burn biomass/bio- based solid	a. CO (or CEMS)	770 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (520 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	8.4E-01 lb per MMBtu of steam output or 8.4 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.8E-01 lb per MMBtu of heat input; or (2.0E-03 lb per MMBtu of heat input)	3.9E-01 lb per MMBtu of steam output or 3.9 lb per MWh; or (2.8E- 03 lb per MMBtu of steam output or 2.8E- 02 lb per MWh)	Collect a minimum of 1 dscm per run.
12. Fuel cell units designed to burn biomass/bio-based solid	a. CO	1,100 ppm by volume on a dry basis corrected to 3 percent oxygen	2.4 lb per MMBtu of steam output or 12 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.0E-02 lb per MMBtu of heat input; or (5.8E-03 lb per MMBtu of heat input)	5.5E-02 lb per MMBtu of steam output or 2.8E-01 lb per MWh; or (1.6E-02 lb per MMBtu of steam output or 8.1E-02 lb per MWh)	Collect a minimum of 2 dscm per run.
13. Hybrid suspension grate units designed to burn biomass/biobased solid	a. CO (or CEMS)	2,800 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (900 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	2.8 lb per MMBtu of steam output or 31 lb per MWh; 3-run average	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	The emissions must not exceed the following alternative output-based limits, except during startup and shutdown	Using this specified sampling volume or test run duration
	b. Filterable PM (or TSM)	4.4E-01 lb per MMBtu of heat input; or (4.5E-04 lb per MMBtu of heat input)	5.5E-01 lb per MMBtu of steam output or 6.2 lb per MWh; or (5.7E- 04 lb per MMBtu of steam output or 6.3E- 03 lb per MWh)	Collect a minimum of 1 dscm per run.
14. Units designed to burn liquid fuel	a. HCl	1.1E-03 lb per MMBtu of heat input	1.4E-03 lb per MMBtu of steam output or 1.6E-02 lb per MWh	For M26A, collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	b. Mercury	2.0E-06 lb per MMBtu of heat input	2.5E-06 lb per MMBtu of steam output or 2.8E-05 lb per MWh	For M29, collect a minimum of 3 dscm per run; for M30A or M30B collect a minimum sample as specified in the method, for ASTM D6784 bcollect a minimum of 2 dscm.
15. Units designed to burn heavy liquid fuel	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average	0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	6.2E-02 lb per MMBtu of heat input; or (2.0E-04 lb per MMBtu of heat input)	7.5E-02 lb per MMBtu of steam output or 8.6E-01 lb per MWh; or (2.5E-04 lb per MMBtu of steam output or 2.8E-03 lb per MWh)	Collect a minimum of 1 dscm per run.
16. Units designed to burn light liquid fuel	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen	0.13 lb per MMBtu of steam output or 1.4 lb per MWh	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	7.9E-03 lb per MMBtu of heat input; or (6.2E-05 lb per MMBtu of heat input)	9.6E-03 lb per MMBtu of steam output or 1.1E-01 lb per MWh; or (7.5E-05 lb per MMBtu of steam output or 8.6E-04 lb per MWh)	Collect a minimum of 3 dscm per run.
17. Units designed to burn liquid fuel that are non-continental units	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average based on stack test	0.13 lb per MMBtu of steam output or 1.4 lb per MWh; 3-run average	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.7E-01 lb per MMBtu of heat input; or (8.6E-04 lb per MMBtu of heat input)	3.3E-01 lb per MMBtu of steam output or 3.8 lb per MWh; or (1.1E- 03 lb per MMBtu of steam output or 1.2E- 02 lb per MWh)	Collect a minimum of 2 dscm per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during startup and shutdown	The emissions must not exceed the following alternative output-based limits, except during startup and shutdown	Using this specified sampling volume or test run duration
18. Units designed to burn gas 2 (other) gases	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen	0.16 lb per MMBtu of steam output or 1.0 lb per MWh	1 hr minimum sampling time.
	b. HCI	1.7E-03 lb per MMBtu of heat input	2.9E-03 lb per MMBtu of steam output or 1.8E-02 lb per MWh	For M26A, collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	c. Mercury	7.9E-06 lb per MMBtu of heat input	1.4E-05 lb per MMBtu of steam output or 8.3E-05 lb per MWh	For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 2 dscm.
	d. Filterable PM (or TSM)	6.7E-03 lb per MMBtu of heat input or (2.1E-04 lb per MMBtu of heat input)	1.2E-02 lb per MMBtu of steam output or 7.0E-02 lb per MWh; or (3.5E-04 lb per MMBtu of steam output or 2.2E-03 lb per MWh)	Collect a minimum of 3 dscm per run.

^a If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit, you can skip testing according to § 63.7515 if all of the other provisions of § 63.7515 are met. For all other pollutants that do not contain a footnote a, your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

[78 FR 7195, Jan. 31, 2013]

Table 3 to Subpart DDDDD of Part 63—Work Practice Standards

As stated in § 63.7500, you must comply with the following applicable work practice standards:

If your unit is	You must meet the following
1. A new or existing boiler or process heater with a continuous oxygen trim system that maintains an optimum air to fuel ratio, or a heat input capacity of less than or equal to 5 million Btu per hour in any of the following subcategories: unit designed to burn gas 1; unit designed to burn gas 2 (other); or unit designed to burn light liquid, or a limited use boiler or process heater	Conduct a tune-up of the boiler or process heater every 5 years as specified in § 63.7540.

^b Incorporated by reference, see § 63.14.

2. A new or existing boiler or process heater without a continuous oxygen trim system and with heat input capacity of less than 10 million Btu per hour in the unit designed to burn heavy liquid or unit designed to burn solid fuel subcategories; or a new or existing boiler or process heater with heat input capacity of less than 10 million Btu per hour, but greater than 5 million Btu per hour, in any of the following subcategories: unit designed to burn gas 1; unit designed to burn gas 2 (other); or unit designed to burn light liquid	Conduct a tune-up of the boiler or process heater biennially as specified in § 63.7540.
A new or existing boiler or process heater without a continuous oxygen trim system and with heat input capacity of 10 million Btu per hour or greater	Conduct a tune-up of the boiler or process heater annually as specified in § 63.7540. Units in either the Gas 1 or Metal Process Furnace subcategories will conduct this tune-up as a work practice for all regulated emissions under this subpart. Units in all other subcategories will conduct this tune-up as a work practice for dioxins/furans.
4. An existing boiler or process heater located at a major source facility, not including limited use units	Must have a one-time energy assessment performed by a qualified energy assessor. An energy assessment completed on or after January 1, 2008, that meets or is amended to meet the energy assessment requirements in this table, satisfies the energy assessment requirement. A facility that operates under an energy management program compatible with ISO 50001 that includes the affected units also satisfies the energy assessment requirement. The energy assessment must include the following with extent of the evaluation for items a. to e. appropriate for the on-site technical hours listed in § 63.7575:
	a. A visual inspection of the boiler or process heater system.
	b. An evaluation of operating characteristics of the boiler or process heater systems, specifications of energy using systems, operating and maintenance procedures, and unusual operating constraints.
	c. An inventory of major energy use systems consuming energy from affected boilers and process heaters and which are under the control of the boiler/process heater owner/operator.
	d. A review of available architectural and engineering plans, facility operation and maintenance procedures and logs, and fuel usage.
	e. A review of the facility's energy management practices and provide recommendations for improvements consistent with the definition of energy management practices, if identified.
	f. A list of cost-effective energy conservation measures that are within the facility's control.
	g. A list of the energy savings potential of the energy conservation measures identified.
	h. A comprehensive report detailing the ways to improve efficiency, the cost of specific improvements, benefits, and the time frame for recouping those investments.

5. An existing or new boiler or process heater subject to emission limits in Table 1 or 2 or 11 through 13 to this subpart during startup	You must operate all CMS during startup. For startup of a boiler or process heater, you must use one or a combination of the following clean fuels: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultralow sulfur diesel, fuel oil-soaked rags, kerosene, hydrogen, paper, cardboard, refinery gas, and liquefied petroleum gas.
	If you start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases, you must vent emissions to the main stack(s) and engage all of the applicable control devices except limestone injection in fluidized bed combustion (FBC) boilers, dry scrubber, fabric filter, selective non-catalytic reduction (SNCR), and selective catalytic reduction (SCR). You must start your limestone injection in FBC boilers, dry scrubber, fabric filter, SNCR, and SCR systems as expeditiously as possible. Startup ends when steam or heat is supplied for any purpose.
	You must comply with all applicable emission limits at all times except for startup or shutdown periods conforming with this work practice. You must collect monitoring data during periods of startup, as specified in § 63.7535(b). You must keep records during periods of startup. You must provide reports concerning activities and periods of startup, as specified in § 63.7555.
6. An existing or new boiler or process heater subject to emission limits in Tables 1 or 2 or 11 through 13 to this subpart during shutdown	You must operate all CMS during shutdown. While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases during shutdown, you must vent emissions to the main stack(s) and operate all applicable control devices, except limestone injection in FBC boilers, dry scrubber, fabric filter, SNCR, and SCR.
	You must comply with all applicable emissions limits at all times except for startup or shutdown periods conforming with this work practice. You must collect monitoring data during periods of shutdown, as specified in § 63.7535(b). You must keep records during periods of shutdown. You must provide reports concerning activities and periods of shutdown, as specified in § 63.7555.

[78 FR 7198, Jan. 31, 2013]

Table 4 to Subpart DDDDD of Part 63—Operating Limits for Boilers and Process Heaters

As stated in § 63.7500, you must comply with the applicable operating limits:

When complying with a Table 1, 2, 11, 12, or 13 numerical emission limit using	You must meet these operating limits
Wet PM scrubber control on a boiler not using a PM CPMS	Maintain the 30-day rolling average pressure drop and the 30-day rolling average liquid flow rate at or above the lowest one-hour average pressure drop and the lowest one-hour average liquid flow rate, respectively, measured during the most recent performance test demonstrating compliance with the PM emission limitation according to § 63.7530(b) and Table 7 to this subpart.

When complying with a Table 1, 2, 11, 12, or 13 numerical emission limit using	You must meet these operating limits
2. Wet acid gas (HCI) scrubber control on a boiler not using a HCI CEMS	Maintain the 30-day rolling average effluent pH at or above the lowest one-hour average pH and the 30-day rolling average liquid flow rate at or above the lowest one-hour average liquid flow rate measured during the most recent performance test demonstrating compliance with the HCI emission limitation according to § 63.7530(b) and Table 7 to this subpart.
3. Fabric filter control on units not using a PM CPMS	a. Maintain opacity to less than or equal to 10 percent opacity (daily block average); or
	b. Install and operate a bag leak detection system according to § 63.7525 and operate the fabric filter such that the bag leak detection system alert is not activated more than 5 percent of the operating time during each 6-month period.
4. Electrostatic precipitator control on units not using a PM CPMS	a. This option is for boilers and process heaters that operate dry control systems (i.e., an ESP without a wet scrubber). Existing and new boilers and process heaters must maintain opacity to less than or equal to 10 percent opacity (daily block average); or
	b. This option is only for boilers and process heaters not subject to PM CPMS or continuous compliance with an opacity limit (i.e., COMS). Maintain the 30-day rolling average total secondary electric power input of the electrostatic precipitator at or above the operating limits established during the performance test according to § 63.7530(b) and Table 7 to this subpart.
5. Dry scrubber or carbon injection control on a boiler not using a mercury CEMS	Maintain the minimum sorbent or carbon injection rate as defined in § 63.7575 of this subpart.
6. Any other add-on air pollution control type on units not using a PM CPMS	This option is for boilers and process heaters that operate dry control systems. Existing and new boilers and process heaters must maintain opacity to less than or equal to 10 percent opacity (daily block average).
7. Fuel analysis	Maintain the fuel type or fuel mixture such that the applicable emission rates calculated according to § 63.7530(c)(1), (2) and/or (3) is less than the applicable emission limits.
8. Performance testing	For boilers and process heaters that demonstrate compliance with a performance test, maintain the operating load of each unit such that it does not exceed 110 percent of the highest hourly average operating load recorded during the most recent performance test.
9. Oxygen analyzer system	For boilers and process heaters subject to a CO emission limit that demonstrate compliance with an O_2 analyzer system as specified in § 63.7525(a), maintain the 30-day rolling average oxygen content at or above the lowest hourly average oxygen concentration measured during the most recent CO performance test, as specified in Table 8. This requirement does not apply to units that install an oxygen trim system since these units will set the trim system to the level specified in § 63.7525(a).
10. SO ₂ CEMS	For boilers or process heaters subject to an HCl emission limit that demonstrate compliance with an SO ₂ CEMS, maintain the 30-day rolling average SO ₂ emission rate at or below the highest hourly average SO ₂ concentration measured during the most recent HCl performance test, as specified in Table 8.

Table 5 to Subpart DDDDD of Part 63—Performance Testing Requirements

As stated in § 63.7520, you must comply with the following requirements for performance testing for existing, new or reconstructed affected sources:

To conduct a performance test for the following pollutant	You must	Using
1. Filterable PM	a. Select sampling ports location and the number of traverse points	Method 1 at 40 CFR part 60, appendix A-1 of this chapter.
	b. Determine velocity and volumetric flow-rate of the stack gas	Method 2, 2F, or 2G at 40 CFR part 60, appendix A-1 or A-2 to part 60 of this chapter.
	c. Determine oxygen or carbon dioxide concentration of the stack gas	Method 3A or 3B at 40 CFR part 60, appendix A-2 to part 60 of this chapter, or ANSI/ASME PTC 19.10-1981. ^a
	d. Measure the moisture content of the stack gas	Method 4 at 40 CFR part 60, appendix A-3 of this chapter.
	e. Measure the PM emission concentration	Method 5 or 17 (positive pressure fabric filters must use Method 5D) at 40 CFR part 60, appendix A-3 or A-6 of this chapter.
	f. Convert emissions concentration to lb per MMBtu emission rates	Method 19 F-factor methodology at 40 CFR part 60, appendix A-7 of this chapter.
2. TSM	a. Select sampling ports location and the number of traverse points	Method 1 at 40 CFR part 60, appendix A-1 of this chapter.
	b. Determine velocity and volumetric flow-rate of the stack gas	Method 2, 2F, or 2G at 40 CFR part 60, appendix A-1 or A-2 of this chapter.
	c. Determine oxygen or carbon dioxide concentration of the stack gas	Method 3A or 3B at 40 CFR part 60, appendix A-1 of this chapter, or ANSI/ASME PTC 19.10-1981. ^a
	d. Measure the moisture content of the stack gas	Method 4 at 40 CFR part 60, appendix A-3 of this chapter.
	e. Measure the TSM emission concentration	Method 29 at 40 CFR part 60, appendix A-8 of this chapter
	f. Convert emissions concentration to lb per MMBtu emission rates	Method 19 F-factor methodology at 40 CFR part 60, appendix A-7 of this chapter.
3. Hydrogen chloride	a. Select sampling ports location and the number of traverse points	Method 1 at 40 CFR part 60, appendix A-1 of this chapter.
	b. Determine velocity and volumetric flow-rate of the stack gas	Method 2, 2F, or 2G at 40 CFR part 60, appendix A-2 of this chapter.
	c. Determine oxygen or carbon dioxide concentration of the stack gas	Method 3A or 3B at 40 CFR part 60, appendix A-2 of this chapter, or ANSI/ASME PTC 19.10-1981. ^a
	d. Measure the moisture content of the stack gas	Method 4 at 40 CFR part 60, appendix A-3 of this chapter.
	e. Measure the hydrogen chloride emission concentration	Method 26 or 26A (M26 or M26A) at 40 CFR part 60, appendix A-8 of this chapter.

To conduct a performance test for the following pollutant	You must	Using
	f. Convert emissions concentration to lb per MMBtu emission rates	Method 19 F-factor methodology at 40 CFR part 60, appendix A-7 of this chapter.
4. Mercury	a. Select sampling ports location and the number of traverse points	Method 1 at 40 CFR part 60, appendix A-1 of this chapter.
	b. Determine velocity and volumetric flow-rate of the stack gas	Method 2, 2F, or 2G at 40 CFR part 60, appendix A-1 or A-2 of this chapter.
	c. Determine oxygen or carbon dioxide concentration of the stack gas	Method 3A or 3B at 40 CFR part 60, appendix A-1 of this chapter, or ANSI/ASME PTC 19.10-1981. ^a
	d. Measure the moisture content of the stack gas	Method 4 at 40 CFR part 60, appendix A-3 of this chapter.
	e. Measure the mercury emission concentration	Method 29, 30A, or 30B (M29, M30A, or M30B) at 40 CFR part 60, appendix A-8 of this chapter or Method 101A at 40 CFR part 61, appendix B of this chapter, or ASTM Method D6784.
	f. Convert emissions concentration to lb per MMBtu emission rates	Method 19 F-factor methodology at 40 CFR part 60, appendix A-7 of this chapter.
5. CO	a. Select the sampling ports location and the number of traverse points	Method 1 at 40 CFR part 60, appendix A-1 of this chapter.
	b. Determine oxygen concentration of the stack gas	Method 3A or 3B at 40 CFR part 60, appendix A-3 of this chapter, or ASTM D6522-00 (Reapproved 2005), or ANSI/ASME PTC 19.10-1981. ^a
	c. Measure the moisture content of the stack gas	Method 4 at 40 CFR part 60, appendix A-3 of this chapter.
	d. Measure the CO emission concentration	Method 10 at 40 CFR part 60, appendix A-4 of this chapter. Use a measurement span value of 2 times the concentration of the applicable emission limit.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7200, Jan. 31, 2013]

Table 6 to Subpart DDDDD of Part 63—Fuel Analysis Requirements

As stated in § 63.7521, you must comply with the following requirements for fuel analysis testing for existing, new or reconstructed affected sources. However, equivalent methods (as defined in § 63.7575) may be used in lieu of the prescribed methods at the discretion of the source owner or operator:

To conduct a fuel analysis for the following pollutant	You must	Using
1. Mercury	a. Collect fuel samples	Procedure in § 63.7521(c) or ASTM D5192 a, or ASTM D7430 a, or ASTM D6883 a, or ASTM D2234/D2234M a(for coal) or EPA 1631 or EPA 1631E or ASTM D6323 a(for solid), or EPA 821-R-01-013 (for liquid or solid), or ASTM D4177 a(for liquid), or ASTM D4057 a(for liquid), or equivalent.
	b. Composite fuel samples	Procedure in § 63.7521(d) or equivalent.

To conduct a fuel analysis for the following pollutant	You must	Using
	c. Prepare composited fuel samples	EPA SW-846-3050B ^a (for solid samples), EPA SW-846-3020A ^a (for liquid samples), ASTM D2013/D2013M ^a (for coal), ASTM D5198 ^a (for biomass), or EPA 3050 ^a (for solid fuel), or EPA 821-R-01-013 ^a (for liquid or solid), or equivalent.
	d. Determine heat content of the fuel type	ASTM D5865 ^a (for coal) or ASTM E711 ^a (for biomass), or ASTM D5864 ^a for liquids and other solids, or ASTM D240 ^a or equivalent.
	e. Determine moisture content of the fuel type	ASTM D3173 a, ASTM E871 a, or ASTM D5864 a, or ASTM D240, or ASTM D95 a(for liquid fuels), or ASTM D4006 a(for liquid fuels), or ASTM D4177 a(for liquid fuels) or ASTM D4057 a(for liquid fuels), or equivalent.
	f. Measure mercury concentration in fuel sample	ASTM D6722 ^a (for coal), EPA SW-846-7471B ^a (for solid samples), or EPA SW-846-7470A ^a (for liquid samples), or equivalent.
	g. Convert concentration into units of pounds of mercury per MMBtu of heat content	Equation 8 in § 63.7530.
	h. Calculate the mercury emission rate from the boiler or process heater in units of pounds per million Btu	Equations 10 and 12 in § 63.7530.
2. HCl	a. Collect fuel samples	Procedure in § 63.7521(c) or ASTM D5192 a, or ASTM D7430 a, or ASTM D6883 a, or ASTM D2234/D2234M a(for coal) or ASTM D6323 a(for coal or biomass), ASTM D4177 a(for liquid fuels) or ASTM D4057 a(for liquid fuels), or equivalent.
	b. Composite fuel samples	Procedure in § 63.7521(d) or equivalent.
	c. Prepare composited fuel samples	EPA SW-846-3050B ^a (for solid samples), EPA SW-846-3020A ^a (for liquid samples), ASTM D2013/D2013M§ ^a (for coal), or ASTM D5198§ ^a (for biomass), or EPA 3050 ^a or equivalent.
	d. Determine heat content of the fuel type	ASTM D5865 ^a (for coal) or ASTM E711 ^a (for biomass), ASTM D5864, ASTM D240 ^a or equivalent.
	e. Determine moisture content of the fuel type	ASTM D3173 aor ASTM E871 a, or D5864 a, or ASTM D240 a, or ASTM D95 (for liquid fuels), or ASTM D4006 (for liquid fuels), or ASTM D4177 (for liquid fuels) or ASTM D4057 (for liquid fuels) or equivalent.
	f. Measure chlorine concentration in fuel sample	EPA SW-846-9250 a, ASTM D6721 a, ASTM D4208 a(for coal), or EPA SW-846-5050 aor ASTM E776 a(for solid fuel), or EPA SW-846-9056 aor SW-846-9076 a(for solids or liquids) or equivalent.
	g. Convert concentrations into units of pounds of HCl per MMBtu of heat content	Equation 7 in § 63.7530.
	h. Calculate the HCl emission rate from the boiler or process heater in units of pounds per million Btu	Equations 10 and 11 in § 63.7530.
3. Mercury Fuel Specification for other gas 1 fuels	a. Measure mercury concentration in the fuel sample and convert to units of micrograms per cubic meter	Method 30B (M30B) at 40 CFR part 60, appendix A-8 of this chapter or ASTM D5954 ^a , ASTM D6350 ^a , ISO 6978-1:2003(E) ^a , or ISO 6978-2:2003(E) ^a , or EPA-1631 ^a or equivalent.

To conduct a fuel analysis for the following pollutant	You must	Using
	b. Measure mercury concentration in the exhaust gas when firing only the other gas 1 fuel is fired in the boiler or process heater	Method 29, 30A, or 30B (M29, M30A, or M30B) at 40 CFR part 60, appendix A-8 of this chapter or Method 101A or Method 102 at 40 CFR part 61, appendix B of this chapter, or ASTM Method D6784 ^a or equivalent.
4. TSM for solid fuels	a. Collect fuel samples	Procedure in § 63.7521(c) or ASTM D5192 a, or ASTM D7430 a, or ASTM D6883 a, or ASTM D2234/D2234M a(for coal) or ASTM D6323 a(for coal or biomass), or ASTM D4177 a,(for liquid fuels) or ASTM D4057 a(for liquid fuels), or equivalent.
	b. Composite fuel samples	Procedure in § 63.7521(d) or equivalent.
	c. Prepare composited fuel samples	EPA SW-846-3050B ^a (for solid samples), EPA SW-846-3020A ^a (for liquid samples), ASTM D2013/D2013M ^a (for coal), ASTM D5198 ^a or TAPPI T266 ^a (for biomass), or EPA 3050 ^a or equivalent.
	d. Determine heat content of the fuel type	ASTM D5865 ^a (for coal) or ASTM E711 ^a (for biomass), or ASTM D5864 ^a for liquids and other solids, or ASTM D240 ^a or equivalent.
	e. Determine moisture content of the fuel type	ASTM D3173 aor ASTM E871 a, or D5864, or ASTM D240 a, or ASTM D95 a(for liquid fuels), or ASTM D4006 (for liquid fuels), or ASTM D4057 a(for liquid fuels) or ASTM D4057 a(for liquid fuels), or equivalent.
	f. Measure TSM concentration in fuel sample	ASTM D3683 a, or ASTM D4606 a, or ASTM D6357 or EPA 200.8 or EPA SW-846-6020 a, or EPA SW-846-6020A a, or EPA SW-846-6010C a, EPA 7060 or EPA 7060A (for arsenic only), or EPA SW-846-7740 (for selenium only).
	g. Convert concentrations into units of pounds of TSM per MMBtu of heat content	Equation 9 in § 63.7530.
	h. Calculate the TSM emission rate from the boiler or process heater in units of pounds per million Btu	Equations 10 and 13 in § 63.7530.

^a Incorporated by reference, see § 63.14.

[78 FR 7201, Jan. 31, 2013]

Table 7 to Subpart DDDDD of Part 63—Establishing Operating Limits

As stated in § 63.7520, you must comply with the following requirements for establishing operating limits:

If you have an applicable emission limit for	And your operating limits are based on	You must	Using	According to the following requirements
1. PM, TSM, or mercury	a. Wet scrubber operating parameters	i. Establish a site-specific minimum scrubber pressure drop and minimum flow rate operating limit according to § 63.7530(b)	(1) Data from the scrubber pressure drop and liquid flow rate monitors and the PM or mercury performance test	(a) You must collect scrubber pressure drop and liquid flow rate data every 15 minutes during the entire period of the performance tests.
				(b) Determine the lowest hourly average scrubber pressure drop and liquid flow rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.
	b. Electrostatic precipitator operating parameters (option only for units that operate wet scrubbers)	i. Establish a site-specific minimum total secondary electric power input according to § 63.7530(b)	(1) Data from the voltage and secondary amperage monitors during the PM or mercury performance test	(a) You must collect secondary voltage and secondary amperage for each ESP cell and calculate total secondary electric power input data every 15 minutes during the entire period of the performance tests.
				(b) Determine the average total secondary electric power input by computing the hourly averages using all of the 15-minute readings taken during each performance test.
2. HCl	a. Wet scrubber operating parameters	i. Establish site-specific minimum pressure drop, effluent pH, and flow rate operating limits according to § 63.7530(b)	(1) Data from the pressure drop, pH, and liquid flow-rate monitors and the HCl performance test	(a) You must collect pH and liquid flow-rate data every 15 minutes during the entire period of the performance tests.
				(b) Determine the hourly average pH and liquid flow rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.

If you have an applicable emission limit for	And your operating limits are based on	You must	Using	According to the following requirements
	b. Dry scrubber operating parameters	i. Establish a site-specific minimum sorbent injection rate operating limit according to § 63.7530(b). If different acid gas sorbents are used during the HCI performance test, the average value for each sorbent becomes the site-specific operating limit for that sorbent		(a) You must collect sorbent injection rate data every 15 minutes during the entire period of the performance tests.
				(b) Determine the hourly average sorbent injection rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.
				(c) Determine the lowest hourly average of the three test run averages established during the performance test as your operating limit. When your unit operates at lower loads, multiply your sorbent injection rate by the load fraction (e.g., for 50 percent load, multiply the injection rate operating limit by 0.5) to determine the required injection rate.
	c. Alternative Maximum SO ₂ emission rate	i. Establish a site-specific maximum SO₂emission rate operating limit according to § 63.7530(b)	(1) Data from SO₂CEMS and the HCI performance test	(a) You must collect the SO₂emissions data according to § 63.7525(m) during the most recent HCl performance tests.
				(b) The maximum SO ₂ emission rate is equal to the lowest hourly average SO ₂ emission rate measured during the most recent HCl performance tests.
3. Mercury	a. Activated carbon injection	i. Establish a site-specific minimum activated carbon injection rate operating limit according to § 63.7530(b)	(1) Data from the activated carbon rate monitors and mercury performance test	(a) You must collect activated carbon injection rate data every 15 minutes during the entire period of the performance tests.
				(b) Determine the hourly average activated carbon injection rate by computing the hourly averages using all of the 15-minute readings taken during each performance test.

If you have an applicable emission limit for	And your operating limits are based on	You must	Using	According to the following requirements
				(c) Determine the lowest hourly average established during the performance test as your operating limit. When your unit operates at lower loads, multiply your activated carbon injection rate by the load fraction (e.g., actual heat input divided by heat input during performance test, for 50 percent load, multiply the injection rate operating limit by 0.5) to determine the required injection rate.
4. Carbon monoxide	a. Oxygen	i. Establish a unit-specific limit for minimum oxygen level according to § 63.7520	(1) Data from the oxygen analyzer system specified in § 63.7525(a)	(a) You must collect oxygen data every 15 minutes during the entire period of the performance tests.
				(b) Determine the hourly average oxygen concentration by computing the hourly averages using all of the 15-minute readings taken during each performance test.
				(c) Determine the lowest hourly average established during the performance test as your minimum operating limit.
5. Any pollutant for which compliance is demonstrated by a performance test	a. Boiler or process heater operating load	i. Establish a unit specific limit for maximum operating load according to § 63.7520(c)	(1) Data from the operating load monitors or from steam generation monitors	(a) You must collect operating load or steam generation data every 15 minutes during the entire period of the performance test.
				(b) Determine the average operating load by computing the hourly averages using all of the 15-minute readings taken during each performance test.
				(c) Determine the average of the three test run averages during the performance test, and multiply this by 1.1 (110 percent) as your operating limit.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7203, Jan. 31, 2013]

Table 8 to Subpart DDDDD of Part 63—Demonstrating Continuous Compliance

As stated in § 63.7540, you must show continuous compliance with the emission limitations for each boiler or process heater according to the following:

If you must meet the following operating limits or work practice standards	You must demonstrate continuous compliance by	
1. Opacity	a. Collecting the opacity monitoring system data according to § 63.7525(c) and § 63.7535; and	
	b. Reducing the opacity monitoring data to 6-minute averages; and	
	c. Maintaining opacity to less than or equal to 10 percent (daily block average).	
2. PM CPMS	a. Collecting the PM CPMS output data according to § 63.7525;	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average PM CPMS output data to less than the operating limit established during the performance test according to § 63.7530(b)(4).	
Fabric Filter Bag Leak Detection Operation	Installing and operating a bag leak detection system according to § 63.7525 and operating the fabric filter such that the requirements in § 63.7540(a)(9) are met.	
Wet Scrubber Pressure Drop and Liquid Flow-rate	a. Collecting the pressure drop and liquid flow rate monitoring system data according to §§ 63.7525 and 63.7535; and	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average pressure drop and liquid flow-rate at or above the operating limits established during the performance test according to § 63.7530(b).	
5. Wet Scrubber pH	a. Collecting the pH monitoring system data according to §§ 63.7525 and 63.7535; and	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average pH at or above the operating limit established during the performance test according to § 63.7530(b).	
Dry Scrubber Sorbent or Carbon Injection Rate	a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§ 63.7525 and 63.7535; and	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average sorbent or carbon injection rate at or above the minimum sorbent or carbon injection rate as defined in § 63.7575.	
7. Electrostatic Precipitator Total Secondary Electric Power Input	a. Collecting the total secondary electric power input monitoring system data for the electrostatic precipitator according to §§ 63.7525 and 63.7535; and	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average total secondary electric power input at or above the operating limits established during the performance test according to § 63.7530(b).	
8. Emission limits using fuel analysis	a. Conduct monthly fuel analysis for HCl or mercury or TSM according to Table 6 to this subpart; and	
	b. Reduce the data to 12-month rolling averages; and	
	c. Maintain the 12-month rolling average at or below the applicable emission limit for HCl or mercury or TSM in Tables 1 and 2 or 11 through 13 to this subpart.	
9. Oxygen content	a. Continuously monitor the oxygen content using an oxygen analyzer system according to § 63.7525(a). This requirement does not apply to units that install an oxygen trim system since these units will set the trim system to the level specified in § 63.7525(a)(2).	
	b. Reducing the data to 30-day rolling averages; and	

If you must meet the following operating limits or work practice standards	You must demonstrate continuous compliance by	
	c. Maintain the 30-day rolling average oxygen content at or above the lowest hourly average oxygen level measured during the most recent CO performance test.	
10. Boiler or process heater operating load	a. Collecting operating load data or steam generation data every 15 minutes.	
	b. Maintaining the operating load such that it does not exceed 110 percent of the highest hourly average operating load recorded during the most recent performance test according to § 63.7520(c).	
11. SO ₂ emissions using SO ₂ CEMS	a. Collecting the SO₂CEMS output data according to § 63.7525;	
	b. Reducing the data to 30-day rolling averages; and	
	c. Maintaining the 30-day rolling average SO ₂ CEMS emission rate to a level at or below the minimum hourly SO ₂ rate measured during the most recent HCl performance test according to § 63.7530.	

[78 FR 7204, Jan. 31, 2013]

Table 9 to Subpart DDDDD of Part 63—Reporting Requirements

As stated in § 63.7550, you must comply with the following requirements for reports:

You must submit a(n)	The report must contain	You must submit the report
1. Compliance report	a. Information required in § 63.7550(c)(1) through (5); and	Semiannually, annually, biennially, or every 5 years according to the requirements in § 63.7550(b).
	b. If there are no deviations from any emission limitation (emission limit and operating limit) that applies to you and there are no deviations from the requirements for work practice standards in Table 3 to this subpart that apply to you, a statement that there were no deviations from the emission limitations and work practice standards during the reporting period. If there were no periods during which the CMSs, including continuous emissions monitoring system, continuous opacity monitoring system, and operating parameter monitoring systems, were out-of-control as specified in § 63.8(c)(7), a statement that there were no periods during which the CMSs were out-of-control during the reporting period; and	
	c. If you have a deviation from any emission limitation (emission limit and operating limit) where you are not using a CMS to comply with that emission limit or operating limit, or a deviation from a work practice standard during the reporting period, the report must contain the information in § 63.7550(d); and	
	d. If there were periods during which the CMSs, including continuous emissions monitoring system, continuous opacity monitoring system, and operating parameter monitoring systems, were out-of-control as specified in § 63.8(c)(7), or otherwise not operating, the report must contain the information in § 63.7550(e)	

Table 10 to Subpart DDDDD of Part 63—Applicability of General Provisions to Subpart DDDDD

As stated in § 63.7565, you must comply with the applicable General Provisions according to the following:

Citation	Subject	Applies to subpart DDDDD
§ 63.1	Applicability	Yes.
§ 63.2	Definitions	Yes. Additional terms defined in § 63.7575
§ 63.3	Units and Abbreviations	Yes.
§ 63.4	Prohibited Activities and Circumvention	Yes.
§ 63.5	Preconstruction Review and Notification Requirements	Yes.
§ 63.6(a), (b)(1)-(b)(5), (b)(7), (c)	Compliance with Standards and Maintenance Requirements	Yes.
§ 63.6(e)(1)(i)	General duty to minimize emissions.	No. See § 63.7500(a)(3) for the general duty requirement.
§ 63.6(e)(1)(ii)	Requirement to correct malfunctions as soon as practicable.	No.
§ 63.6(e)(3)	Startup, shutdown, and malfunction plan requirements.	No.
§ 63.6(f)(1)	Startup, shutdown, and malfunction exemptions for compliance with non-opacity emission standards.	No.
§ 63.6(f)(2) and (3)	Compliance with non- opacity emission standards.	Yes.
§ 63.6(g)	Use of alternative standards	Yes.
§ 63.6(h)(1)	Startup, shutdown, and malfunction exemptions to opacity standards.	No. See § 63.7500(a).
§ 63.6(h)(2) to (h)(9)	Determining compliance with opacity emission standards	Yes.
§ 63.6(i)	Extension of compliance	Yes. Note: Facilities may also request extensions of compliance for the installation of combined heat and power, waste heat recovery, or gas pipeline or fuel feeding infrastructure as a means of complying with this subpart.
§ 63.6(j)	Presidential exemption.	Yes.
§ 63.7(a), (b), (c), and (d)	Performance Testing Requirements	Yes.
§ 63.7(e)(1)	Conditions for conducting performance tests	No. Subpart DDDDD specifies conditions for conducting performance tests at § 63.7520(a) to (c).
§ 63.7(e)(2)-(e)(9), (f), (g), and (h)	Performance Testing Requirements	Yes.
§ 63.8(a) and (b)	Applicability and Conduct of Monitoring	Yes.

Citation	Subject	Applies to subpart DDDDD
§ 63.8(c)(1)	Operation and maintenance of CMS	Yes.
§ 63.8(c)(1)(i)	General duty to minimize emissions and CMS operation	No. See § 63.7500(a)(3).
§ 63.8(c)(1)(ii)	Operation and maintenance of CMS	Yes.
§ 63.8(c)(1)(iii)	Startup, shutdown, and malfunction plans for CMS	No.
§ 63.8(c)(2) to (c)(9)	Operation and maintenance of CMS	Yes.
§ 63.8(d)(1) and (2)	Monitoring Requirements, Quality Control Program	Yes.
§ 63.8(d)(3)	Written procedures for CMS	Yes, except for the last sentence, which refers to a startup, shutdown, and malfunction plan. Startup, shutdown, and malfunction plans are not required.
§ 63.8(e)	Performance evaluation of a CMS	Yes.
§ 63.8(f)	Use of an alternative monitoring method.	Yes.
§ 63.8(g)	Reduction of monitoring data	Yes.
§ 63.9	Notification Requirements	Yes.
§ 63.10(a), (b)(1)	Recordkeeping and Reporting Requirements	Yes.
§ 63.10(b)(2)(i)	Recordkeeping of occurrence and duration of startups or shutdowns	Yes.
§ 63.10(b)(2)(ii)	Recordkeeping of malfunctions	No. See § 63.7555(d)(7) for recordkeeping of occurrence and duration and § 63.7555(d)(8) for actions taken during malfunctions.
§ 63.10(b)(2)(iii)	Maintenance records	Yes.
§ 63.10(b)(2)(iv) and (v)	Actions taken to minimize emissions during startup, shutdown, or malfunction	No.
§ 63.10(b)(2)(vi)	Recordkeeping for CMS malfunctions	Yes.
§ 63.10(b)(2)(vii) to (xiv)	Other CMS requirements	Yes.
§ 63.10(b)(3)	Recordkeeping requirements for applicability determinations	No.
§ 63.10(c)(1) to (9)	Recordkeeping for sources with CMS	Yes.
§ 63.10(c)(10) and (11)	Recording nature and cause of malfunctions, and corrective actions	No. See § 63.7555(d)(7) for recordkeeping of occurrence and duration and § 63.7555(d)(8) for actions taken during malfunctions.
§ 63.10(c)(12) and (13)	Recordkeeping for sources with CMS	Yes.
§ 63.10(c)(15)	Use of startup, shutdown, and malfunction plan	No.

Citation	Subject	Applies to subpart DDDDD
§ 63.10(d)(1) and (2)	General reporting requirements	Yes.
§ 63.10(d)(3)	Reporting opacity or visible emission observation results	No.
§ 63.10(d)(4)	Progress reports under an extension of compliance	Yes.
§ 63.10(d)(5)	Startup, shutdown, and malfunction reports	No. See § 63.7550(c)(11) for malfunction reporting requirements.
§ 63.10(e)	Additional reporting requirements for sources with CMS	Yes.
§ 63.10(f)	Waiver of recordkeeping or reporting requirements	Yes.
§ 63.11	Control Device Requirements	No.
§ 63.12	State Authority and Delegation	Yes.
§ 63.13-63.16	Addresses, Incorporation by Reference, Availability of Information, Performance Track Provisions	Yes.
§ 63.1(a)(5),(a)(7)-(a)(9), (b)(2), (c)(3)-(4), (d), 63.6(b)(6), (c)(3), (c)(4), (d), (e)(2), (e)(3)(ii), (h)(3), (h)(5)(iv), 63.8(a)(3), 63.9(b)(3), (h)(4), 63.10(c)(2)-(4), (c)(9).	Reserved	No.

[76 FR 15664, Mar. 21, 2011, as amended at 78 FR 7205, Jan. 31, 2013]

Table 11 to Subpart DDDDD of Part 63—Toxic Equivalency Factors for Dioxins/Furans

Table 11 to Subpart DDDDD of Part 63—Toxic Equivalency Factors for Dioxins/Furans

Dioxin/furan congener	Toxic equivalency factor
2,3,7,8-tetrachlorinated dibenzo-p-dioxin	1
1,2,3,7,8-pentachlorinated dibenzo-p-dioxin	1
1,2,3,4,7,8-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,7,8,9-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,6,7,8-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,4,6,7,8-heptachlorinated dibenzo-p-dioxin	0.01
octachlorinated dibenzo-p-dioxin	0.0003
2,3,7,8-tetrachlorinated dibenzofuran	0.1
2,3,4,7,8-pentachlorinated dibenzofuran	0.3
1,2,3,7,8-pentachlorinated dibenzofuran	0.03
1,2,3,4,7,8-hexachlorinated dibenzofuran	0.1
1,2,3,6,7,8-hexachlorinated dibenzofuran	0.1
1,2,3,7,8,9-hexachlorinated dibenzofuran	0.1
2,3,4,6,7,8-hexachlorinated dibenzofuran	0.1

Dioxin/furan congener	Toxic equivalency factor
1,2,3,4,6,7,8-heptachlorinated dibenzofuran	0.01
1,2,3,4,7,8,9-heptachlorinated dibenzofuran	0.01
octachlorinated dibenzofuran	0.0003

[76 FR 15664, Mar. 21, 2011]

EDITORIAL NOTE: At 78 FR 7206, Jan. 31, 2013, Table 11 was added, effective Apr. 1, 2013. However Table 11 could not be added as a Table 11 is already in existence.

Table 12 to Subpart DDDDD of Part 63—Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced Construction or Reconstruction After June 4, 2010, and Before May 20, 2011

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
Units in all subcategories designed to burn solid fuel	a. Mercury	3.5E-06 lb per MMBtu of heat input	For M29, collect a minimum of 2 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 acollect a minimum of 2 dscm.
2. Units in all subcategories designed to burn solid fuel that combust at least 10 percent biomass/bio-based solids on an annual heat input basis and less than 10 percent coal/solid fossil fuels on an annual heat input basis	a. Particulate Matter	0.008 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3- run average for units less than 250 MMBtu/hr)	Collect a minimum of 1 dscm per run.
	b. Hydrogen Chloride	0.004 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
3. Units in all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels on an annual heat input basis and less than 10 percent biomass/bio-based solids on an annual heat input basis	a. Particulate Matter	0.0011 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3- run average for units less than 250 MMBtu/hr)	Collect a minimum of 3 dscm per run.
	b. Hydrogen Chloride	0.0022 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
Units designed to burn pulverized coal/solid fossil fuel	a. CO	90 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.003 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
5. Stokers designed to burn coal/solid fossil fuel	a. CO	7 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
	b. Dioxins/Furans	0.003 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
6. Fluidized bed units designed to burn coal/solid fossil fuel	a. CO	30 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.002 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
7. Stokers designed to burn biomass/bio-based solids	a. CO	560 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.005 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
8. Fluidized bed units designed to burn biomass/bio-based solids	a. CO	260 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.02 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
9. Suspension burners/Dutch Ovens designed to burn biomass/bio-based solids	a. CO	1,010 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.2 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
10. Fuel cells designed to burn biomass/bio-based solids	a. CO	470 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.003 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
11. Hybrid suspension/grate units designed to burn biomass/bio-based solids	a. CO	1,500 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Dioxins/Furans	0.2 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
12. Units designed to burn liquid fuel	a. Particulate Matter	0.002 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3- run average for units less than 250 MMBtu/hr)	Collect a minimum of 2 dscm per run.
	b. Hydrogen Chloride	0.0032 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
	c. Mercury	3.0E-07 lb per MMBtu of heat input	For M29, collect a minimum of 2 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 acollect a minimum of 2 dscm.
	d. CO	3 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	e. Dioxins/Furans	0.002 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
13. Units designed to burn liquid fuel located in non-continental States and territories	a. Particulate Matter	0.002 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3- run average for units less than 250 MMBtu/hr)	Collect a minimum of 2 dscm per run.
	b. Hydrogen Chloride	0.0032 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
	c. Mercury	7.8E-07 lb per MMBtu of heat input	For M29, collect a minimum of 1 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 acollect a minimum of 2 dscm.
	d. CO	51 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	e. Dioxins/Furans	0.002 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.
14. Units designed to burn gas 2 (other) gases	a. Particulate Matter	0.0067 lb per MMBtu of heat input (30-day rolling average for units 250 MMBtu/hr or greater, 3- run average for units less than 250 MMBtu/hr)	Collect a minimum of 1 dscm per run.
	b. Hydrogen Chloride	0.0017 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26, collect a minimum of 60 liters per run.
	c. Mercury	7.9E-06 lb per MMBtu of heat input	For M29, collect a minimum of 1 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 acollect a minimum of 2 dscm.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
	d. CO	3 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	Δ	0.08 ng/dscm (TEQ) corrected to 7 percent oxygen	Collect a minimum of 4 dscm per run.

^a Incorporated by reference, see § 63.14.

[76 FR 15664, Mar. 21, 2011]

EDITORIAL NOTE: At 78 FR 7208, Jan. 31, 2013, Table 12 was added, effective Apr. 1, 2013. However, Table 12 could not be added as a Table 12 is already in existence.

Table 13 to Subpart DDDDD of Part 63—Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced Construction or Reconstruction After December 23, 2011, and Before January 31, 2013

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
Units in all subcategories designed to burn solid fuel	a. HCI	0.022 lb per MMBtu of heat input	For M26A, collect a minimum of 1 dscm per run; for M26 collect a minimum of 120 liters per run.
	b. Mercury	8.6E-07 ^a lb per MMBtu of heat input	For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 4 dscm.
Pulverized coal boilers designed to burn coal/solid fossil fuel	a. Carbon monoxide (CO) (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (320 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-03 lb per MMBtu of heat input; or (2.8E-05 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
3. Stokers designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (340 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.8E-02 lb per MMBtu of heat input; or (2.3E-05 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
Fluidized bed units designed to burn coal/solid fossil fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (230 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-03 lb per MMBtu of heat input; or (2.3E-05 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
5. Fluidized bed units with an integrated heat exchanger designed to burn coal/solid fossil fuel	a. CO (or CEMS)	140 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (150 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-03 lb per MMBtu of heat input; or (2.3E-05 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
6. Stokers/sloped grate/others designed to burn wet biomass fuel	a. CO (or CEMS)	620 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (410 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.0E-02 lb per MMBtu of heat input; or (2.6E-05 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
7. Stokers/sloped grate/others designed to burn kiln-dried biomass fuel	a. CO	460 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	3.2E-01 lb per MMBtu of heat input; or (4.0E-03 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
8. Fluidized bed units designed to burn biomass/bio-based solids	a. CO (or CEMS)	230 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (310 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	9.8E-03 lb per MMBtu of heat input; or (8.3E-05 ^a lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
9. Suspension burners designed to burn biomass/bio-based solids	a. CO (or CEMS)	2,400 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (2,000 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	5.1E-02 lb per MMBtu of heat input; or (6.5E-03 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
10. Dutch Ovens/Pile burners designed to burn biomass/bio-based solids	a. CO (or CEMS)	810 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (520 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
	b. Filterable PM (or TSM)	3.6E-02 lb per MMBtu of heat input; or (3.9E-05 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
11. Fuel cell units designed to burn biomass/bio-based solids	a. CO	910 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.0E-02 lb per MMBtu of heat input; or (2.9E-05 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
12. Hybrid suspension grate boiler designed to burn biomass/bio-based solids	a. CO (or CEMS)	1,500 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (900 ppm by volume on a dry basis corrected to 3 percent oxygen, 30-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.6E-02 lb per MMBtu of heat input; or (4.4E-04 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
13. Units designed to burn liquid fuel	a. HCI	1.2E-03 lb per MMBtu of heat input	For M26A: Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	b. Mercury	4.9E-07 ^a lb per MMBtu of heat input	For M29, collect a minimum of 4 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 4 dscm.
14. Units designed to burn heavy liquid fuel	a. CO (or CEMS)	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average; or (18 ppm by volume on a dry basis corrected to 3 percent oxygen, 10-day rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.3E-03 lb per MMBtu of heat input; or (7.5E-05 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
15. Units designed to burn light liquid fuel	a. CO (or CEMS)	130 appm by volume on a dry basis corrected to 3 percent oxygen; or (60 ppm by volume on a dry basis corrected to 3 percent oxygen, 1-day block average).	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	1.1E-03 ^a lb per MMBtu of heat input; or (2.9E-05 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.
16. Units designed to burn liquid fuel that are non-continental units	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run average based on stack test; or (91 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-hour rolling average)	1 hr minimum sampling time.
	b. Filterable PM (or TSM)	2.3E-02 lb per MMBtu of heat input; or (8.6E-04 lb per MMBtu of heat input)	Collect a minimum of 2 dscm per run.
17. Units designed to burn gas 2 (other) gases	a. CO	130 ppm by volume on a dry basis corrected to 3 percent oxygen	1 hr minimum sampling time.

If your boiler or process heater is in this subcategory	For the following pollutants	The emissions must not exceed the following emission limits, except during periods of startup and shutdown	Using this specified sampling volume or test run duration
	b. HCI	1.7E-03 lb per MMBtu of heat input	For M26A, Collect a minimum of 2 dscm per run; for M26, collect a minimum of 240 liters per run.
	c. Mercury	7.9E-06 lb per MMBtu of heat input	For M29, collect a minimum of 3 dscm per run; for M30A or M30B, collect a minimum sample as specified in the method; for ASTM D6784 bcollect a minimum of 3 dscm.
	d. Filterable PM (or TSM)	6.7E-03 lb per MMBtu of heat input; or (2.1E-04 lb per MMBtu of heat input)	Collect a minimum of 3 dscm per run.

^a If you are conducting stack tests to demonstrate compliance and your performance tests for this pollutant for at least 2 consecutive years show that your emissions are at or below this limit and you are not required to conduct testing for CEMS or CPMS monitor certification, you can skip testing according to § 63.7515 if all of the other provision of § 63.7515 are met. For all other pollutants that do not contain a footnote "a", your performance tests for this pollutant for at least 2 consecutive years must show that your emissions are at or below 75 percent of this limit in order to qualify for skip testing.

[78 FR 7210, Jan. 31, 2013]

^b Incorporated by reference, see § 63.14.

Indiana Department of Environmental Management Office of Air Quality

Technical Support Document (TSD) for a Part 70 Minor Source Modification and Significant Permit Modification

Source Description and Location

Source Name: Essex Group, Inc.

Source Location: 1601 Wall Street and 1700 West Swinney,

Fort Wayne, Indiana 46802

County: Allen

SIC Code:
Operation Permit No.:
Operation Permit Issuance Date:
Minor Source Modification No.:
Operation Permit Modification No.:
O3-33490-00269
Significant Permit Modification No.:
O3-33510-00269
Permit Reviewer:
Laura Spriggs

Source Definition

This stationary chemical processing and magnet wire coating company consists of two (2) plants:

- (a) Chemical Processing Plant is located at 1700 West Swinney, Fort Wayne, Indiana 46802;
 and
- (b) Magnet Wire Coating Plant is located at 1601 Wall Street, Fort Wayne, Indiana 46802.

Since the Chemical Processing Plant supports the Magnet Wire Coating Plant, and these two plants are under common control of the same entity, they are considered one (1) source.

(Note: The TSD of permit renewal No. T003-30777-00269, issued on April 10, 2012 indicated that the above mentioned source definition was carried over from T003-7654-00269, issued on September 30, 1999.)

Existing Approvals

The source was issued Part 70 Operating Permit No. T003-30777-00269 on April 10, 2012. The source has since received the following approvals:

Administrative Amendment No. 003-32834-00269, issued on April 8, 2013.

County Attainment Status

The source is located in Allen County.

Pollutant	Designation
SO ₂	Better than national standards.
CO	Unclassifiable or attainment effective November 15, 1990.
O ₃	Attainment effective February 12, 2007, for the Fort Wayne area, including Allen County, for the 8-hour ozone standard. ¹
PM ₁₀	Unclassifiable effective November 15, 1990.
NO_2	Cannot be classified or better than national standards.
Pb	Not designated.

Essex Group, Inc.

Page 2 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

Pollutant	Designation

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005.

Unclassifiable or attainment effective April 5, 2005, for PM2.5.

(a) Ozone Standards

Volatile organic compounds (VOC) and Nitrogen Oxides (NO_x) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NO_x emissions are considered when evaluating the rule applicability relating to ozone. Allen County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NO_x emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) $PM_{2.5}$

Allen County has been classified as attainment for PM $_{2.5}$. On May 8, 2008, U.S. EPA promulgated the requirements for Prevention of Significant Deterioration (PSD) for PM $_{2.5}$ emissions. These rules became effective on July 15, 2008. On May 4, 2011 the air pollution control board issued an emergency rule establishing the direct PM $_{2.5}$ significant level at ten (10) tons per year. This rule became effective, June 28, 2011.. Therefore, direct PM $_{2.5}$, SO $_{2}$, and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants

Allen County has been classified as attainment or unclassifiable in Indiana for SO2, CO, PM10, NO2, and lead. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this type of operation is not one of the twenty-eight (28) listed source categories under 326 IAC 2-2, 326 IAC 2-3, or 326 IAC 2-7, and there is no applicable New Source Performance Standard that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

Source Status

The table below summarizes the potential to emit of the entire source, prior to the proposed modification, after consideration of all enforceable limits established in the effective permits:

Pollutant	Emissions (ton/yr)				
PM	Less than 100				
PM ₁₀	Less than 100				
PM _{2.5}	Less than 100				
SO ₂	Less than 100				
VOC	Greater than 250				
CO	Less than 100				
NO_X	Less than 100				
GHGs as CO₂e	Less than 100,000				
Single HAP	Greater than 10				
Total HAPs	Greater than 25				

(a) This existing source is a major stationary source, under PSD (326 IAC 2-2), because a regulated pollutant is emitted at a rate of 250 tons per year or more, and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

Essex Group, Inc.

Page 3 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

(b) This existing source is a major source of HAPs, as defined in 40 CFR 63.2, because HAP emissions are greater than ten (10) tons per year for a single HAP and greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

(c) These emissions are based upon the technical support documents for Part 70 Operating Permit Renewal No. T003-30777-00269, issued on April 10, 2012 and Administrative Amendment No. 003-32834-00269, issued on April 8, 2013.

Description of Proposed Modification

The Office of Air Quality (OAQ) has reviewed a modification application, submitted by Essex Group, Inc. on August 1, 2013, relating to the addition of a new magnet wire oven. Additionally, this modification combines a modification application, submitted by Essex Group, Inc. on May 13, 2013, relating to the removal of three (3) storage tanks and the addition of a new storage tank.

(a) The new magnet wire oven is described as follows:

One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12. Under 40 CFR 63, Subpart MMMM, Magnet Wire Oven 12 is considered part of an existing affected source.

Note: Essex Group, Inc. asserts that the magnet wire oven internal recuperative thermal oxidizer is integral to the process. However, justification for this claim was not provided by the Permittee. Additionally, the control efficiency of the thermal oxidizer is dependent on temperature. Therefore, IDEM does not consider the thermal oxidizer to be integral to the process for the new Magnet Wire Oven 12.

(b) The tanks to be removed include TK-26, TK-27, and TK-29. Tank TK-32 shall be added and is described as follows:

One (1) inside storage tank, identified as TK-32, approved in 2013 for construction, storing volatile organic liquids (phenolic intermediate), with a storage capacity of 6,100 gallons. Under 40 CFR 63, Subpart MMMM, TK-32 is considered part of an existing affected source.

This modification is also incorporating a magnet wire coating machine, identified as emission unit 28, which was installed in the 1970s. This unit was identified in the initial Part 70 Operating Permit application, but was inadvertently omitted from the permit. Clarification is also being provided on the existing Cleaning Room and Aluminum Wire Drawing Cleaning operations.

Enforcement Issues

There are no pending enforcement actions related to this modification.

Stack Summary

Stack ID	Operation	Height (ft)	Diameter (ft)	Flow Rate (acfm)	Temperature (°F)
S12	Magnet Wire Oven 12	34	0.80	1000	825

TSD for Significant Permit Modification No.: 003-33510-00269

Fort Wayne, Indiana
Permit Reviewer: Laura Spriggs

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

Permit Level Determination – Part 70

Pursuant to 326 IAC 2-1.1-1(16), Potential to Emit is defined as "the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency."

The following table is used to determine the appropriate permit level under 326 IAC 2-7-10.5. This table reflects the PTE before controls. Control equipment is not considered federally enforceable until it has been required in a federally enforceable permit.

Increase in PTE Before Controls of the Modification				
Pollutant	Potential To Emit (ton/yr)			
PM	0.01			
PM ₁₀	0.04			
PM _{2.5}	0.04			
SO ₂	0.003			
VOC	251.89			
CO	0.41			
NO _X	0.49			
Single HAP	56.02 (Phenol)			
Total HAPs	103.17			

This source modification is subject to 326 IAC 2-7-10.5(e)(5) (minor source modification) because the modification is subject to a RACT (326 IAC 8-2-8) and a NESHAP (40 CFR 63, Subpart MMMM) and the RACT and NESHAP are the most stringent applicable requirements. Additionally, the modification will be incorporated into the Part 70 Operating Permit through a significant permit modification issued pursuant to 326 IAC 2-7-12(d), because the modification requires a case-by-case determination of an emission limitation and requires significant changes in existing monitoring Part 70 permit terms and conditions.

Additionally, the modification will be incorporated into the Part 70 Operating Permit through a significant permit modification issued pursuant to 326 IAC 2-7-12(d), because the modification incorporates applicable portions of the 40 CFR 60, Subpart Dc and 40 CFR 63, Subpart DDDDD under Title I of the Clean Air Act (CAA).

Permit Level Determination - PSD

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of this Part 70 permit modification, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

Essex Group, Inc.

Page 5 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

	Potential to Emit (ton/yr)							
Process / Emission Unit	PM	PM ₁₀	PM _{2.5} *	SO ₂	voc	СО	NO _X	GHGs
Tank TK-32					0.21			
Magnet Wire Oven 12	1				39.70	ŀ	-	
Magnet Wire Oven 12 Combustion Emissions	0.01	0.04	0.04	0.003	0.03	0.41	0.49	596.19
Total for Modification	0.01	0.04	0.04	0.003	39.94	0.41	0.49	596.19
PSD Significant Level	25	15	10	40	40	100	40	75,000 CO ₂ e

^{*}PM_{2.5} listed is direct PM_{2.5}.

This modification to an existing major stationary source is not major because the emissions increase is less than the PSD significant levels. Therefore, pursuant to 326 IAC 2-2, the PSD requirements do not apply.

Since the unrestricted potential to emit of VOC of the modification exceeds the PSD significant level, the source shall limit emissions as follows:

The VOC emissions from Magnet Wire Oven 12 shall be less than 39.7 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with the above limit, combined with the potential to emit VOC from TK-32 and Magnet Wire Oven 12 combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2013 modification.

Federal Rule Applicability Determination

The following is a discussion of the federal rule applicability for the source due to this modification:

New Source Performance Standards (NSPS):

(a) 40 CFR 60.40c, Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

As indicated in the Technical Support Document for Part 70 Operating Permit Renewal No. T003-30777-00269, issued on April 10, 2012, boilers EB and WB are subject to the provisions of 40 CFR 60, Subpart Dc, which are incorporated by reference as 326 IAC 12, because they have heat input capacities of less than 100 MMBtu/hr but greater than 10 MMBtu/hr and were constructed after June 9, 1989. These units combust natural gas only and only have record keeping requirements. This is not a new determination; however, the requirements were not previously included in the permit. The applicable requirements will be incorporated into the permit through this permitting action. The units subject to 40 CFR 60, Subpart Dc include:

- One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB.
- One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB.

The entire rule is included as Attachment C of the permit. The boilers are subject to the following provisions of 40 CFR 60, Subpart Dc:

- (1) 40 CFR 60.40c(a), (b), (c), (d)
- (2) 40 CFR 60.41c

Essex Group, Inc.

Page 6 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(3) 40 CFR 60.48c(a), (g), (i)

The provisions of 40 CFR 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the facility described in this section except when otherwise specified in 40 CFR 60, Subpart Dc.

(b) 40 CFR 60.110b, Subpart Kb: Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

The provisions of 40 CFR 60, Subpart Kb are not applicable to storage tank TK-32 or any of the storage tanks comprising the Cleaning Room Area because the storage capacity of each tank is less than 75 cubic meters (19,813 gallons).

(c) 40 CFR 60.460, Subpart TT: Standards of Performance for Metal Coil Surface Coating

The requirements of 40 CFR 60, Subpart TT are not applicable to Magnet Wire Oven 12 or wire coating machine 28 because the magnet wire coated by these units does not meet the definition of metal coil pursuant to 40 CFR 60.461 because it is not a continuous metal strip with a thickness of 0.15 millimeter or more.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

- (d) 40 CFR 63.3880, Subpart MMMM: National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products
 - (1) The Cleaning Room Area Tanks (Tank 1 and Tank 4) and the aluminum wire drawing cleaning operation are not subject to the provisions of 40 CFR 63, Subpart MMMM because the cleaning solvents used do not contain HAPs.
 - (2) Magnet Wire Oven 12, Tank TK-32, magnet wire coating machine 28, and Cleaning Room Area Tanks (Tank 2, Tank 3, north die cleaning tank, and south die cleaning tank) are subject to the requirements of 40 CFR 63, Subpart MMMM, which are incorporated by reference as 326 IAC 20-80 because the magnet wire oven and magnet wire coating machine will be used to coat miscellaneous metal parts and products as described in 40 CFR 63.3881, Tank TK-32 stores material that is part of the coating process, and the Cleaning Room Area Tanks (2, 3, north die cleaning, and south die cleaning) store cleaning materials. Pursuant to 40 CFR 63.3882, Magnet Wire Oven 12, magnet wire coating machine 28, TK-32, and Cleaning Room Area Tanks (2, 3, north die cleaning, and south die cleaning) are considered part of an existing affected source because the source commenced construction prior to August 13, 2002. The affected source is the collection of all coating operations as defined in 40 CFR 63.3981; all storage containers and mixing vessels in which coatings, thinners and/or other additives, and cleaning materials are stored or mixed; all manual and automated equipment and containers used for conveying coatings, thinners and/or other additives, and cleaning materials; and all storage containers and all manual and automated equipment and containers used for conveying waste materials generated by a coating operation. The affected facilities are described as follows:
 - One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.

Essex Group, Inc. Page 7 of 61 Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269 Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

> One (1) inside storage tank, identified as TK-32, approved in 2013 for construction, storing volatile organic liquids (phenolic intermediate), with a storage capacity of 6,100 gallons.

- One (1) wire coating machine, identified as emission unit 28, constructed in the 1970's, with a maximum capacity of 272 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-1.
- Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

Note: Magnet wire coating machine 28 and the cleaning room area are not new operations; however, the magnet wire coating machine 28 was inadvertently omitted from the initial Part 70 Operating Permit and the emission unit description for the cleaning room area is being clarified in this permitting action. The applicable rules are also being clarified here.

The entire rule is included as Attachment A to the permit. Magnet Wire Oven 12, Tank TK-32, magnet wire coating machine 28, cleaning tanks 2 and 3, and the two (2) die cleaning tanks are subject to the following provisions of 40 CFR 63, Subpart MMMM:

- 40 CFR 63.3880 (1) (2)
- 40 CFR 63.3881(a)(1), (a)(4), (b)
- (3)40 CFR 63.3882(a), (b), (e)
- (4) 40 CFR 63.3883(b), (d)
- (5) 40 CFR 63.3890(b)(3)
- (6) 40 CFR 63.3891(c)
- (7)40 CFR 63.3892(b), (c)
- (8)40 CFR 63.3893(b), (c)
- 40 CFR 63.3900(a)(2), (b), (c) (9)
- (10)40 CFR 63.3901
- (11)40 CFR 63.3910
- (12)40 CFR 63.3920
- (13)40 CFR 63.3930
- 40 CFR 63.3931 (14)
- 40 CFR 63.3960(b), (c) (15)
- (16)40 CFR 63.3961
- 40 CFR 63.3963 (17)
- (18)40 CFR 63.3964
- 40 CFR 63.3965 (19)
- (20)40 CFR 63.3966
- 40 CFR 63.3967(a), (b) (21)
- 40 CFR 63.3968(a), (b), (c), (g) (22)
- (23)40 CFR 63.3980
- 40 CFR 63.3981 (24)
- (25)Table 1 to Subpart MMMM of Part 63
- (26)Table 2 to Subpart MMMM of Part 63
- (27)Table 3 to Subpart MMMM of Part 63
- (28)Table 4 to Subpart MMMM of Part 63
- (29)Appendix A to Subpart MMMM of Part 63

Essex Group, Inc.

Page 8 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

The provisions of 40 CFR 63 Subpart A – General Provisions, which are incorporated as 326 IAC 20-1-1, apply to Magnet Wire Oven 12, Tank TK-32, magnet wire coating machine 28, cleaning tanks 2 and 3, and the two (2) die cleaning tanks except when otherwise specified in 40 CFR 63 Subpart MMMM.

(e) 40 CFR 63.5080, Subpart SSSS: National Emission Standards for Hazardous Air Pollutants: Surface Coating of Metal Coil

The requirements of 40 CFR 63, Subpart SSSS are not applicable to Magnet Wire Oven 12 or magnet coating machine 28 because the magnet wire coated by these units does not meet the definition of metal coil pursuant to 40 CFR 63.5110 because it is not a continuous metal strip that is at least 0.15 millimeter thick.

(f) 40 CFR 63.6580, Subpart ZZZZ: National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The provisions of 40 CFR 63, Subpart ZZZZ, which are incorporated by reference as 326 IAC 20-82 are still included in the permit for emergency generators EG-1 and EG-2. Amendments to Subpart ZZZZ were published in the Federal Register on January 30, 2013 [78 FR 6674]. Pursuant to 40 CFR 6590(a)(1)(i) and (b)(3)(iii), EG-1 is considered an existing affected source because it was constructed before December 19, 2002 and it has no requirements under 40 CFR 63, Subparts A or ZZZZ. Pursuant to 40 CFR 6590(a)(1)(ii) and 40 CFR 63.6595(a)(1), EG-2 is considered an existing affected source because it was constructed before June 12, 2006 and it has a compliance date of October 19, 2013.

The entire rule, as amended is included as Attachment B of the permit. The applicable provisions have been updated for EG-1 and EG-2 as follows:

EG-1:

- (1) 40 CFR 63.6580
- (2) 40 CFR 63.6585(a), (b)
- (3) 40 CFR 63.6590(a)(1)(i), (b)(3)(iii)
- (4) 40 CFR 63.6665
- (5) 40 CFR 63.6670
- (6) 40 CFR 63.6675

EG-2:

- (1) 40 CFR 63.6580
- (2) 40 CFR 63.6585(a), (b)
- (3) 40 CFR 63.6590(a)(1)(ii)
- (4) 40 CFR 63.6595(a)(1)
- (5) 40 CFR 63.6602
- (6) 40 CFR 63.6605
- (7) 40 CFR 63.6625(e)(2), (f), (h), (j)
- (8) 40 CFR 6640(a), (b), (f)(1)-(f)(3)
- (9) 40 CFR 63.6645(a)(5)
- (10) 40 CFR 63.6650(f)
- (11) 40 CFR 63.6655(d), (e)(2)
- (12) 40 CFR 63.6660
- (13) 40 CFR 63.6665
- (14) 40 CFR 63.6670
- (15) 40 CFR 63.6675
- (16) Table 2c to Subpart ZZZZ of Part 63, item (6)
- (17) Table 6 to Subpart ZZZZ of Part 63, item (9)
- (18) Table 8 to Subpart ZZZZ of Part 63

Essex Group, Inc.

Page 9 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

The provisions of 40 CFR 63 Subpart A – General Provisions, which are incorporated as 326 IAC 20-1-1, apply to EG-2 except when otherwise specified in 40 CFR 63 Subpart ZZZZ. Pursuant to 40 CFR 63.6665, EG-1 does not have to meet the requirements of 40 CFR 63, Subpart A since it is an existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major soruce of HAP emissions.

- (g) 40 CFR 63.7480, Subpart DDDDD: National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters
 - (1) Boilers WB and EB are subject to the provisions of 40 CFR 63, Subpart DDDDD, which are incorporated by reference as 326 IAC 20-95, because they are industrial boilers located at a major source of HAP. Pursuant to 40 CFR 63.7490, the boilers are considered existing affected sources because they were constructed before June 4, 2010. Pursuant to 40 CFR 63.7495(b), the existing boilers must comply with Subpart DDDDD no later than January 31, 2016. The boilers are described as follows:
 - One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB.
 - One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB.
 - (2) Process Heaters, OH-1 and OH-2 are subject to the provisions of 40 CFR 63, Subpart DDDDD because they are process heaters located at a major source of HAP. Pursuant to 40 CFR 63.7490(b) and 40 CFR 63.7495(a), OH-1 is considered a new affected source because it was constructed after June 4, 2010 and has a compliance date of January 31, 2013. Pursuant to 40 CFR 63.7490(d) and 40 CFR 63.7495(b), OH-2 is considered an existing affected source because it was constructed before June 4, 2010 and has a compliance date of January 31, 2016. The process heaters are described as follows:
 - Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr.
 - (3) The enameling ovens, magnet wire ovens, and the associated annealers are not subject to the provisions of 40 CFR 63, Subpart DDDDD. The annealers do not meet the definition of a process heater per 40 CFR 63.7575 because gases come in direct contact with the process material (bare copper or aluminum wire). The ovens are subject to 40 CFR 63, Subpart MMMM; therefore, pursuant to 40 CFR 63.7491(h), the ovens are not subject to the provisions of 40 CFR 63, Subpart DDDDD.

The entire rule is included as Attachment D to the permit. The boilers and process heaters are subject to the following provisions of 40 CFR 63, Subpart DDDDD:

Boilers WB and EB:

- (1) 40 CFR 63.7480
- (2) 40 CFR 63.7485
- (3) 40 CFR 63.7490(a), (d)
- (4) 40 CFR 63.7495(b), (d)
- (5) 40 CFR 63.7499(I)
- (6) 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
- (7) 40 CFR 63.7501
- (8) 40 CFR 63.7505(a)

Essex Group, Inc. Page 10 of 61 Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

- (9)40 CFR 63.7510(e)
- (10)40 CFR 63.7515(d) 40 CFR 63.7530(d), (e), (f) (11)
- (12)40 CFR 63.7540(a)(10), (a)(13), (b)
- (13)40 CFR 63.7545(a), (b), (e)(1), (e)(8), (f), (h)
- (14)40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
- (15)40 CFR 63.7555(a), (i), (j)
- (16)40 CFR 63.7560
- 40 CFR 63.7565 (17)
- 40 CFR 63.7570 (18)
- (19)40 CFR 63.7575
- (20)Table 3 to Subpart DDDDD of Part 63, items (3), (4)
- (21)Table 9 to Subpart DDDDD of Part 63
- (22)Table 10 to Subpart DDDDD of Part 63

Process Heater OH-1:

- 40 CFR 63.7480 (1)
- (2) 40 CFR 63.7485
- 40 CFR 63.7490(a), (b) (3)
- (4) 40 CFR 63.7495(a), (d)
- (5) 40 CFR 63.7499(I)
- (6)40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
- 40 CFR 63.7501 (7)
- 40 CFR 63.7505(a) (8)
- (9)40 CFR 63.7510(g)
- (10)40 CFR 63.7515(d)
- (11)40 CFR 63.7530(d), (f)
- (12)40 CFR 63.7540(a)(12), (a)(13), (b)
- 40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (f), (h) (13)
- (14)40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
- (15)40 CFR 63.7555(a), (i), (j)
- (16)40 CFR 63.7560
- (17)40 CFR 63.7565
- 40 CFR 63.7570 (18)
- 40 CFR 63.7575 (19)
- (20)Table 3 to Subpart DDDDD of Part 63, item (1)
- Table 9 to Subpart DDDDD of Part 63 (21)
- Table 10 to Subpart DDDDD of Part 63 (22)

Process Heater OH-2:

- (1) 40 CFR 63.7480
- (2) 40 CFR 63.7485
- 40 CFR 63.7490(a), (d) (3)
- (4) 40 CFR 63.7495(b), (d)
- (5) 40 CFR 63.7499(I)
- 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f) (6)
- (7)40 CFR 63.7501
- 40 CFR 63.7505(a) (8)
- 40 CFR 63.7510(e) (9)
- (10)40 CFR 63.7515(d)
- 40 CFR 63.7530(d), (e), (f) (11)
- (12)40 CFR 63.7540(a)(12), (a)(13), (b)
- (13)40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (e)(8)(ii), (f), (h)
- 40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3) (14)
- 40 CFR 63.7555(a), (i), (j) (15)
- (16)40 CFR 63.7560
- 40 CFR 63.7565 (17)

Essex Group, Inc.

Page 11 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

TSD for Significant Permit Modification No.: 003-33510-00269

- (18) 40 CFR 63.7570
- (19) 40 CFR 63.7575
- (20) Table 3 to Subpart DDDDD of Part 63, items (1), (4)
- (21) Table 9 to Subpart DDDDD of Part 63
- (22) Table 10 to Subpart DDDDD of Part 63

The provisions of 40 CFR 63 Subpart A – General Provisions, which are incorporated as 326 IAC 20-1-1, apply to the boilers and process heaters described in this section except when otherwise specified in 40 CFR 63 Subpart DDDDD.

Note: The boilers and process heaters are not being modified as part of this permitting action. The applicable requirements of 40 CFR 63, Subpart DDDDD are now being included in the permit subsequent to amendments made to 40 CFR 63, Subpart DDDDD on January 31, 2013.

Compliance Assurance Monitoring (CAM)

- (h) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to new or modified emission units that involve a pollutant-specific emission unit and meet the following criteria:
 - (1) has a potential to emit before controls equal to or greater than the Part 70 major source threshold for the pollutant involved;
 - (2) is subject to an emission limitation or standard for that pollutant; and
 - (3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

The following table is used to identify the applicability of each of the criteria, under 40 CFR 64.1, to each new or modified emission unit involved:

CAM Applicability Analysis										
Emission Unit	Control Device Used	Emission Limitation (Y/N)	Uncontrolled PTE (ton/yr)	Controlled PTE (ton/yr)	Part 70 Major Source Threshold (ton/yr)	CAM Applicable (Y/N)	Large Unit (Y/N)			
Magnet Wire Oven 12 - VOC	Y - TO	Y	> 100	< 100	100	Y	Ν			
Magnet Wire Oven 12 - Total HAP	Y - TO	Υ	> 25	< 25	100	N	N			

TO = Thermal Oxidizer

Pursuant to 40 CFR 64.2(b)(1)(i), the requirements of CAM shall not apply to emission limitations or standards proposed by EPA after November 15, 1990 pursuant to section 111 or 112 of the Clean Air Act. Magnet Wire Oven 12 is subject to 40 CFR 63, Subpart MMMM, which was promulgated after November 15, 1990. Subpart MMMM includes an emission limitation for total organic HAP emissions. Therefore, Magnet Wire Oven 12 is not subject to CAM for total HAPs.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM are applicable to Magnet Wire Oven 12 for VOC upon issuance of the next Title V Renewal because not all the VOC used in Magnet Wire Oven 12 is a HAP that is covered under 40 CFR 63, Subpart MMMM. A CAM plan must be submitted as part of the next Renewal application.

Essex Group, Inc. Page 12 of 61 TSD for Minor Source Modification No.: 003-33490-00269 Fort Wayne, Indiana TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

State Rule Applicability Determination

The following is a discussion of the state rule applicability for the source due to this modification:

326 IAC 2-2 (Prevention of Significant Deterioration)

Since the unrestricted potential to emit of VOC of this modification exceeds the PSD (a) significant level, the source shall limit emissions as follows:

> The VOC emissions from Magnet Wire Oven 12 shall be less than 39.7 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with the above limit, combined with the potential to emit VOC from TK-32 and Magnet Wire Oven 12 combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2013 modification.

- Minor Source Modification No. 003-26441-00269, issued on May 5, 2008 and Minor (b) Permit Modification No. 003-26445-00269, issued on June 30, 2008, which provided construction and operating approval for the two (2) Weatherite V - 14 magnet wire ovens (61-64) and magnet wire oven 11 did not adequately limit the project for purposes of PSD. Based on other limits in the permit, the modification should not have exceeded the PSD significant level. However, as part of this permitting action, a new PSD minor limit shall be incorporated into the permit to ensure that the modification is not subject to PSD as follows:
 - (1) The combined VOC emissions from the two (2) Weatherite V - 14 magnet wire ovens shall be less than 37.1 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
 - (2) The volatile organic compound (VOC) emissions from the R & D Weatherite magnet wire oven shall be less than 15 lb/day.

Compliance with the above limits, combined with the potential to emit VOC from the magnet wire oven combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2008 modification.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))

- The operation of Magnet Wire Oven 12 will emit greater than ten (10) tons per year for a single HAP and greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 would apply to Magnet Wire Oven 12; however, pursuant to 326 IAC 2-4.1-1(b)(2), because this unit is specifically regulated by NESHAP 40 CFR 63, Subpart MMMM, which was issued pursuant to Section 112(d) of the CAA, Magnet Wire Oven 12 is exempt from the requirements of 326 2-4.1.
- (b) Storage Tank TK-32 will emit less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply to TK-32.

326 IAC 2-6 (Emission Reporting)

This source is subject to 326 IAC 2-6 (Emission Reporting) because it is required to have an operating permit pursuant to 326 IAC 2-7 (Part 70). The potential to emit of VOC is greater than 250 tons per year. Therefore, pursuant to 326 IAC 2-6-3(a)(1), annual reporting is required. An emission statement shall be submitted by July 1, 2014, and every year thereafter. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

Essex Group, Inc.

Page 13 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)

(a) The requirements of 326 IAC 6-3 are not applicable to Tank TK-32, the cleaning room area tanks, or the aluminum wire drawing cleaning operation because these units are not a source of particulate emissions.

(b) Pursuant to 326 IAC 6-3-1(b)(7), the requirements of 326 IAC 6-3 are not applicable to Magnet Wire Oven 12 or magnet wire coating machine 28 because these units use flow coating methods of application.

326 IAC 8-1-6 (General Reduction Requirements for New Facilities)

The provisions of 326 IAC 8-1-6 apply to new facilities (as of January 1, 1980) that have potential VOC emissions of twenty-five (25) tons or more per year; are located anywhere in the state, and that are not otherwise regulated by another provision of 326 IAC 8, 326 IAC 20-48, or 326 IAC 20-56.

- (a) Tank TK-32, magnet wire coating machine 28, the cleaning room area tanks, and the aluminum wire drawing cleaning operation each have potential VOC emissions of less than twenty-five (25) tons per year. Therefore, the provisions of 326 IAC 8-1-6 are not applicable to these units.
- (b) Magnet Wire Oven 12 has potential VOC emissions greater than twenty-five (25) tons per year; however, the unit is subject to 326 IAC 8-2-8. Therefore, Magnet Wire Oven 12 is not subject to the requirements of 326 IAC 8-1-6.

326 IAC 8-2-8 (Magnet Wire Coating Operations)

- (a) The provisions of 326 IAC 8-2-8 do not apply to magnet wire coating machine 28 because it was installed in the 1970's, which pre-dates the applicability of the rule.
- (b) The provisions of 326 IAC 8-2-8 apply to Magnet Wire Oven 12 because it will commence construction after January 1, 1980 and it has potential emissions of twenty-five (25) tons or greater per year of VOC. Pursuant to 326 IAC 8-2-9(b), the Permittee shall not cause, allow, or permit the discharge into the atmosphere of any volatile organic compounds in excess of 1.7 pounds per gallon excluding water, delivered to the coating applicator from magnet wire coating operations.
 - (1) Compliance with the 326 IAC 8-2-8 emission limitation shall be determined pursuant to 326 IAC 8-1-2(b). The VOC emissions from Magnet Wire Oven 12 shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed by 326 IAC 8-2-8.

This equivalency was determined by the following equation:

$$E = L/(1 - (L/D))$$

Where:

- L = Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.
- D = Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

Essex Group, Inc.

Page 14 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.

(3) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the thermal oxidizer shall be no less than the equivalent overall efficiency calculated by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

- V = The actual VOC content of the non-compliant coating or, if multiple non-compliant coatings are used, the daily weighted average VOC content of all non-compliant coatings, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.

The overall efficiency of the thermal oxidizer shall be equal to or greater than 95.88%.

326 IAC 8-2-9 (Miscellaneous Metal Coating)

- (a) Pursuant to 326 IAC 8-2-9(b)(1), the provisions of 326 IAC 8-2-9 are not applicable to surface coating of any metal parts or products limited by other sections of 326 IAC 8. Magnet Wire Oven 12 is subject to 326 IAC 8-2-8 (Magnet Wire Coating Operations); therefore, Magnet Wire Oven 12 is not subject to 326 IAC 8-2-9.
- (b) Magnet wire coating machine 28 is not subject to the provisions of 326 IAC 8-2-9 because it was installed in the 1970's, which pre-dates the applicability of the rule.

326 IAC 8-3 (Organic Solvent Degreasing Operations)

On January 30, 2013, amendments to 326 IAC 8-3 (Organic Solvent Degreasing Operations) were published, effective March 1, 2013. 326 IAC 8-3-2 was revised and the Permittee is now subject to 326 IAC 8-3-8 on and after January 1, 2015.

Note: This applies to the cleaning room area cleaning tanks 2 and 3 and the two (2) die cleaning tanks. The description of these units is being clarified in this permitting action. The aluminum wire drawing cleaning operation is not subject to 326 IAC 8-3 because the unit does not meet the definition of a cold cleaner degreaser, an open top vapor degreaser, or a conveyorized degreaser. No changes to the degreasing operations have occurred. The rule language has been revised.

The rule requirements are described below:

(1) 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements)

Pursuant to 326 IAC 8-3-2(a), the Permittee shall:

- (A) Equip the degreaser with a cover.
- (B) Equip the degreaser with a device for draining cleaned parts.
- (C) Close the degreaser cover whenever parts are not being handled in the

Essex Group, Inc.

Page 15 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

degreaser.

(D) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases.

- (E) Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (C), (D), (F), and (G).
- (F) Store waste solvent only in closed containers.
- (G) Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

(2) **326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers)**Pursuant to 326 IAC 8-3-8(a)(2), on and after January 1, 2015, the Permittee shall comply

with the following:

- (A) Material requirements are as follows:

 No person shall operate a cold cleaner degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).
- (B) Record keeping requirements are as follows:
 The Permittee shall maintain the following records:
 - (i) The name and address of the solvent supplier.
 - (ii) The date of purchase (or invoice/bill date of contract servicer indicating service date).
 - (iii) The type of solvent purchased.
 - (iv) The total volume of the solvent purchased.
 - (v) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).
- (C) All records required shall be:
 - (i) Retained on-site or accessible electronically from the site for the most recent three (3) year period; and
 - (ii) Reasonably accessible for an additional two (2) year period.

326 IAC 8-9 (Volatile Organic Liquid Storage Vessels)

The requirements of 326 IAC 8-9 are not applicable to tank TK-32 or the cleaning room area tanks because the tanks are not located in Clark, Floyd, Lake, or Porter Counties.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to ensure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions; however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination

Essex Group, Inc.

Page 16 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source's failure to take the appropriate corrective actions within a specific time period.

The Compliance Determination Requirements applicable to this modification are as follows:

Control Device Requirement

In order to ensure compliance with 326 IAC 8-2-8 and the 326 IAC 2-2 (PSD) minor limit, the thermal oxidizer for Magnet Wire Oven 12 shall be in operation whenever the magnet wire oven is in operation.

VOC Data Sheets

Compliance with the VOC content limitation as specified for 326 IAC 8-2-8 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

Equation for Determining Compliance with PSD Minor Limits

Compliance with the PSD Minor Limits for the two (2) Weatherite magnet wire ovens and Magnet Wire Oven 12 shall be determined by calculating the VOC emissions using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid

compliance test.

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

Testing Requirement

Summary of Testing Requirements									
Emission Unit	Control Device	Timeframe for Testing	Pollutant	Frequency of Testing	Limit or Requirement				
Magnet Wire Oven 12	Thermal Oxidizer	180 days after startup	VOC	Once every 5 years	326 IAC 8-2-8				

The compliance monitoring requirements applicable to this modification are as follows:

Thermal Oxidizer Temperature

(a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizer for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the oxidizers are in operation.

Essex Group, Inc.

Page 17 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(b) The Permittee shall determine the three-hour average temperature from the latest valid stack test that demonstrates compliance with 326 IAC 8-2-8.

- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizer at or above the three-hour average temperature observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electromechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response.

These compliance monitoring requirements are necessary because the thermal oxidizer for Magnet Wire Oven 12 must operate properly in order to ensure compliance with 326 IAC 8-2-8 (Magnet Wire Coating Operations) and 40 CFR 63, Subpart MMMM and in order to render 326 IAC 2-2 (PSD) not applicable.

Proposed Changes

The changes listed below have been made to Part 70 Operating Permit No. T003-30777-00269. These changes may include Title I changes (e.g. changes that add or modify synthetic minor emission limits). Deleted language appears as strikethroughs and new language appears in **bold**:

Changes Affecting Conditions Throughout the Permit

The following is a summary of changes that have been made throughout the permit:

- (a) Multiple Conditions Rule References
 - (1) On October 27, 2010, the Indiana Air Pollution Control Board issued revisions to 326 IAC 2. These revisions resulted in changes to the rule citations listed in the permit. These changes are not changes to the underlining provisions. The change is only to citation of these rules in Section A General Information, the Facility Descriptions, and Section D Preventative Maintenance Plan.
 - (2) On November 3, 2011, the Indiana Air Pollution Control Board issued a revision to 326 IAC 2. The revision resulted in a change to the rule citations of "trivial activity", "section 502(b)(10) changes", and "regulated pollutant that is used only for purposes of section 19 of this rule" definitions.
- (b) Multiple Conditions Typographical Errors, Language Clarification
 Throughout the permit, typographical and grammatical errors have been corrected.

 Additionally, changes to language for clarification or to align with the current preferred permit language conventions have been made.

Changes Specific to Section A of the Permit

- (a) Emission unit descriptions in A.3 and A.4 of the permit have been revised to indicate federal rule applicability.
- (b) Emission unit descriptive language was added to A.3 of the permit for the Magnet Wire Oven 12, magnet wire coating machine 28, and the cleaning room area.

Essex Group, Inc.

Page 18 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

- (c) Magnet wire coating machines 35 and 36 have been removed from the plant; therefore, the descriptive language for these units was removed in A.3 of the permit.
- (d) The descriptive information in A.4 of the permit was revised to remove the storage tanks that have been removed (TK-26, TK-27, TK-29) and to add new tank TK-32.
- (e) The degreasing operation descriptive language was revised to separate the aluminum wire drawing cleaning operation from the cleaning room area operation. The description for the cleaning room area was moved to A.3 of the permit.

Section A of the permit has been revised as follows:

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(154)][326 IAC 2-7-1(22)]

* * *

* * *

A.3 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)] [326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices.

Chemical Processing Plant

- (a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. **Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.**
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.
- (c) * * *
- (d) * * *
- (e) * * *

Magnet Wire Coating Plant

- (a) * * *
- (b) * * *
- (c) * * *
- (d) * * *
- (e) One (1) wire coating machine, identified as emission unit 28, constructed in the 1970's, with a maximum capacity of 272 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-1.
- (fe) One (1)Three (3) wire coating machines, identified as emission units 35, 36 and 37, constructed in the 1980's, with a maximum capacity of 172.39 pounds of wire per hour each, with no controls, and with emissions exhausting at stack SF-2.
- (gf) Two (2) Weatherite V 14 magnet wire ovens, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu

Essex Group, Inc.

Page 19 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

per hour. Under 40 CFR Part 63, Subpart MMMM, this is considered an existing metal parts coating operation.

- (h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.
- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 52-60, 65, and 66, wire coating machines 24-26, 28 and 37, magnet wire ovens 61-64 and 12, cleaning tanks 2 and 3, and the two (2) die cleaning tanks are considered part of an existing affected source.

A.4 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)] [326 IAC 2-7-4(c)] [326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities, which are specifically regulated, as defined in 326 IAC 2-7-1(21):

- (a) One (1) emergency diesel generator, identified as EG-1, installed in 1993, rated at 900 horsepower, engine displacement volume less than 30 liters per cylinder and exhausting to the atmosphere. Under 40 CFR Part 63, Subpart ZZZZ, EG-1 is considered an existing stationary reciprocating internal combustion engine (RICE)affected source.
- (b) One (1) natural gas fired spark ignition emergency generator, identified as EG-2, installed in 1960, rated at 18 horsepower. Under 40 CFR Part 63, Subpart ZZZZ, EG-2 is considered an existing stationary reciprocating internal combustion engine (RICE)affected source.

Chemical Processing Plant

- (a) * * *
- (b) The following storage tanks emitting less than 15 pounds per day of VOC, and under 40 CFR Part 63, Subpart MMMM, are considered part of an existing metal parts coating operationaffected source:
 - (1) * * *
 - (2) * * *
 - (3) * * *
 - (4) Three (3)Five (5) inside storage tanks, storing volatile organic liquids and having maximum storage capacities less than 40 cubic meters, identified as: tanks TK-25, TK-26, TK-27, TK-29, and TK-30, all constructed before July 23, 1984, except for tank TK-25, storing volatile organic liquids and having a maximum storage capacity less than 40 cubic meters.
 - (A) TK-25 and TK-32, constructed after July 23, 1984.
 - (B) TK-30, constructed prior to July 23, 1984.

Essex Group, Inc.

Page 20 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(c) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons. **[40 CFR 63, Subpart MMMM]**

(d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

Magnet Wire Coating Plant

(a) Degreasing operation with a maximum usage of 2533 pounds per year of hydrocarbon, consisting of, but not limited to four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4. Tanks 2 and 3 contain HAPs and Tanks 1 and 4 contain no HAPs. [326 IAC 8-3-2][40 CFR Part 63, Subpart MMMM]

Aluminum wire drawing cleaning operation, with a maximum usage of 3500 pounds of hydrocarbon solvent per year. This operation uses felts soaked with hydrocarbon to clean tramp oils from aluminum process wire.

* * *

Changes Specific to Sections B and C of the Permit

- (a) Section B Emergency Provisions
 Section B Emergency Provisions has been revised to remove references to the Northern
 Regional Office since Allen County is not part of the Northern Regional Office jurisdiction.
- (b) Section B Operational Flexibility
 Rule citations in (a)(5) of Section B Operational Flexibility have been revised for clarity.
- (c) Section C Compliance Monitoring, Section C Response to Excursions or Exceedances, and Section C General Reporting Requirements
 IDEM, OAQ has decided to clarify the Permittee's responsibility under CAM. Additionally, IDEM, OAQ is changing Section C Compliance Monitoring to clearly describe when new monitoring for new and existing units must begin.
- (d) Section C Instrument Specifications
 IDEM, OAQ has decided to clarify Section C Instrument Specifications to indicate that the analog instrument shall be capable of measuring values outside of the normal range.
- (e) Section C General Record Keeping Requirements
 IDEM, OAQ has clarified the Permittee's responsibility with regards to record keeping.

The B and C Sections of the permit have been revised as follows:

B.11 Emergency Provisions [326 IAC 2-7-16]

- (a) * * *
- (b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:
 - (1) * * *
 - (2) * * *
 - (3) * * *

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Laura Spriggs Page 21 of 61 TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

(4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, or Northern Regional Office within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality,

Compliance and Enforcement Branch), or

Telephone Number: 317-233-0178 (ask for Office of Air Quality,

Compliance and Enforcement Branch) Facsimile Number: 317-233-6865

Northern Regional Office phone: (574) 245-4870; fax: (574) 245-4877.

* * *

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(402). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

* * *

- (b) * * *
- (c) * * *

* * *

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

- (a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:
 - (1) ***
 - (2) * * *
 - (3) * * *
 - (4) * * *
 - (5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b) or)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(367)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

* * *

* * *

C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

Essex Group, Inc.

Page 22 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance-or of initial start-up, whichever is later, to begin such monitoring. If due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance-or the date of initial startup, whichever is later, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units or emission units added through a source modification shall be implemented when operation begins.

- (c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.
- (d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.10 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

Essex Group, Inc.

Page 23 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

* * *

C.13 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5] [326 IAC 2-7-6]

- (I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, **not subject to CAM**, in this permit:
 - (a) * * *
 - (b) * * *
 - (c) * * *
 - (d) * * *
 - (e) * * *

(II)

- (a) CAM Response to excursions or exceedances.
 - (1) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary followup actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.
 - (2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process.
- (b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.
- (c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a QIP. The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.
- (d) Elements of a QIP:

Essex Group, Inc.

Page 24 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8 b (2).

- (e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.
- (f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:
 - (1) Failed to address the cause of the control device performance problems; or
 - (2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.
- (h) CAM recordkeeping requirements.
 - (1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(a)(2) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
 - (2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements

C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(a)(1), the Permittee shall submit by July 1 of each year an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

- (1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);
- (2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(323) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

* * *

* * *

Essex Group, Inc.

Page 25 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2][326 IAC 2-3]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following:, where applicable:

* * *

Records of required monitoring information include the following, where applicable:

* * *

- (b) * * *
- (c) * * *
- (d) * * *

C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2] **[40 CFR 64][326 IAC 3-8]**

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

* * *

Changes Specific to the D Sections of the Permit

- (a) Emission unit descriptions in the D Sections of the permit have been revised to indicate federal rule applicability.
- (b) Wording for several conditions in the D Sections have been revised for clarity.
- (c) The eight (8) wire enameling ovens (53-60) and three (3) wire coating machines (35-37) were removed from Section D.2 of the permit because these units do not have any applicable state requirements. They are listed in A.2 of the permit and in E.1 of the permit with the applicable provisions of 40 CFR 63, Subpart MMMM.
- (d) Several units were moved to different D sections of the permit in order to provide more clarity on the applicable requirements for these units. The two (2) wire enameling ovens (65 and 66) and their applicable requirements were moved from Section D.2 of the permit to Section D.3. The magnet wire ovens (61-64) and their applicable requirements were moved from Section D.3 of the permit to Section D.4. Section D.5 was created for the new magnet wire oven (12) and its applicable requirements. The cleaning room area and its applicable requirements were moved to a new Section D.6.
- (e) Paragraphs (b), (c), and (d) were removed from Condition D.2.1 and moved to a new Condition D.2.6 as IDEM, OAQ has decided that the equivalent emission limit and required control efficiency are more appropriately placed in the Compliance Determination section as these are used to determine compliance with the 326 IAC 8-2-8 emission limit.

Essex Group, Inc.

Page 26 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(f) A new Condition D.2.2 was created to separate the 326 IAC 2-2 (PSD) minor limit from the 326 IAC 8-2-8 limit in Condition D.2.1. The method of determining compliance with the PSD minor limit was moved to a new Condition D.2.7 in the Compliance Determination section of D.2.

- (g) Paragraph (c) of Condition D.2.8 Testing Requirements has been revised to indicate how to determine if higher VOC content coating may be used without re-testing.
- (h) Previous Condition D.2.6 Thermal Oxidizer Operation was removed and the requirements have been incorporated into Condition D.2.9 Thermal Oxidizer Temperature.
- (i) Record keeping requirements have been separated out in Condition D.2.10 Record Keeping Requirements for documenting the compliance status with Conditions D.2.1(a), D.2.1(b), and the new Condition D.2.2.
- (j) A reporting requirement was added to Condition D.2.11 Reporting Requirements to document the compliance status of the 326 IAC 8-2-8 minor limit for Wire Coating Machines 24, 25, and 26.
- (k) The description and applicable requirements for wire enameling ovens 65 and 66 were incorporated into Section D.3 in a similar manner as for wire enameling oven 52 in Section D.2. The description and applicable requirements for magnet wire ovens 61-64 were moved to Section D.4 with changes similar to those made in Section D.2.
- (I) A new requirement was included as Condition D.4.2 to incorporate PSD minor limits for the 2008 modification, which was not adequately limited for purposes of PSD.
- (m) Corrective action language for the thermal oxidizer temperature for magnet wire ovens 61-64 was removed and the language now indicates that the Permittee shall take a reasonable response if the three-hour average temperature falls below the required temperature.
- (n) A statement was added to Condition D.4.9 Thermal Oxidizer Temperature to indicate that the compliance monitoring requirement satisfies 40 CFR 64 (CAM) for the two (2) Weatherite V - 14 ovens (61-64). The CAM applicability for these units was discussed in the technical support document for Part 70 Operating Permit Renewal No. T003-30777-00269, issued on April 10, 2012.
- (o) Record keeping and reporting requirements were included in Conditions D.4.10 and D.4.11 for the PSD minor limits for magnet wire ovens 61-64.
- (p) Condition D.6.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements was revised to incorporate the changes that have been made to 326 IAC 8-3-2, as discussed in the State Rule Applicability section of this technical support document.
- (q) A new Condition D.6.2 Material Requirements for Cold Cleaner Degreasers was added to incorporate the new requirements of 326 IAC 8-3-8 as discussed in the State Rule Applicability section of this technical support document.

The D Sections of the permit have been revised as follows:

SECTION D.1 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(154)]:

Chemical Processing Plant - Boilers

Essex Group, Inc.

Page 27 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(a) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit EB, constructed in 1994, and exhausting to stack SCB. **Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.**

(b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. **Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.**

Insignificant Activities

(d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

* * *

D.1.2 Preventive Maintenance Plan [326 IAC 2-7-5(123)]

A Preventive Maintenance Plan is required for the facilities described in this section—and its control device. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

SECTION D.2 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(154)]:

Magnet Wire Coating Plant

- (a) * * *
- (b) The following eight (8) wire enameling ovens with add-on thermal incinerators for control. After production, a wire lube is applied to the enameled wire, with a combined maximum total usage of 0.4 pounds per hour for all eight (8) ovens.
 - (1) Five (5) wire enameling ovens, identified as emission units 53, 54, 55, 56 and 57, constructed in 1958, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add-on thermal incinerators for control, with emissions exhausting at the west incinerator identified as SWI.
 - (2) Three (3) wire enameling ovens, identified as emission units 58, 59 and 60, constructed in 1962, with a maximum capacity of 157.63 pounds of aluminum wire per hour each or a maximum capacity of 399.2 pounds of copper wire per hour each, with add on thermal incinerators for control, with emissions exhausting at the east incinerator identified as SEI.
- (c) Two (2) wire enameling ovens with an internal thermal oxidizer, identified as emission units 65 and 66, constructed in 1997, with a maximum capacity of 891 pounds of copper/aluminum wire per hour each, with emissions exhausting at stacks S65 and S66, respectively.
- (d) * * *
- (e) Three (3) wire coating machines, identified as emission units 35, 36 and 37, constructed in the

Page 28 of 61 TSD for Minor Source Modification No.: 003-33490-00269

TSD for Significant Permit Modification No.: 003-33510-00269

1980's, with a maximum capacity of 172.39 pounds of wire per hour each, with no controls, with emissions exhausting at stack SF-2.

Under 40 CFR 63, Subpart MMMM, wire enameling oven 52 and wire coating machines 24-26 are considered part of an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.2.1 Volatile Organic Compound (VOC) Emission Limitations-and PSD Minor Modification Limit [326 IAC 8-2-8] [326 IAC 2-2]
 - (a) Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for the wire enameling ovens identified as 52, 65 and 66, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.
 - (b) Pursuant to 326 IAC 8-1-2 (b), the enameling ovens' VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon coating solids, allowed in (a).

This equivalency was determined by the following equation:

$$E = L/(1-(L/D))$$

Where

L= Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating

D= Density of VOC in coating in pounds per gallon of VOC

E= Equivalent emission limit in pounds of VOC per gallon of coating solids as applied

Actual solvent density shall be used to determine compliance of surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (c) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21, when L is equal to 1.7 pounds of VOC per gallon of coating and D is equal to 7.36 pounds of VOC per gallon of coating.
- (d) Pursuant to T003-7654-00269, issued on September 30, 1999, and 326 IAC 8-1-2(c), the equivalent overall control efficiency of the integral internal thermal oxidizers for magnet wire enameling oven 52 shall be not less than ninety-five and nineteen hundredths percent (95.19%) and the equivalent overall control efficiency of the integral internal thermal oxidizers for magnet wire enameling ovens 65 and 66 shall be not less than ninety-four and ten hundredths percent (94.10%) or the required destruction efficiency demonstrated by the most recent valid stack test, for the worst case VOC coating currently used; for a higher VOC content coating, the overall control efficiency of these units shall be no less than the estimated control efficiency required to achieve compliance with the VOC limit in Condition D.1.1(a).

The overall control efficiency (O) of the thermal oxidizers shall be calculated by the following equation:

$$O = \frac{V - E}{-V} \times 100$$

Where:

Essex Group, Inc.

Page 29 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

- V = The actual VOC content of the coating or, if multiple coatings are used, the daily weighted average VOC content of all coatings, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall control efficiency of the capture system and control device as a percentage.
- (eb) The VOC emissions from wire coating machines 24, 25, and 26 shall be less than **fifteen** (15) pounds per day per oven. Compliance with this limit shall render the requirements of 326 IAC 8-2-8 not applicable to these facilities.

D.2.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

Pursuant to Modification No. 003-4841-00077, issued in 1996, the VOC emissions from oven 52 shall be less than 31.25 tons per twelve (12) consecutive month period, with compliance determined at the end of each month. and the internal thermal oxidizer for magnet wire enameling oven 52 shall achieve an overall efficiency of at least ninety-five and nineteen hundredths percent (95.19%).

Compliance with this limit, in conjunctioncombined with potential VOC emissions from ovens 24, 25, and 26, shall limit the VOC emissions from the mModification-No. 003-4841-00077, issued in 1996, to less than forty (40) tons per twelve (12) consecutive month period-year and shall render the requirements of 326 IAC 2-2 not applicable to the 1996 modification-Modification No. 003-4841-00077.

VOC Emissions from oven 52 shall be determined by the following equation:

VOC Emissions (tons) = (Σ (VOC Content i (%) x Coating Amount i (tons) x (1 - Control Efficiency % / 100))

where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used

Amount i = Usage, in tons of the coating i

(g) The VOC emissions from ovens 65 and 66 shall be less than 40 tons per twelve consecutive month period and the internal thermal oxidizer for magnet wire enameling ovens 65 and 66 shall, in aggregate, achieve an overall efficiency of at least ninety-four and one tenths percent (94.1%). Compliance with this limit shall render the requirements of 326 IAC 2-2 not applicable to the modification performed in 1997. VOC Emissions shall be determined by the following equation:

VOC Emissions (tons) = (Σ (VOC Content i (%) x Coating Amount i (tons) x (1 - Control Efficiency % / 100))

where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used

Amount i = Usage, in tons of the coating i

D.2.23 Preventive Maintenance Plan [326 IAC 2-7-5(123)]

Page 30 of 61 TSD for Minor Source Modification No.: 003-33490-00269

TSD for Significant Permit Modification No.: 003-33510-00269

- Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.2.34 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) **and in order to ensure compliance with Conditions D.2.1(a) and D.2.2**, the Permittee shall operate the integral internal thermal oxidizers for the wire enameling ovens identified as 52, 65 and 66 at all times that theise facilityies are is in operation in order to achieve compliance with Condition D.2.1.

D.2.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content, and usage, and emission limitations contained in Conditions D.2.1(a) and (eb) and D.2.2 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ, reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.2.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.2.1(a) shall be determined as follows for wire enameling oven 52 using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.2.1(a).
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

L= Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.

D= Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.

E= Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the thermal oxidizer shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

Essex Group, Inc.
Page 31 of 61
Fort Wayne, Indiana
TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs
TSD for Significant Permit Modification No.: 003-33510-00269

V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.

- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) Pursuant to T003-7654-00269, issued on September 30, 1999, and 326 IAC 8-1-2(c), the equivalent overall efficiency of the thermal oxidizer for oven 52 shall be not less than 95.19% or the required destruction efficiency demonstrated by the most recent valid stack test for the worst case VOC coating currently used. For a higher VOC content coating, the overall control efficiency of this thermal oxidizer shall be no less than the estimated control efficiency required to achieve compliance with the limit in Condition D.2.1(a).

D.2.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.2.2 shall be determined by calculating the VOC emissions for enameling oven 52 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

D.2.48 Testing Requirements [326 IAC 2-7-6(1),(6)] [326 IAC 2-1.1-11]

(a) In order to demonstrate the-compliance with Conditions D.2.1(a) and D.2.2(b), (d), (f), and (g), the Permittee shall conduct performance testing on -one (1) representative thermal oxidizer from the three (3) thermal oxidizers controlling the wire enameling ovens identified as 52, 65 and 66 to verify VOC control efficiency per Conditions D.2.46(b) and D.3.6(b)(b), (d), (f), and (g) utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. no later than 5 years from the most recent testing performed on these exidizers using methods approved by the Commissioner. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test, at least once every five years from the date of the most recent valid compliance demonstration.

Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.

(b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify VOC control efficiency as per Conditions D.2.1(a)(b) and (c)and D.2.2 for the integral internal thermal oxidizers using methods approved by the

Essex Group, Inc.

Page 32 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

Commissioner.

(c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:

(1) Calculate the new minimum required control efficiency for the new coating (O_{new}), using the equation in Condition D.2.6(b)(1). maximum VOC loading (L_{new}) for the higher VOC content enamel;

TSD for Significant Permit Modification No.: 003-33510-00269

- (2) Calculate the current maximum VOC loading (Leurrent); If Onew is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.
- (3) If L_{new} is lower than L_{current}, Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6 (1)] [326 IAC 2-7-5 (1)]

D.2.6 Thermal Oxidizer Operation

For the wire enameling ovens identified as 52, 65 and 66:

- (a) The Permittee shall determine the 3 hour block average minimum temperature from the most recent valid stack test that demonstrates compliance with limits in Condition D.2.1, as approved by IDEM.
- (b) From the date of the approved stack test results are available, the Permittee shall operate the internal integral thermal oxidizers at or above the 3 hour block average minimum temperature as observed during the compliant stack test.

D.2.97 Parametric Monitoring Thermal Oxidizer Temperature

For the wire enameling ovens identified as 52, 65 and 66:

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizers for measuring operating temperature-of the internal integral thermal oxidizers. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as-and the three—hour average temperatures shall be recorded whenever the thermal oxidizers areis in operation.
- -(b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions. D.2.1(a) and D.2.2.
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the internal integral thermal oxidizer temperature **shallwill** be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the internal integral thermal oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (c) The internal integral thermal oxidizer shall operate such that if the three-hour average temperature falls below the 3 hour block average minimum required temperature (setpoint) as determined by the latest valid stack test, corrective actions shall be taken within 15 minutes to return oxidizer temperature to at least the required minimum temperature setpoint. Corrective action must return oxidizer temperature to or above the

Essex Group, Inc.

Page 33 of 61

TSD for Minor Source Medification No.: 003-33400-00360

Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

minimum temperature setpoint within thirty (30) minutes of the corrective action, or the enamel flow to the oven shall be shut off. Failure to take corrective action or failure to shut off the enamel flow as stated above shall be considered a deviation from this permit.

(de) If the three-hour average temperature falls below the above mentioned three-hour average temperaturelf abnormal conditions are observed, the Permittee shall take a reasonable response. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.108 Record Keeping Requirements

- (a) To document the compliance status with Condition D.2.1(a), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limits and the VOC emission limits established in Condition D.2.1(a).
 - (1) The amount and VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (32) Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The weight of VOCs emitted for each compliance period.
- (b) To document the compliance status with Condition D.2.1(b), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken daily and shall be complete and sufficient to establish compliance with the VOC usage limit established in Condition D.2.1(b).
 - (1) The amount of coating material and solvent less water used on a daily basis.
 - (2) Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type used.
 - (3) The VOC usage for each day.
- (c) To document the compliance status with Condition D.2.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.2.2.
 - (1) The VOC content of each coating material and solvent used.
 - (2) The amount of coating material and solvent used on a monthly basis.

 Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total VOC usage for each month.
- (bd) To document the compliance status with Condition D.2.6 and D.2.79, the Permittee shall maintain the continuous temperature records (on a three-hour average basis) for the thermal oxidizer and the three-hour average temperature used to demonstrate

Essex Group, Inc.

Page 34 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33490-00269

compliance during the most recent compliant stack test.—and 3 hour average temperature records.

- (c) To document the compliance status with Condition D.2.4, the Permittee shall maintain records of the test results.
- (de) Section C General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.2.911 Reporting Requirements

Quarterly summaries of the information to document the compliance status with Conditions **D.2.1(b) and** D.2.**2**(f) and D.2.1(g) shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

SECTION D.3

FACILITY OPERATION CONDITIONS

Emissions Unit Description:

Magnet Wire Coating Plant

- (c) Two (2) wire enameling ovens with an internal thermal oxidizer, identified as emission units 65 and 66, constructed in 1997, with a maximum capacity of 891 pounds of copper/aluminum wire per hour each, with emissions exhausting at stacks S65 and S66, respectively.
- (f) Two (2) Weatherite V 14 magnet wire ovens, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour. Under 40 CFR Part 63, Subpart MMMM, this is considered an existing metal parts coating operation.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 65 and 66 are considered part of an existing affected source.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.3.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for wire enameling ovens 65 and 66, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of the VOC emissions from the two (2) Weatherite V - 14 magnet wire ovens shall be limited to 1.7 pounds VOC per gallon of coating, lessexcluding water, as delivered to the applicatorspecifically listed in 326 IAC 8-2-8.

D.3.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

Essex Group, Inc. Fort Wayne, Indiana Permit Reviewer: Laura Spriggs Page 35 of 61 TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

The VOC emissions from ovens 65 and 66 shall be less than forty (40) tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with this limit shall render the requirements of 326 IAC 2-2 not applicable to the modification performed in 1997.

D.3.23 Preventive Maintenance Plan [326 IAC 2-7-5(132)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.3.34 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and iin order to ensure complyiance with Conditions D.3.1 and D.3.2, the thermal oxidizers shall be in operation whenever the associated two (2) Weatherite V-14 magnet wire even lineswire enameling ovens 65 and 66 are in operation.

D.3.45 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC **content and emission limitations**usage contained in Conditions D.3.1 **and D.3.2** shall be determined pursuant to 326 IAC 8-1-4(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserve the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4

D.3.56 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content **limitation contained in Condition D.3.1** shall be determined **as follows for the wire enameling ovens 65 and 66**pursuant to 326 IAC 8-1-2(b), using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.3.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

$$= 1.7/(1-(1.7/7.36)) = 2.21$$
 lbs VOC/gal coating solids

Where:

- L = Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating. less water;
- D = Solvent Ddensity of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.-in pounds per gallon of VOC (lbs/gal) as applied; and
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

The emission limit in 326 IAC 8-2-8 is 1.7 pounds per gallon of coating, less water. The maximum coating density used in the formula for the oven is 7.36 lbs/gal as cited in 326 IAC 8-1-2. Therefore, the VOC limitation in terms of lbs VOC/gal coating solid shall be

Page 36 of 61 TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

limited to less than 2.21 lbs VOC/gal coating solids.

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the internal thermal oxidizers shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).calculated by the following equation:
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} \times 100$$

$$= \frac{53.64 - 2.21}{53.64} \times 100$$

$$= 95.87\%$$

Where:

- V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied = 53.64 lbs VOC/gal solids.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied = 2.21 lbs VOC/gal coating solids.
- O = Equivalent overall efficiency of the capture system and control device **as a percentage**.
- (2) Pursuant to T003-7654-00269, issued on September 30, 1999, and 326 IAC 8-1-2(c), the equivalent overall efficiency of the thermal oxidizers for each oven (65 and 66) shall be not less than 94.10% or the required destruction efficiency demonstrated by the most recent valid stack test for the worst case VOC coating currently used. For a higher VOC content coating, the overall control efficiency of these thermal oxidizers shall be no less than the estimated control efficiency required to achieve compliance with the limit in Condition D.3.1.

The overall efficiency of the internal thermal oxidizer for ovens, identified as 63E/W and 64E/W shall be equal to or greater than 95.87% or the efficiency required to comply with the limit of 1.7—lb/gal.

D.3.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.3.2 shall be determined by calculating the VOC emissions for enameling ovens 65 and 66 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Essex Group, Inc.

Page 37 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

D.3.68 Testing requirements [326 IAC 2-8-5(a)(1), (4)][326 IAC 2-1.1-11]

- (a) In order to demonstrate the-compliance with Conditions D.3.1 and D.3.2, the Permittee shall conduct performance testing on one (1) representative thermal oxidizer from the three (3) thermal oxidizers controlling the wire enameling ovens identified as 52, 65, and 66-61, 62, 63 and 64 to verify VOC control efficiency per Conditions D.2.6(b) and D.3.46(b) utilizing methods approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstrationno later than 5 years from the most recent testing performed on these oxidizers using methods approved by the Commissioner. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test, at least once every five years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify VOC control efficiency as per Condition D.3.4-6 for the thermal oxidizers using methods approved by the commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (E_{new}O_{new}), using the equation in Condition D.3.6(b)(1).
 - (2) Galculate the new maximum VOC loading (L_{new}) for the higher VOC content enamel;
 - (3) Calculate the current maximum VOC loading (L_{current}); and
 - (4) If **EO**_{new} is lower than the stack test control efficiency, **the** and L_{new} is lower than L_{current}. Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.3.7 Thermal oxidizer Operation

The thermal oxidizer shall operate at all times that the ovens are in operation. When operating, the thermal oxidizer shall maintain a minimum 3 hour average temperature of 1350°F or 3 hour block average minimum temperature determined in the latest compliance testing to maintain an overall control efficiency of not less than 95.87% of volatile organic compound (VOC) in order to determine compliance with Condition D.3.1.

D.3.89 Thermal Oxidizer TemperatureParametric Monitoring

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the catalyticthermal oxidizers for measuring operating temperature of the thermal oxidizers. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as and the three-hour average temperatures shall be recorded whenever the oxidizers are in operation.
- (b) The Permittee shall determine the three-hour average temperature from the latest

Essex Group, Inc.

Page 38 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33490-00269

valid stack test that demonstrates compliance with Conditions D.3.1 and D.3.2.

(c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.

- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature willshall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (c) The oxidizers shall operate such that if the three-hour average temperature falls below the 3 hour block average minimum required temperature of 1350°F or temperature determined from the most recent valid stack test, corrective actions shall be taken within 15 minutes to return oxidizer temperature to at least the required minimum temperature of 1350°F. Corrective action must return oxidizer temperature to or above the minimum temperature of 1350°F within thirty (30) minutes of the corrective action, or the enamel flow to the oven shall be shut off. A reading that is below the temperature (1350°F) as established in the most recent compliant stack test is not a deviation from this permit.
- -(ed) If the three-hour average temperature falls below the above mentioned three-hour average temperature, If abnormal conditions are observed, the Permittee shall take a reasonable response. Section C Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.3.109 Record Keeping Requirements

- (a) To document the compliance status with Condition D.3.1, the Permittee shall maintain records in accordance with (1) through (32) below. Records maintained for (1) through (23) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limits and/or the VOC emission limits established in Condition D.3.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (23) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.3.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.3.2.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The amount of coating material and solvent used on a monthly basis.

 Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total weight of VOCs emitted each month.

Essex Group, Inc.

Page 39 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(bc) To document the compliance status with Conditions D.3.7 and D.3.89, the Permittee shall maintain:

(1) Cthe continuous temperature records (on a three-hour average basis) for each thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test. and 3 hour average temperature records.

(ed) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.3.11 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.3.2 shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

SECTION D.4

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(154)]: Insignificant Activities - Degreaser

Magnet Wire Coating Plant

- (a) Degreasing operation with a maximum usage of 2533 pounds per year of hydrocarbon, consisting of, but not limited to four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4. [326 IAC 8-3-2][40 CFR Part 63, Subpart MMMM]
- (g) Two (2) Weatherite V 14 magnet wire ovens, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour.

Under 40 CFR 63, Subpart MMMM, magnet wire ovens 61-64 are considered part of an existing affected source.

Insignificant Activity:

(db) One (1) Weatherite V - 14 magnet wire oven, identified as 11, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour, each, with two (2) sides. This unit is for Research and Development purposes only and it is not for production.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.4.1 326 IAC 8-3-2 (Cold Cleaner Operations)

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Operations), the Permittee of a cold cleaning facility shall:

- (a) Equip the cleaner with a cover;
- (b) Equip the cleaner with a facility for draining cleaned parts;

Essex Group, Inc.

Page 40 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33490-00269

- (c) Close the degreaser cover whenever parts are not being handled in the cleaner;
- (d) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases;
- (e) Provide a permanent, conspicuous label summarizing the operation requirements;
- (f) Store waste solvent only in covered containers and not dispose of waste solvent or transfer it to another party, in such a manner that greater than twenty percent (20%) of the waste solvent (by weight) can evaporate into the atmosphere.

D.4.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for the two (2) Weatherite V - 14 magnet wire ovens, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.

D.4.2 PSD Minor Limits [326 IAC 2-2] [326 8-2-8]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

- (a) The combined VOC emissions from the two (2) Weatherite V 14 magnet wire ovens shall be less than 37.1 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
- (b) The VOC emissions from the R & D Weatherite magnet wire oven shall be less than 15 pounds per day.

Compliance with the above limits, combined with the potential to emit VOC from the magnet wire oven combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2008 modification. Compliance with (b) above shall also render 326 IAC 8-2-8 not applicable to the R & D Weatherite magnet wire oven 11.

D.4.2 Volatile Organic Compound (VOC)

The volatile organic compound (VOC) emissions from the R & D Weatherite magnet wire oven shall be less than 15 lb/day.

D.4.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.4.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.4.1 and D.4.2(a), the internal thermal oxidizers shall be in operation whenever the associated two (2) Weatherite V - 14 magnet wire oven lines are in operation.

D.4.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content, emission, and usage limitations contained in Conditions D.4.1 and D.4.2 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.4.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.4.1 shall be determined as follows for the two (2) Weatherite V - 14 magnet wire ovens using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.4.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

- L= Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.
- D= Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.
- E= Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the internal thermal oxidizers shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

- V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) The overall efficiency of the internal thermal oxidizers for ovens 61-64 shall be equal to or greater than 95.88% or the efficiency required to demonstrate compliance with Condition D.4.1.

D.4.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Essex Group, Inc.

Page 42 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used.

Amount i = Usage, in tons of the coating i per month.

D.4.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

- (a) In order to demonstrate compliance with Conditions D.4.1 and D.4.2(a), the Permittee shall conduct performance testing on one (1) representative thermal oxidizer from 61, 62, 63 and 64 to verify the VOC control efficiency per Condition D.4.6 utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. The thermal oxidizer tested shall be the oxidizer in which the longest amount of time has elapsed since its previous test. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify the VOC control efficiency as per Condition D.4.6 for the thermal oxidizer using methods approved by the commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (O_{new}), using the equation in Condition D.4.6(b)(1).
 - (2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.4.9 Thermal Oxidizer Temperature [40 CFR 64]

- (a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizers for measuring operating temperature. For the purposes of this condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three hour average temperatures whenever the oxidizers are in operation.
- (b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions D.4.1 and D.4.2(a).
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in

Essex Group, Inc.

Page 43 of 61

TSD for Minor Source Medification No.: 003 33400 00360

Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.

(e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

This compliance monitoring requirement shall satisfy 40 CFR 64 (Compliance Assurance Monitoring) for the two (2) Weatherite V - 14 ovens (61-64).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)]2-8-4(3)][326 IAC 2-7-19]

D.4.103 Record Keeping Requirements

- (a) To document the compliance status with Condition D.4.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.4.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.4.2(a), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) below shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.4.2(a).
 - (1) The VOC content of each coating material and solvent used.
 - (2) The amount of coating material and solvent used on a monthly basis.

 Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total weight of VOCs emitted each month.
- (c) To document the compliance status with Condition D.4.2(b), the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken daily and shall be complete and sufficient to establish compliance with the VOC usagecontent limit and the VOC emission limit established in Condition D.4.2(b).
 - (1) The amount of coating material and solvent less water used on a daily basis
 - (2) Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type used;
 - (3) The VOC usage and VOC content for each day.
- (d) To document the compliance status with Condition D.4.9, the Permittee shall maintain continuous temperature records (on a three-hour average basis) for each thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.

Essex Group, Inc.

Page 44 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

(e) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.4.11 Reporting Requirements

Quarterly summaries of the information to document the compliance status with Conditions D.4.2(a) and D.4.2(b) shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

SECTION D.5 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

(h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.

Under 40 CFR 63, Subpart MMMM, magnet wire oven 12 is considered part of an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.5.1 Volatile Organic Compounds (VOC) [326 IAC 8-2-8]

Pursuant to 326 IAC 8-2-8 (Magnet Wire Coating Operations), for Magnet Wire Oven 12, the Permittee shall not allow the discharge, into the atmosphere, of any VOC in excess of 1.7 pounds of VOC per gallon of coating, excluding water, as delivered to the applicator.

D.5.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration) not applicable, the Permittee shall comply with the following:

The VOC emissions from Magnet Wire Oven 12 shall be less than 39.7 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with the above limit, combined with the potential to emit VOC from TK-32 and Magnet Wire Oven 12 combustion emissions, shall limit the VOC from the modification to less than forty (40) tons per twelve (12) consecutive month period and render 326 IAC 2-2 not applicable to the 2013 modification.

D.5.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for this facility and its control device. Section B - Preventive Maintenance Plan contains the Permittee's obligations with regard to the preventive maintenance plan required by this condition.

Essex Group, Inc.

Page 45 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

D.5.4 Volatile Organic Compounds (VOC) [326 IAC 8-1-2]

Pursuant to 326 IAC 8-1-2(a) and in order to ensure compliance with Conditions D.5.1 and D.5.2, the internal thermal oxidizer shall be in operation whenever Magnet Wire Oven 12 is in operation.

D.5.5 Volatile Organic Compounds (VOC) [326 IAC 8-1-4] [326 IAC 8-1-2(a)]

Compliance with the VOC content limitation contained in Condition D.5.1 shall be determined pursuant to 326 IAC 8-1-4(a)(3) and 326 IAC 8-1-2(a) by preparing or obtaining from the manufacturer the copies of the "as supplied" and "as applied" VOC data sheets. IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

D.5.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2(b),(c)]

Compliance with the VOC content limitation contained in Condition D.5.1 shall be determined as follows for Magnet Wire Oven 12 using formulation data supplied by the coating manufacturer.

- (a) Pursuant to 326 IAC 8-1-2(b)(1), VOC emissions shall be limited to no greater than the equivalent emissions, expressed as pounds of VOC per gallon of coating solids, as allowed in Condition D.5.1.
 - (1) The equivalency was determined by the following equation:

$$E = L / (1 - (L/D))$$

Where:

- L = Applicable emission limit from 326 IAC 8 in pounds of VOC per gallon of coating.
- D = Solvent density of VOC in the coating and shall be equal to 7.36 pounds of VOC per gallon of solvent.
- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.

Actual solvent density shall be used to determine compliance of the surface coating operation using the compliance methods in 326 IAC 8-1-2(a).

- (2) The equivalent pounds of VOC per gallon of coating solids (as applied) shall be limited to less than 2.21.
- (b) Pursuant to 326 IAC 8-1-2(c), the overall efficiency of the thermal oxidizer shall be no less than the equivalent overall efficiency necessary to comply with the equivalent emission limitation in (a).
 - (1) The overall efficiency was determined by the following equation:

$$O = \frac{V - E}{V} X 100$$

Where:

V = The actual VOC content of the coating, as applied to the subject coating line as determined by the applicable test methods and procedures specified in 326 IAC 8-1-4 in units of pounds of VOC per gallon of coating solids as applied.

Essex Group, Inc.

Page 46 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

- E = Equivalent emission limit in pounds of VOC per gallon of coating solids as applied.
- O = Equivalent overall efficiency of the capture system and control device as a percentage.
- (2) The overall efficiency of the internal thermal oxidizer for oven 12 shall be equal to or greater than 95.88% or the efficiency required to demonstrate compliance with Condition D.5.1.

D.5.7 Volatile Organic Compounds (VOC) [326 IAC 2-2]

Compliance with Condition D.5.2 shall be determined by calculating the VOC emissions for Magnet Wire Oven 12 using the following equation:

VOC Emissions (tons/month) = Σ (VOC Content i (%) x Coating Amount i (tons/month) x (1 - Control Efficiency % / 100))

Where:

Control Efficiency % = control efficiency as demonstrated in most recent valid compliance test.

VOC Content i = Percent VOC content of coating i used .

Amount i = Usage, in tons of the coating i per month.

D.5.8 Testing requirements [326 IAC 2-7-6(1),(6)][326 IAC 2-1.1-11]

- (a) Not later than 180 days after the startup of Magnet Wire Oven 12 and in order to demonstrate compliance with Conditions D.5.1 and D.5.2, the Permittee shall conduct performance testing on Magnet Wire Oven 12 to verify the VOC control efficiency per Condition D.5.6 utilizing methods approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
- (b) Before using a coating that would lead to a higher VOC loading in pounds per hour than what was used during the stack test required in (a) above, the Permittee shall conduct a performance test to verify the VOC control efficiency as per Condition D.5.6 for the thermal oxidizer using methods approved by the commissioner.
- (c) For a higher VOC content coating than that used during the stack test in (a) above, the following procedure shall be followed:
 - (1) Calculate the new minimum required control efficiency for the new coating (O_{new}), using the equation in Condition D.5.6(b)(1).
 - (2) If O_{new} is lower than the stack test control efficiency, the Permittee shall be allowed to use the higher VOC content enamel.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.5.9 Thermal Oxidizer Temperature

(a) A continuous monitoring system shall be calibrated, maintained, and operated on the thermal oxidizer for measuring operating temperature. For the purposes of this

Essex Group, Inc.

Page 47 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

condition, continuous monitoring shall mean no less often than once per fifteen (15) minutes. The output from this monitoring system shall be recorded as three-hour average temperatures whenever the oxidizers are in operation.

- (b) The Permittee shall determine the three-hour average temperatures from the latest valid stack test that demonstrates compliance with Conditions D.5.1 and D.5.2.
- (c) On and after the date the stack test results are available, the Permittee shall operate the thermal oxidizers at or above the respective three-hour average temperatures observed during the latest compliant stack test.
- (d) If the primary continuous monitoring system is not in operation, the oxidizer temperature shall be recorded using some manner of secondary system, such as with back-up electro-mechanical hardware or manually if necessary. Nothing in this permit shall excuse the Permittee from complying with the requirement to continuously monitor the temperature of the oxidizers. Continuous monitoring shall mean no less often than once per fifteen (15) minutes.
- (e) If the three-hour average temperature falls below the above mentioned three-hour average temperature, the Permittee shall take a reasonable response. Section C Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.5.10 Record Keeping Requirements

- (a) To document the compliance status with Condition D.5.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC content limit established in Condition D.5.1.
 - (1) The VOC content of each coating material and solvent used less water.
 - (2) The actual VOC content of the coating, in units of pounds of VOC per gallon of coating solids as applied.
 - (3) Records shall include purchase orders, invoices, supplier data sheets and material safety data sheets (MSDS) necessary to verify the type used.
- (b) To document the compliance status with Condition D.5.2, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.5.2.
 - (1) The VOC content of each coating material and solvent used.
 - (2) The amount of coating material and solvent used on a monthly basis.

 Records shall include purchase orders, invoices, and material safety data sheets (MSDS) necessary to verify the type and amount used.
 - (3) The total weight of VOCs emitted each month.
- (c) To document the compliance status with Condition D.3.9, the Permittee shall maintain continuous temperature records (on a three-hour average basis) for the thermal oxidizer and the three-hour average temperature used to demonstrate compliance during the most recent compliant stack test.

Essex Group, Inc.

Page 48 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

(d) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.5.11 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.5.2 shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

SECTION D.6

FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Magnet Wire Coating Plant

- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.6.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2]

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements), for the degreasing operation, the Permittee shall ensure that the following control equipment and operating requirements are met for cleaning tanks 2 and 3 and the two (2) die cleaning tanks:

- (a) Equip the degreaser with a cover.
- (b) Equip the degreaser with a device for draining cleaned parts.
- (c) Close the degreaser cover whenever parts are not being handled in the degreaser.
- (d) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases.
- (e) Provide a permanent, conspicuous label that lists the operating requirements in (c), (d), (f), and (g) of this condition.
- (f) Store waste solvent only in closed containers.
- (g) Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

D.6.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Pursuant to 326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers), on and after January 1, 2015, the Permittee shall not operate a cold cleaner degreaser with a

Essex Group, Inc.

Page 49 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

solvent that has a VOC composite partial vapor pressure than exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.6.3 Record Keeping Requirements

- (a) Pursuant to 326 IAC 8-3-8(c)(2) and to document the compliance status with Condition D.6.2, on and after January 1, 2015, the Permittee shall maintain the following records for each purchase of solvent used in the cold cleaner degreasing operations. These records shall be retained on-site or accessible electronically for the most recent three (3) year period and shall be reasonably accessible for an additional two (2) year period.
 - (1) The name and address of the solvent supplier.
 - (2) The date of purchase (or invoice/bill dates of contract servicer indicating service date).
 - (3) The type of solvent purchased.
 - (4) The total volume of the solvent purchased.
 - (5) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).
- (b) Section C General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

Changes Specific to the E Sections of the Permit

- (a) Emission unit descriptions in the E Sections of the permit have been revised to indicate federal rule applicability.
- (b) Wording for several conditions in the E Sections have been revised for clarity.
- (c) The new Magnet Wire Oven 12 was included in Section E.1 as a unit with applicable requirements under 40 CFR 63, Subpart MMMM.
- (d) The new tank TK-32 was added to Section E.1 of the permit and tanks TK-26, TK-27, and TK-29 were removed from Section E.1 as these units are no longer present at the source.
- (e) The applicable requirements for 40 CFR 63, Subpart MMMM were updated in Condition E.1.2 to be more specific for the operations at the source.
- (f) The applicable requirements in Condition E.2.2 were revised to separate out the requirements for EG-1 and EG-2 since these units have different requirements under 40 CFR 63, Subpart ZZZZ. The applicable provisions listed incorporate the amendments made to 40 CFR 63, Subpart ZZZZ on January 30, 2013. The entire rule as amended in included as Attachment B of the permit.
- (g) A new Section E.3 was added to the permit to include the applicable requirements of 40 CFR 60, Subpart Dc for Boilers EB and WB as discussed in the Federal Rule Applicability section of this technical support document. The entire rule is included as Attachment C of the permit.
- (h) A new Section E.4 was added to the permit to include the applicable requirements of 40

Essex Group, Inc.

Page 50 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

CFR 63, Subpart DDDDD for boilers EB and WB and process heaters OH-1 and OH-2 as discussed in the Federal Rule Applicability section of this technical support document. The entire rule is included as Attachment D of the permit.

The E Sections of the permit have been revised as follows:

SECTION E.1 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(145)]:	Facility Description	[326 IAC 2-7-5(1 4 5)]:	
--	-----------------------------	--------------------------------	--

Magnet Wire Coating Plant

- (a) * * *
- (b) * * *
- (c) * * *
- (d) * * *
- (e) One (1) wire coating machine, identified as emission unit 28, constructed in the 1970's, with a maximum capacity of 272 pounds of wire per hour, with no controls, and with emissions exhausting at stack SF-1.
- (ef) One (1)Three (3) wire coating machines, identified as emission units 35, 36 and 37, constructed in the 1980's, with a maximum capacity of 172.39 pounds of wire per hour—each, with no controls, and with emissions exhausting at stack SF-2.
- (fg) Two (2) Weatherite V 14 magnet wire oven, each with two (2) sides, identified as 61, 62, 63, and 64, constructed in 2008, with a maximum capacity of 284 pounds of copper or aluminum per hour per side, with four (4) natural gas fired internal thermal oxidizers, identified as 61, 62, 63, and 64, respectively to control VOC emissions, and exhausting through stacks S61, S62, S63, and S64, respectively. Each oven pair has one (1) annealer, identified as 63 and 64, with a maximum heat input capacity of 0.15 million Btu per hour. Under 40 CFR Part 63, Subpart MMMM, this is considered an existing metal parts coating operation.
- (h) One (1) magnet wire oven, identified as Magnet Wire Oven 12, approved in 2013 for construction, using a 0.15 MMBtu/hr natural gas fired annealer, with a maximum flow coating capacity of 500 pounds of copper or aluminum per hour, with an internal 1.0 MMBtu/hr natural gas fired recuperative thermal oxidizer for VOC control, and exhausting to stack S12.
- (i) Cleaning room area, constructed after 1980, exhausting through stack CR-1, consisting of:
 - (1) Four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4, each with a capacity of 500 gallons. Tanks 1 and 4 contain no HAPs or VOCs.
 - (2) Two (2) tanks for die cleaning, identified as north die cleaning tank and south die cleaning tank, each with a capacity of 15 gallons.

Under 40 CFR 63, Subpart MMMM, wire enameling ovens 52-60, 65, and 66, wire coating machines 24-26, 28, and 37, magnet wire ovens 61-64 and 12, cleaning tanks 2 and 3, and the two (2) die cleaning tanks are considered part of an existing affected source.

Insignificant Activities

Chemical Processing Plant

(ab) The following storage tanks emitting less than 15 pounds per day of VOC, and under 40 CFR Part 63, Subpart MMMM, are considered part of an existing affected sourcemetal parts coating operation:

Essex Group, Inc.

Page 51 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

- (1) * * * * (2) * * * *
- (2) * * * * (3) * * *
- (4) Three (3)Five (5) inside storage tanks, identified as tanks TK-25, TK-26, TK-27, TK-29, and TK-30, all constructed before July 23, 1984, except for tank TK-25, storing volatile organic liquids and having a-maximum storage capacityies less than 40 cubic meters, identified as::
 - (A) TK-25 and TK-32, constructed after July 23, 1984.
 - (B) TK-30, constructed prior to July 23, 1984.
- (bc) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons. [40 CFR 63, Subpart MMMM]
- (c) Degreasing operation with a maximum usage of 2533 pounds per year of hydrocarbon, consisting of, but not limited to four (4) tanks containing cleaning solvents, identified as cleaning tanks 1 through 4. Tanks 2 and 3 contain HAPs and Tanks 1 and 4 contain no HAPs [326 IAC 8-3-2] [40 CFR Part 63, Subpart MMMM]

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

E.1.1 General Provisions Relating to NESHAP Subpart MMMM (National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products) [326 IAC 20-1] [40 CFR Part 63, Subpart A]

* * *

E.1.2 NESHAP Subpart MMMM Requirements [40 CFR 63, Subpart MMMM] [326 IAC 20-80]

Pursuant to 40 CFR Part 63, Subpart ZZZZ, tThe Permittee shall comply with the following provisions of 40 CFR 63, Subpart MMMM (included as Attachment A of this permit), which are incorporated by reference as 326 IAC 20-80, for all of the magnet wire coating ovens (52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 24, 25, 26, 35, 36, and 37 and 12), wire coating machines (24, 25, 26, 28, and 37), and associated solvent cleaning and coating mixing operations involving HAPs-with the following provisions of 40 CFR Part 63, Subpart MMMM (included as 'Attachment A'), which are incorporated by reference as 326 IAC 20-80:

- (1) 40 CFR 63.3880
- (2) 40 CFR 63.3881(a)(1), (a)(4), (b)
- (3) 40 CFR 63.3882(a), (b), (e)
- (4) 40 CFR 63.3883(b), (d)
- (5) 40 CFR 63.3890(b)(3)
- (6) 40 CFR 63.3891(c)
- (7) 40 CFR 63.3892(b), (c)
- (8) 40 CFR 63.3893(b), (c)
- (9) 40 CFR 63.3900(a)(2), (b), (c)
- (10) 40 CFR 63.3901
- (11) 40 CFR 63.3910
- (12) 40 CFR 63.3920
- (13) 40 CFR 63.3930
- (14) 40 CFR 63.3931
- 40 CFR 63.3940
- 40 CFR 63.3941
- 40 CFR 63.3942

Essex Group, Inc.

Page 52 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

40 CFR 63.3950 40 CFR 63.3951

40 CFR 63.3952

- (15) 40 CFR 63.3960(b), (c)
- (16) 40 CFR 63.3961
- (17) 40 CFR 63.3963
- (18) 40 CFR 63.3964
- (19) 40 CFR 63.3965
- (20) 40 CFR 63.3966
- (21) 40 CFR 63.3967(a), (b)
- (22) 40 CFR 63.3968(a), (b), (c), (g)
- (23) 40 CFR 63.3980
- (24) 40 CFR 63.3981
- (25) Applicable portions of Tables 1, 2, 3, and 4 of 40 CFR 63, Subpart MMMMTable 1 to Subpart MMMM of Part 63
- (26) Table 2 to Subpart MMMM of Part 63
- (27) Table 3 to Subpart MMMM of Part 63
- (28) Table 4 to Subpart MMMM of Part 63
- (29) Appendix A to Subpart MMMM of Part 63

SECTION E.2 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(145)]:

Insignificant Activities

- (a) One (1) emergency diesel generator, identified as EG-1, installed in 1993, rated at 900 horsepower, engine displacement volume less than 30 liters per cylinder and exhausting to the atmosphere. Under 40 CFR Part 63, Subpart ZZZZ, EG-1 is considered an existing stationary reciprocating internal combustion engine (RICE)affected source.
- (b) One (1) natural gas fired spark ignition emergency generator, identified as EG-2, installed in 1960, rated at 18 horsepower. Under 40 CFR Part 63, Subpart ZZZZ, EG-2 is considered an existing stationary reciprocating internal combustion engine (RICE)affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

E.2.1 General Provisions Relating to NESHAP Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) [326 IAC 20-1] [40 CFR Part 63, Subpart A]

Pursuant to 40 CFR 63.6665, **for EG-2**, the Permittee shall comply for EG-2 with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1-1, as specified in 40 CFR Part 63, Subpart ZZZZ in accordance with schedule in 40 CFR 63, Subpart ZZZZ.

E.2.2 NESHAP Subpart ZZZZ Requirements [40 CFR 63, Subpart ZZZZ] [326 IAC 20-82]

Pursuant to 40 CFR Part 63, Subpart ZZZZ, tThe Permittee shall comply for EG-2 with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as 'Attachment B' of this permit), which are incorporated by reference as 326 IAC 20-82 for EG-1 and EG-2:

- (a) For EG-1:
 - (1) 40 CFR 63.6580

Essex Group, Inc. Page 53 of 61 Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

```
(2)
        40 CFR 63.6585(a), -(b)
```

40 CFR 63.6590(a)(1)(ii), (b)(3)(iii) (3)

40 CFR 63.6595(a)(1) & (c)

40 CFR 63.6602

40 CFR 63.6605(a)-(b)

40 CFR 63.6625(e), (f), (h)& (j)

40 CFR 63.6640(a)-(e), and (f)(1)

40 CFR 63.6650(f)

40 CFR 63.6655(d)-(f)

40 CFR 63.6660

- 40 CFR 63.66655(a), (b), (d), (e)(2), (f)(1) (4)
- 40 CFR 63.6670 (5)
- 40 CFR 63.6675 (6)

(b) For EG-2:

- 40 CFR 63.6580 (1)
- (2) 40 CFR 63.6585(a), (b)
- (3) 40 CFR 63.6590(a)(1)(ii)
- (4) 40 CFR 63.6595(a)(1)
- 40 CFR 63.6602 (5)
- 40 CFR 63.6605 (6)
- 40 CFR 63.6625(e)(2), (f), (h), (j) (7)
- 40 CFR 6640(a), (b), (f)(1)-(f)(3) (8)
- 40 CFR 63.6645(a)(5) (9)
- 40 CFR 63.6650(f) (10)
- (11)40 CFR 63.6655(d), (e)(2)
- (12)40 CFR 63.6660
- 40 CFR 63.6665 (13)
- (14)40 CFR 63.6670
- 40 CFR 63.6675 (15)
- (16)Table 2c to Subpart ZZZZ of Part 63, item (6)
- Table 6 to Subpart ZZZZ of Part 63, item (9) (17)
- Table 8 to Subpart ZZZZ of Part 63 (18)

SECTION E.3 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Chemical Processing Plant - Boilers

- One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit (a) EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- (b) One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards Requirements [326 IAC 2-7-5(1)]

E.3.1 General Provisions Relating to NSPS Subpart Dc (Standards of Performance for Small

Essex Group, Inc. Page 54 of 61 TSD for Minor Source Modification No.: 003-33490-00269 Fort Wayne, Indiana TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

Industrial-Commercial-Institutional Steam Generating Units) [326 IAC 12-1] [40 CFR Part 60, Subpart A1

The provisions of 40 CFR 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, apply to boilers EB and WB except when otherwise specified in 40 CFR 60, Subpart Dc.

NSPS Subpart Dc Requirements [40 CFR 60, Subpart Dc] [326 IAC 12] E.3.2

The Permittee shall comply with the following provisions of 40 CFR 60, Subpart Dc (included as Attachment C of this permit), which are incorporated by reference as 326 IAC 12, for boilers EB and WB:

- 40 CFR 60.40c(a), (b), (c), (d) (1)
- (2) 40 CFR 60.41c
- 40 CFR 60.48c(a), (g), (i) (3)

SECTION E.4 FACILITY OPERATION CONDITIONS

Facility Description [326 IAC 2-7-5(14)]:

Chemical Processing Plant - Boilers

- One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit (a) EB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, EB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, EB is considered an existing affected source.
- One (1) 16.74 MMBtu per hour natural gas fired firetube boiler, identified as emission unit (b) WB, constructed in 1994, and exhausting to stack SCB. Under 40 CFR 60, Subpart Dc, WB is considered an affected facility. Under 40 CFR 63, Subpart DDDDD, WB is considered an existing affected source.

Insignificant Activities

(d) Two (2) natural gas fired process heaters, identified as OH-1, constructed in 2012, with a capacity of 3.3 MMBTU/hr and OH-2, constructed in 1993, with a capacity of 4 MMBTU/hr. Under 40 CFR 63, Subpart DDDDD, OH-1 is considered a new affected source and OH-2 is considered an existing affected source.

(The information describing the process contained in this facility description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants Requirements [326 IAC 2-7-5(1)]

General Provisions Relating to NESHAP Subpart DDDDD (National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters) [326 IAC 20-1] [40 CFR Part 63, Subpart A]

Pursuant to 40 CFR 63.7565, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1-1 as specified in Table 10 of 40 CFR Part 63, Subpart DDDDD in accordance with schedule in 40 CFR 63 Subpart DDDDD.

NESHAP Subpart DDDDD Requirements [40 CFR 63, Subpart DDDDD] [326 IAC 20-95]

The Permittee shall comply with the following provisions of 40 CFR 63, Subpart DDDDD (included as Attachment D of this permit), which are incorporated by reference as 326 IAC 20-95 for boilers EB and WB and process heaters OH-1 and OH-2:

Essex Group, Inc.

Page 55 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

(a) For Boilers EB and WB:

- (1) 40 CFR 63.7480
- (2) 40 CFR 63.7485
- (3) 40 CFR 63.7490(a), (d)
- (4) 40 CFR 63.7495(b), (d)
- (5) 40 CFR 63.7499(I)
- (6) 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
- (7) 40 CFR 63.7501
- (8) 40 CFR 63.7505(a)
- (9) 40 CFR 63.7510(e)
- (10) 40 CFR 63.7515(d)
- (11) 40 CFR 63.7530(d), (e), (f)
- (12) 40 CFR 63.7540(a)(10), (a)(13), (b)
- (13) 40 CFR 63.7545(a), (b), (e)(1), (e)(8), (f), (h)
- (14) 40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
- (15) 40 CFR 63.7555(a), (i), (j)
- (16) 40 CFR 63.7560
- (17) 40 CFR 63.7565
- (18) 40 CFR 63.7570
- (19) 40 CFR 63.7575
- (20) Table 3 to Subpart DDDDD of Part 63, items (3), (4)
- (21) Table 9 to Subpart DDDDD of Part 63
- (22) Table 10 to Subpart DDDDD of Part 63

(b) For Process Heater OH-1:

- (1) 40 CFR 63.7480
- (2) 40 CFR 63.7485
- (3) 40 CFR 63.7490(a), (b)
- (4) 40 CFR 63.7495(a), (d)
- (5) 40 CFR 63.7499(I)
- (6) 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)
- (7) 40 CFR 63.7501
- (8) 40 CFR 63.7505(a)
- (9) 40 CFR 63.7510(g)
- (10) 40 CFR 63.7515(d)
- (10) 40 CFR 63.7513(d) (11) 40 CFR 63.7530(d), (f)
- (12) 40 CFR 63.7540(a)(12), (a)(13), (b)
- (13) 40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (f), (h)
- (14) 40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
- (15) 40 CFR 63.7555(a), (i), (j)
- (16) 40 CFR 63.7560
- (17) 40 CFR 63.7565
- (18) 40 CFR 63.7570
- (19) 40 CFR 63.7575
- (20) Table 3 to Subpart DDDDD of Part 63, item (1)
- (21) Table 9 to Subpart DDDDD of Part 63
- (22) Table 10 to Subpart DDDDD of Part 63

(c) For Process Heater OH-2:

- (1) 40 CFR 63.7480
- (2) 40 CFR 63.7485
- (3) 40 CFR 63.7490(a), (d)
- (4) 40 CFR 63.7495(b), (d)
- (5) 40 CFR 63.7499(I)
- (6) 40 CFR 63.7500(a)(1), (a)(3), (b), (e), (f)

Essex Group, Inc.

Page 56 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269
Permit Reviewer: Laura Spriggs

TSD for Significant Permit Modification No.: 003-33510-00269

```
40 CFR 63.7501
(8)
        40 CFR 63.7505(a)
(9)
        40 CFR 63.7510(e)
        40 CFR 63.7515(d)
(10)
(11)
        40 CFR 63.7530(d), (e), (f)
        40 CFR 63.7540(a)(12), (a)(13), (b)
(12)
(13)
        40 CFR 63.7545(a), (b), (e)(1), (e)(8)(i), (e)(8)(ii), (f), (h)
(14)
        40 CFR 63.7550(a), (b), (c), (h)(1), (h)(3)
        40 CFR 63.7555(a), (i), (j)
(15)
        40 CFR 63.7560
(16)
        40 CFR 63.7565
(17)
        40 CFR 63.7570
(18)
        40 CFR 63.7575
(19)
(20)
        Table 3 to Subpart DDDDD of Part 63, items (1), (4)
        Table 9 to Subpart DDDDD of Part 63
(21)
        Table 10 to Subpart DDDDD of Part 63
(22)
```

Changes Specific to the forms of the Permit

Quarterly reporting forms were added for the PSD minor limits included in Condition D.3.2 of the permit and for the 326 IAC 8-2-8 minor limits in Conditions D.2.1(b) and D.4.3.

The permit has been revised as follows:

Essex Group, Inc.

Page 57 of 61

Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Wire Coating Machines 24, 25, and 26

Parameter: VOC emissions

Limit: Less than fifteen (15) pounds per day each

Day	Coating Machine 24	Coating Machine 25	Coating Machine 26	Day	Coating Machine 24	Coating Machine 25	Coating Machine 26
1				17			
2				18			
3				19			
4				20			
5				21			
6				22			
7				23			
8				24			
9				25			
10				26			
11				27			
12				28			
13				29			
14				30			
15				31			
16							

☐ No deviation occurred in this month.
☐ Deviation/s occurred in this month.Deviation has been reported on:
Submitted by: Title / Position:
Signature:
Date:
Phone:

* * *

Essex Group, Inc.

Page 58 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33490-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Two (2) Weatherite V - 14 magnet wire ovens (61-64)

Parameter: VOC emissions

Limit: Less than 37.1 tons total per twelve (12) consecutive month period

QUARTER: YEAR:

Month	Column 1	Column 2	Column 1 + Column 2
	This Month	Previous 11 Months	12 Month Total
Month 1			
Month 2			
Month 3			

$\hfill \square$ No deviation occurred in this quarter.
 □ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by:
Title / Position:
Signature:
Date:
Phone:

Essex Group, Inc.

Page 59 of 61
Fort Wayne, Indiana

TSD for Minor Source Modification No.: 003-33490-00269

TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Essex Group, Inc.

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269
Facility: Magnet Wire Oven 12
Parameter: VOC emissions

Limit: Less than 39.7 tons total per twelve (12) consecutive month period

QUARTER: YEAR:

Month	Column 1	Column 2	Column 1 + Column 2
	This Month	Previous 11 Months	12 Month Total
Month 1			
Month 2			
Month 3			

□ No deviation occurred in this quarter.
□ Deviation/s occurred in this quarter. Deviation has been reported on:
Submitted by:
Title / Position:
Signature:
Date:
Phone:

Essex Group, Inc.
Page 60 of 61
Fort Wayne, Indiana
TSD for Minor Source Modification No.: 003-33490-00269

Permit Reviewer: Laura Spriggs TSD for Significant Permit Modification No.: 003-33510-00269

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Address: 1601 Wall Street and 1700 West Swinney, Fort Wayne, Indiana 46802

Part 70 Permit No.: T003-30777-00269

Facility: Weatherite V - 14 magnet wire oven 11

Parameter: VOC emissions

Limit: Less than fifteen (15) pounds per day

Month: _____ Year: ____

Day	Day	
1	17	
2	18	
3	19	
4	20	
5	21	
6	22	
7	23	
8	24	
9	25	
10	26	
11	27	
12	28	
13	29	
14	30	
15	31	
16		

☐ No deviation occurred in this month.
☐ Deviation/s occurred in this month.Deviation has been reported on:
Submitted by:
Title / Position:
Signature:
Date:
Phone:

* * *

Essex Group, Inc. Page 61 of 61 Fort Wayne, Indiana TSD for Minor Source Modification No.: 003-33490-00269 TSD for Significant Permit Modification No.: 003-33510-00269

Permit Reviewer: Laura Spriggs

Conclusion and Recommendation

The construction and operation of this proposed modification shall be subject to the conditions of the attached proposed Part 70 Minor Source Modification No. 003-33490-00269 and Significant Permit Modification No. 003-33510-00269. The staff recommend to the Commissioner that this Part 70 Minor Source Modification and Significant Permit Modification be approved.

IDEM Contact

- (a) Questions regarding this proposed permit can be directed to Laura Spriggs at the Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251 or by telephone at (317) 233-5693 or toll free at 1-800-451-6027 extension 3-5693.
- (b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/
- (c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM's Guide for Citizen Participation and Permit Guide on the Internet at: www.idem.in.gov

Appendix A: Emission Calculations Modification Summary

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

Unrestricted Potential to Emit

					Unrestricte	d PTE (ton/	/yr)				
Unit	PM	PM10	PM2.5	SO2	VOC	СО	NOx	GHGs	Total HAP	Worst Single HAP	HAP
Tank TK-32		1	1	1	0.21	1			0.10	NI	NI
Magnet Wire Oven 12		1	1	1	251.66	1			103.06	56.02	Phenol
Magnet Wire Oven 12 Combustion Emissions	0.01	0.04	0.04	0.003	0.03	0.41	0.49	596.19	0.01	0.01	Hexane
Total	0.01	0.04	0.04	0.003	251.89	0.41	0.49	596.19	103.17	56.02	Phenol

NI = Not Indicated

Potential to Emit After Controls

					Controlled	PTE (ton/y	/r)				
Unit	PM	PM10	PM2.5	SO2	VOC	СО	NOx	GHGs	Total HAP	Worst Single HAP	HAP
Tank TK-32					0.21				0.10	NI	NI
Magnet Wire Oven 12					10.37				4.25	2.31	Phenol
Magnet Wire Oven 12 Combustion Emissions	0.01	0.04	0.04	0.003	0.03	0.41	0.49	596.19	0.01	0.01	Hexane
Total	0.01	0.04	0.04	0.003	10.61	0.41	0.49	596.19	4.36	2.31	Phenol

NI = Not Indicated

Potential to Emit After Issuance of Permit

					Limited	PTE (ton/yr))				
Unit	PM	PM10	PM2.5	SO2	VOC	СО	NOx	GHGs	Total HAP	Worst Single HAP	HAP
Tank TK-32					0.21	-			0.10	NI	NI
Magnet Wire Oven 12					39.70	-			4.68	2.54	Phenol
Magnet Wire Oven 12 Combustion Emissions	0.01	0.04	0.04	0.003	0.03	0.41	0.49	596.19	0.01	0.01	Hexane
Total	0.01	0.04	0.04	0.003	39.94	0.41	0.49	596.19	4.79	2.54	Phenol

NI = Not Indicated

Note: Emissions on this page are related to this modification only. Calculations have been included for unit 28, the cleaning room, and the aluminum wire drawing cleaning operation because these calculations were not previously included for these operations.

Appendix A: Emissions Calculations Tank TK-32

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

Storage tank storing RMC 3152, which is phenolic resin intermediate consisting of 55 wt% cresylic acid and 5 wt% phenol

PV=nRT: Ideal Gas Law

Vapor pressure of Phenol is

P ₁ @ 70	0.0019	psia @ 20 °C	Vapor pressure at 20 °C
P ₁ @ 122	0.0387	psia @ 50 °C	Vapor pressure at 50 °C
MW_1	94	molar weight of Phenol	

st case constituent, o-cresol
st case constituent, o-cresol

10.713 ft3*psi/R*lb-moles R=

529.67 Degrees Rankin Temperature 1 70

Temperature 2 122 581.67

Volume of TK-32 is approximately 6,100 gallons

Displacement volume emission equation: E=(V/(R*T))*∑Pi*MWi for each condensable component (See 40 CFR 63.1257(d)(2)(i)(A) for equation explanation)

For complete batch of RMC 3152, here are the calculated emissions at each step of the process to fill the tank. Assume 1 batch per day. Assume all displaced vapors inside tank 32 are released through a vent TK-32V

Notes	Step	Description	Volume displaced, gallons	Volume Displaced, ft3	VOC emitted, pounds	HAPs emitted, pounds	
2 component system so sum of 2 components, Temperature 50 °C	1	Volume of air in piping run through reactor and displaced out, 200 feet of 2" schedule 40 pipe for addition of RMC 3152	11.1	1.5	0.00184	0.00092	
	2	Addition of batch of RMC 3152 to tank	4500	601.6	0.75014	0.37507	1
	3	Volume of vapor in tank after addition of batch of RMC 3152	1600	213.9	0.26672	0.13336	
Temperature: 20°C, multi component system	4	Volume of vapor in tank after cooling RMC 3152 from 50 °C to 20°C	1600	213.9	0.01586	0.00793	
	5	Transfer of RMC 3152 to other tanks or totes for further processing	4500	601.6	0.04461	0.02230	
Temperature: 20°C, multi component system	6	Purge entire tank with nitrogen to ready for filling with new 4500 gallon batch of RMC 3152	6100.0	815.5	0.06047	0.03023	
		Totals	18311.1	2448.0	1.14	0.57	poun
					0.208	0.104	tons

Worst Case: Assume this occurs 1 time/day. Approximately 1.14 pounds of PTE per day. Since VOC PTE is less than 15 pounds per day, it is insignificant Actual case: This occurs 1 time/week

PTE (ton/yr) = PTE (lb/day) x (365 day/yr) x (1 ton/2000 lb)

Appendix A: Emissions Calculations Page 3 of 7 TSD App A Magnet Wire Oven 12

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

VOC and Particulate Emissions

Unit ID	Stack ID	Coating Material	Density (Lb/Gal)	Weight % Volatile (H20 & Organics)	Weight % Water	Weight % Organics	Volume % Water		Gal of Mat. (gal/lb Cu)			coating	Potential	Potential VOC (lb/day)	Uncontrolled VOC PTE (ton/yr)	Transfer Efficiency	Particulate Potential (ton/yr)	lb VOC/ gal Coating Solids	per 8-2-8 (lb	Equivalent 326 IAC 8-2-8 Emission Limit (Ib VOC/gal Coating Solids)	Minimum	Controlled VOC PTE (ton/yr)
12	S12	Formvar	8.00	84.00%	0.0%	84.0%	0.0%	12.5%	0.01710	500.0	6.72	6.72	57.46	1378.94	251.66	100%	0.00	53.64	1.70	2.21	95.88%	10.37

PTE based on the worst case Formvar

Methodology

Pounds of VOC per Gallon Coating Less Water = (Density (lb/gal) * Weight % Organics) / (1 - Wolume % Water)

Pounds of VOC per Gallon Coating = (Density (lb/gal) * Weight % Organics)

Potential VOC (lb/hr) = Gal of Mat. (gal/lb Cu) * Maximum Throughput (lb Cu/hr) * Pounds VOC per gallon of Coating

Potential VOC (lb/day) = Gal of Mat. (gal/lb Cu) * Maximum Throughput (lb Cu/hr) * Pounds VOC per gallon of Coating * (24 hr/day)

Potential VOC (ton/yr) = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/lb Cu) * Maximum Throughput (lb Cu/hr) * (8760 hr/yr) * (1 ton/2000 lbs)

Transfer Efficiency = 100% based on flowcoating

Particulate Potential (ton/yr) = (units/hour) * (gal/unit) * (lbs/gal) * (1- Weight % Volatiles) * (1-Transfer efficiency) *(8760 hrs/yr) *(1 ton/2000 lbs)

Ib VOC/gal Coating Solids as provided by the Source

Equivalent 326 IAC 8-2-8 Emission Limit (lb VOC/gal Coating Solids) = 326 IAC 8-2-8 Emission Limit (lb VOC/gal of Coating less Water) / (1 - (326 IAC 8-2-8 Emission Limit (lb VOC/gal Coating Solids) = 326 IAC 8-2-8 Em

Minimum Control Efficiency = Minimum needed control efficiency to meet 326 IAC 8-2-8 limit = (lb VOC/gal Coating Solids - 326 IAC 8-2-8 Equivalent Emission limit) / (lb VOC/gal Coating Solids)

Controlled/Limited VOC PTE (After Oxidizers) (tons/yr) = Uncontrolled VOC Emissions (tons/yr) x Oxidizer Eff. (%) Needed to meet 326 IAC 8-2-8 Emission Limit

HAP Emissions

Oven ID	Stack ID	Material	Density (lbs/gal)	Weight % VOC	Usage (gal/lb)	Max Throughput (lbs/hr)		Weight of % Xylene	Weight of % Cumene	Weight of % Phenol	Weight of % Mixed Cresols	Total HAP
12	S12	Formvar	8.0	84.00%	0.01710	500.0	0.20%	0.92%	2.88%	18.70%	11.70%	
			Und	controlled Pot	ential Emis	sions (ton/yr):	0.60	2.76	8.63	56.02	35.05	103.06
			C	ontrolled Pot	ential Emis	sions (ton/yr):	0.02	0.11	0.36	2.31	1.44	4.25
				Limited Pot	ential Emis	sions (ton/vr):	0.03	0.13	0.39	2.54	1.59	4.68

PTE based on the worst case Formvar

Methodology

Uncontrolled Potential Emissions (ton/yr) = Density (lb/gal) * Usage (gal/lb) * Max Throughput (lb/hr) * Wt % HAP * (8760 hr/yr) * (1 ton/2000 lb)

Controlled Potential Emissions (ton/yr) = Uncontrolled Potential Emissions (ton/yr) * (1 - Control Efficiency Needed to Meet 326 IAC 8-2-8 Emission Limit)

Limited Potential Emissions (ton/yr) = 40 CFR 63, Subpart MMMM Emission Limit (lib HAP/gal solids) * (Volume % Solids) * Usage (gal/lib) * Max Throughput (lb/hr) * (8760 hr/yr) * (1 ton/2000 lb)

Appendix A: Emission Calculations Natural Gas Combustion (Less than 100 MMBtu/hr): Magnet Wire Oven 12

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

					(Criteria Polluta	ants			GHGs					
			PM*	PM10*	PM2.5*	SO2	NOx**	VOC	CO	CO2	N2O***	CH4	GHG Mass- Based	CO2e	
	Emission Fact	tor in lb/MMCF	1.9	7.6	7.6	0.6	100.0	5.5	84.0	120000	2.2	2.3			
Emission Unit	Heat Input Potential Init Capacity Throughput Potential Emissions (tons/yr) (MMBtu/hr) (MMCF/yr)														
Magnet Wire Oven 12	1	8.588	0.008	0.033	0.033	0.003	0.429	0.024	0.361	515.29	0.01	0.01	515.31	518.43	
12 Annealer	0.15	1.288	0.001	0.005	0.005	0.000	0.064	0.004	0.054	77.29	0.00	0.00	77.30	77.76	
Total	otal				0.04	0.00	0.49	0.03	0.41	592.59	0.01	0.01	592.61	596.19	

Emission Factors are from AP-42, Tables 1.4-1 and 1.4-2.

^{***}Emission Factors for N2O: Uncontrolled = 2.2, Low NOx Burner = 0.64

				F	IAPs - Orga	nics				Total HAPs				
			Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene	Lead	Cadmium	Chromium	Manganese	Nickel	TOTALLIA	
	Emission Fact	tor in lb/MMCF	2.1E-03	1.2E-03	7.5E-02	1.8E+00	3.4E-03	5.0E-04	1.1E-03	1.4E-03	3.8E-04	2.1E-03	1.8880	
Emission Unit	Heat Input Capacity (MMBtu/hr)	Potential Throughput (MMCF/yr)		Potential Emissions (tons/yr)										
Magnet Wire Oven 12	1	8.588	9.0E-06	5.2E-06	3.2E-04	7.7E-03	1.5E-05	2.1E-06	4.7E-06	6.0E-06	1.6E-06	9.0E-06	8.1E-03	
12 Annealer	•				4.8E-05	1.2E-03	2.2E-06	3.2E-07	7.1E-07	9.0E-07	2.4E-07	1.4E-06	1.2E-03	
Total	tal				3.7E-04	8.9E-03	1.7E-05	2.5E-06	5.4E-06	6.9E-06	1.9E-06	1.0E-05	9.3E-03	

Emission Factors are from AP-42, Tables 1.4-3 and 1.4-4.

The five highest organic and metal HAPs emission factors are provided above. The total HAPs is the sum of all HAPs listed in AP-42, Tables 1.4-3 and 1.4-4.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Methodology

Heating Value of Natural Gas is assumed to be 1020 MMBtu/MMCF

Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) * 8,760 hrs/yr * 1 MMCF/1,020 MMBtu

Potential Emission (tons/yr) = Throughput (MMCF/yr) * Emission Factor (lb/MMCF) * (1 ton/2,000 lb)

GHG Mass-Based (ton/yr) = CO2 (ton/yr) + N2O (ton/yr) + CH4 (ton/yr)

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (21) + N2O Potential Emission ton/yr x N2O GWP (310).

^{*}PM emission factor is filterable PM only. PM10 emission factor is filterable PM10 and condensable PM combined. PM2.5 emission factor is filterable PM2.5 and condensable PM combined.

^{**}Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

Appendix A: Emission Calculations Wire Coating Machine 28

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

Unit ID	Process	Material	Density (lb/gal)	Weight % VOC	Maximum Usage (gal/lb wire)	Maximum Throughput (lb wire/hr)	Potential VOC Emissions (lb/hr)	Potential VOC Emissions (lb/day)	Potential VOC Emissions (ton/yr)
28	Wire Coating Machine	Worst Case Coating	8.2	63%	0.00047	272	0.66	15.80	2.88

Methodology

Potential VOC Emissions (lb/hr) = Maximum Usage (gal/lb wire) x Maximum Throughput (lb wire/hr) x Density (lb/gal) x Weight % VOC

Potential VOC Emissions (lb/day) = Potential VOC Emissions (lb/hr) x (24 hr / day)

Potential VOC Emissions (ton/yr) = Potential VOC Emissions (lb/hr) x (8760 hr / yr) x (1 ton / 2000 lb)

Appendix A: Emission Calculations Cleaning Room Area

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

Tank	Capacity (gal)	Material	Density (lb/gal)	Weight % VOC	Solvent Lost (gal/yr)	Wt % Phenol	Wt % Mixed Cresols	Wt % Toluene	Wt % Xylene	Wt % Ethylbenzene	Wt % Cumene	Potential VOC Emissions (lb/hr)	Potential VOC Emissions (lb/day)	l ⊢missions		(:resols	(ton/yr)		PTE Ethylbenzene (ton/yr)	PTE Cumene (ton/yr)	Total HAPs (ton/yr)
1	500	Dustrypp	11.02	0%	N/A	0%	0%	0%	0%	0%	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	500	Thinner SX-90702	8.6	100%	440	53%	31%	0%	0%	0%	0%	0.43	10.37	1.89	1.00	0.59	0.00	0.00	0.00	0.00	1.59
3	500	Thinner S-0373	7.14	100%	630	0%	0%	80%	0%	0%	0%	0.51	12.32	2.25	0.00	0.00	1.80	0.00	0.00	0.00	1.80
4	500	Rinse Water	8.35	0%	N/A	0%	0%	0%	0%	0%	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
North Die Cleaning	15	Thinner SX-98501	7.92	100%	55	0%	0%	0%	20%	5%	3%	0.05	1.19	0.22	0.00	0.00	0.00	0.04	0.01	0.01	0.06
South Die Cleaning	1 15	Thinner SX-91500	7.93	100%	55	18%	11%	0%	2%	0.3%	4%	0.05	1.19	0.22	0.04	0.02	0.00	0.00	0.00	0.01	0.08
		•	•					•	T	otal for Cleanir	ng Room:	1.04	25.08	4.58	1.04	0.61	1.80	0.05	0.01	0.01	3.53

Methodology

Potential VOC Emissions (lb/hr) = Solvent Lost (gal/yr) x Density (lb/gal) x Weight % VOC x (1 yr / 8760 hr) Potential VOC Emissions (lb/hgy) = Potential VOC Emissions (lb/hr) x (24 hr / day)

Potential VOC Emissions (ton/yr) = Potential VOC Emissions (lb/hr) x (8760 hr / yr) x (1 ton / 2000 lb)

Potential HAP Emissions (ton/yr) = Solvent Lost (gal/yr) x Density (lb/gal) x Weight % HAP x (1 ton / 2000 lb)

Appendix A: Emission Calculations Aluminum Wire Drawing Cleaning Operation

Company Name: Essex Group, Inc.

Address City IN Zip: 1601 Wall St and 1700 W Swinney, Fort Wayne, IN 46802

MSM No.: 003-33490-00269 SPM No.: 003-33510-00269 Reviewer: Laura Spriggs

Unit	Material	Maximum Usage (lb/yr)	Potential VOC Emissions (lb/hr)	Potential VOC Emissions (lb/day)	Potential VOC Emissions (ton/yr)
Aluminum Wire Drawing Cleaning Operation	Axarel 6100 Precision Cleaner	3500	0.40	9.59	1.75

Emission Factor was provided by the Permittee based on engineering tests. Cleaner does not contain HAPs

Methodology

Potential VOC Emissions (lb/hr) = Maximum Usage (lb/yr) x (1 yr / 8760 hr)

Potential VOC Emissions (lb/day) = Potential VOC Emissions (lb/hr) x (24 hr / day)

Potential VOC Emissions (ton/yr) = Potential VOC Emissions (lb/hr) x (8760 hr / yr) x (1 ton / 2000 lb)

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Michael R. Pence Governor

Thomas W. Easterly

Commissioner

SENT VIA U.S. MAIL: CONFIRMED DELIVERY AND SIGNATURE REQUESTED

TO: Mr. David Riley

Essex Group, Inc. 1601 Wall Street Fort Wayne, IN 46802

DATE: December 17, 2013

FROM: Matt Stuckey, Branch Chief

Permits Branch Office of Air Quality

SUBJECT: Final Decision

Significant Permit Modification

003-33510-00269

Enclosed is the final decision and supporting materials for the air permit application referenced above. Please note that this packet contains the original, signed, permit documents.

The final decision is being sent to you because our records indicate that you are the contact person for this application. However, if you are not the appropriate person within your company to receive this document, please forward it to the correct person.

A copy of the final decision and supporting materials has also been sent via standard mail to: Dennis Snyder – Senior VP Operations Robert Distler – Superior Essex OAQ Permits Branch Interested Parties List

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178, or toll-free at 1-800-451-6027 (ext. 3-0178), and ask to speak to the permit reviewer who prepared the permit. If you think you have received this document in error, please contact Joanne Smiddie-Brush of my staff at 1-800-451-6027 (ext 3-0185), or via e-mail at ibrush@idem.IN.gov.

Final Applicant Cover letter.dot 6/13/2013

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Michael R. Pence Governor Thomas W. Easterly

Commissioner

December 17, 2013

TO: Allen County Public Library

From: Matthew Stuckey, Branch Chief

Permits Branch Office of Air Quality

Subject: Important Information for Display Regarding a Final Determination

Applicant Name: Essex Group, Inc. Permit Number: 003-33510-00269

You previously received information to make available to the public during the public comment period of a draft permit. Enclosed is a copy of the final decision and supporting materials for the same project. Please place the enclosed information along with the information you previously received. To ensure that your patrons have ample opportunity to review the enclosed permit, we ask that you retain this document for at least 60 days.

The applicant is responsible for placing a copy of the application in your library. If the permit application is not on file, or if you have any questions concerning this public review process, please contact Joanne Smiddie-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185.

Enclosures Final Library.dot 6/13/2013

Mail Code 61-53

IDEM Staff	GHOTOPP 12/1	7/2013		
	Essex Group Inc	orporated 003-33510-00269 Final	AFFIX STAMP	
Name and		Indiana Department of Environmental	Type of Mail:	HERE IF
address of		Management		USED AS
Sender		Office of Air Quality – Permits Branch	CERTIFICATE OF	CERTIFICATE
		100 N. Senate	MAILING ONLY	OF MAILING
		Indianapolis, IN 46204	MAILING ONE	

Line	Article Number	Name, Address, Street and Post Office Address	Postage	Handing Charges	Act. Value (If Registered)	Insured Value	Due Send if COD	R.R. Fee	S.D. Fee	S.H. Fee	Rest. Del. Fee
		D. 11 Dit. 5 0 14004 WW. II 01 5 W IN 40000 (0	OAATO) :-	Constant							Remarks
1		David Riley Essex Group Incorporated 1601 W Wall St Fort Wayne IN 46802 (Source	CAATS) via (confirmed deliv	/ery						
2		Dennis Snyder Sr VP - Ops Essex Group Incorporated 1601 W Wall St Fort Wayne IN 46802 (RO CAATS)									
3		Daniel & Sandy Trimmer 15021 Yellow River Road Columbia City IN 46725 (Affected Party)									
4	Duane & Deborah Clark Clark Farms 6973 E. 500 S. Columbia City IN 46725 (Affected Party)										
5	Allen County Public Library 900 Library Plaza, P.O. Box 2270 Fort Wayne IN 46802 (Library)										
6		Fort Wayne City Council and Mayors Office 200 E Berry Street Ste 120 Fort Wayne IN 46802 (Local Official)									
7		Mr. Jeff Coburn Plumbers & Steamfitters, Local 166 2930 W Ludwig Rd Fort Wayne IN 46818-1328 (Affected Party)									
8		Allen Co. Board of Commissioners 200 E Berry Street Ste 410 Fort Wayne IN 46802 (Local Official)									
9		Fort Wayne-Allen County Health Department 200 E Berry St Suite 360 Fort Wayne IN 46802 (Health Department)									
10		Mr. Robert Distler Superior Essex 1601 Wall Street Fort Wayne IN 46802 (Source – a	addl contact)								
11											
12											
13											
14											
15											

Total number of pieces Listed by Sender	Total number of Pieces Received at Post Office	Postmaster, Per (Name of Receiving employee)	The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is \$50,000 per piece subject to a limit of \$50,000 per occurrence. The maximum indemnity payable on Express mil merchandise insurance is \$500. The maximum indemnity payable is \$25,000 for registered mail, sent with optional postal insurance. See *Domestic Mail Manual *P900** \$213** and \$921 for limitations of coverage on
9			insurance. See Domestic Mail Manual R900 , S913 , and S921 for limitations of coverage on inured and COD mail. See International Mail Manual for limitations o coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.