

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Governor

Bruno L. Pigott

Commissioner

NOTICE OF 30-DAY PERIOD FOR PUBLIC COMMENT

Preliminary Findings Regarding the Renewal of a
Part 70 Operating Permit
for Industrial Dielectrics, Inc. dba IDI Composites International in Hamilton County
Part 70 Operating Permit Renewal No.: T057-39236-00042

The Indiana Department of Environmental Management (IDEM) has received an application from Industrial Dielectrics, Inc. dba IDI Composites International located at 407 South 7th Street, Noblesville, IN 46060 for a renewal of its Part 70 Operating Permit issued on August 5, 2013. If approved by IDEM's Office of Air Quality (OAQ), this proposed renewal would allow Industrial Dielectrics, Inc. dba IDI Composites International to continue to operate its existing source.

The applicant intends to operate new equipment that will emit air pollutants; therefore, the permit contains new or different permit conditions. In addition, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g. changes that add or modify synthetic minor emission limits). IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow the applicant to make this change.

A copy of the permit application and IDEM's preliminary findings are available at:

Hamilton East Public Library 1 Library Plaza Noblesville, IN 46060

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the preliminary findings is also available via IDEM's Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is published in a newspaper marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the **air pollution impact** of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM's mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit

application, please contact IDEM at the address below. Please refer to permit number T057-39236-00042 in all correspondence.

Comments should be sent to:

Jeries Smirat
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Jeries Smirat or (317) 234-5374
Or dial directly: (317) 234-5374
Fax: (317) 232-6749 attn: Jeries Smirat

E-mail: JSmirat@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM's response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM's decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Jeries Smirat of my staff at the above address.

Iryn Calilung, Section Chief

Permits Branch Office of Air Quality

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb Governor

Bruno L. Pigott Commissioner

Part 70 Operating Permit Renewal OFFICE OF AIR QUALITY

Industrial Dielectrics, Inc. dba IDI Composites International 407 South 7th Street Noblesville, Indiana 46060

(herein known as the Permittee) is hereby authorized to construct and operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

Operation Permit No.: T057-39236-00042	
Master Agency Interest ID.: 11463	
Issued by:	
	Issuance Date:
Iryn Calilung, Section Chief Permits Branch Office of Air Quality	Expiration Date:

DRAFT

TABLE OF CONTENTS

SECTIO	N A	SOURCE SUMMARY	5
	A.1 A.2	General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)] Emission Units and Pollution Control Equipment Summary	
	A.3	[326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)] Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]	
	A.4	Part 70 Permit Applicability [326 IAC 2-7-2]	
SECTIO	N B	GENERAL CONDITIONS	10
	B.1 B.2	Definitions [326 IAC 2-7-1] Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]	
	B.3 B.4 B.5	Term of Conditions [326 IAC 2-1.1-9.5] Enforceability [326 IAC 2-7-7] [IC 13-17-12] Severability [326 IAC 2-7-5(5)]	
	B.6 B.7 B.8	Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)] Duty to Provide Information [326 IAC 2-7-5(6)(E)] Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]	
	B.9 B.10	Annual Compliance Certification [326 IAC 2-7-6(5)] Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]	
	B.11 B.12 B.13	Emergency Provisions [326 IAC 2-7-16] Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12] Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]	
	B.14 B.15	Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)] Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]	
	B.16 B.17 B.18	Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)] Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] Permit Revision Under Economic Incentives and Other Programs	
	B.19 B.20	[326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)] Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5] Source Modification Requirement [326 IAC 2-7-10.5]	
	B.21 B.22 B.23	Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2] Transfer of Ownership or Operational Control [326 IAC 2-7-11] Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]	
	B.24	Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]	
SECTIO	ON C	SOURCE OPERATION CONDITIONS	21
		on Limitations and Standards [326 IAC 2-7-5(1)]	21
	C.1	Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]	
	C.2 C.3 C.4	Opacity [326 IAC 5-1] Open Burning [326 IAC 4-1] [IC 13-17-9] Incineration [326 IAC 4-2] [326 IAC 9-1-2]	
	C.5 C.6 C.7	Fugitive Dust Emissions [326 IAC 6-4] Stack Height [326 IAC 1-7] Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]	
	Testing C.8	Requirements [326 IAC 2-7-6(1)] Performance Testing [326 IAC 3-6]	23
	Compli C.9	ance Requirements [326 IAC 2-1.1-11]	23

Page 3 of 47 T057-39236-00042

	Compl	iance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]	23
	C.10	Compliance Monitoring [326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]	
	C.11	Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]	
	C.12 C.13 C.14	tive Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3] Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68] Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5] [326 IAC 2-7-6]	24
	C.15	Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]	
	Record C.16	I Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]	27
	C.17 C.18	General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [40 CFR 64][326 IAC 3-8]	
	Stratos C.19	Spheric Ozone Protection	29
SECTIO	ON D.1	EMISSIONS UNIT OPERATION CONDITIONS	30
	Emissi D.1.1 D.1.2	on Limitations and Standards [326 IAC 2-7-5(1)]	32
	Compli D.1.5 D.1.6 D.1.7	iance Monitoring Requirements [326 IAC 2-7-6(1)][326 IAC 2-7-5(1)]	33
	Record D.1.8	Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]	35
SECTIO	ON E.1	NSPS	37
	New Se E.1.1 E.1.2	General Provisions Relating to New Source Performance Standards [326 IAC 2-7-5(1)]	37
		Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart IIII]	
		NESHAP	38
Nationa	al Emiss	sion Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]	41
	E.2.1	General Provisions Relating to National Emission Standards for Hazardous Air Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]	
	E.2.2	National Emission Standards for Reinforced Plastics Composites Production NESHAP [40 CFR Part 63, Subpart WWWW] [326 IAC 20-1]	
CERTIF	FICATIO	N	43
EMERG	SENCY	OCCURRENCE REPORT	44
QUART	TERLY [DEVIATION AND COMPLIANCE MONITORING REPORT	46
Attachr	ment A:	40 CFR 60, Subpart IIII – NSPS for Stationary Compression Ignition Internal Combustion Engines	

Industrial Dielectrics, Inc. dba IDI Composites International Noblesville, Indiana Permit Reviewer: Jeries Smirat

Page 4 of 47 T057-39236-00042

Attachment B: 40 CFR 63, Subpart WWWW – NESHAP for Reinforced Plastic Composites Production

Page 5 of 47 T057-39236-00042

SECTION A

SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary custom compounding of purchased plastic resins plant.

Source Address: 407 South 7th Street, Noblesville, Indiana 46060

General Source Phone Number: (317) 773-1766

SIC Code: 3087 (Custom Compounding of Purchased Plastic

Resins)

County Location: Hamilton

Source Location Status: Attainment for all criteria pollutants
Source Status: Part 70 Operating Permit Program

Minor Source, under PSD and Emission Offset Rules Major Source, Section 112 of the Clean Air Act

Not 1 of 28 Source Categories

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

(1) SMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the SMC production are considered affected units.

- (a) One (1) sheet molding compound (SMC) mixer, identified as SMC Drum Mixer, constructed prior to 1980, with a maximum throughput of 1,200 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to stack S2.
- (b) One (1) 48" sheet molding compound (SMC) line, identified as SMC Line 1, originally constructed prior to 1980 and modified in 2012, with maximum throughput of 7,252 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 48" SMC machine.

The Large Mixer and glass chopper is controlled by a baghouse, identified as SMC baghouse B2, exhausting to stack S2.

(c) One (1) 39" sheet molding compound (SMC) line, identified as SMC Line 2,

Noblesville, Indiana
Permit Reviewer: Jeries Smirat

constructed in 2002, with maximum throughput of 5,628 pounds per hour, consisting of the following:

- (1) one (1) Large Mixer,
- (2) one (1) Small pigment dissolver/mixer,
- (3) one (1) Small thickener dissolver/mixer, and
- (4) one (1) 39" SMC machine.

The Large Mixer and glass chopper are controlled by a baghouse, identified as SMC Baghouse B2, and exhausting to stack S2.

- (d) One (1) 36" sample sheeting molding compound (SMC) line, identified as SMC Line 3, consisting of the following:
 - (1) One (1) mixer, identified as SMC Drum Mixer #2, constructed in 2016, located in the Technical Center, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center baghouse B4, for particulate control, and exhausting to stack S4.
 - (2) One (1) 36" SMC Machine, constructed in 2016, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center Baghouse B4, for particulate control, and exhausting to stack S4.
- (e) One (1) independent SMC mixer, typically located in the Technical Center, identified as Mixer #26, approved in 2016 for construction, with a maximum throughput of 50 pounds per hour, using a baghouse, identified as 3i Technology Center baghouse B4, for particulate control, and exhausting to stack S4.
- (f) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 2,400 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to Stack S2.
- (2) BMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the BMC production are considered affected units.

- (a) Ten (10) bulk molding compound (BMC) mixers, consisting of the following:
 - (1) Five (5) bulk molding compound (BMC) mixers, identified as BMC Mixer #1 through BMC Mixer #5, constructed after 1980, each with a maximum throughput of 1,200 pounds per hour, using a common baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (2) One (1) bulk molding compound (BMC) mixer, identified as BMC Mixer #6, constructed in 2008, with a maximum throughput of 2,200 lb/hr, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (3) Four (4) bulk molding compound (BMC) mixers, identified as Rosite mixer L1 through Rosite mixer L4, constructed in 2005, each with a maximum capacity of 1,000 pounds per hour, using a common

baghouse, identified as SMC baghouse B2, for particulate control, and exhausting to Stack S2.

(b) One (1) Rosite resin blending mixer, constructed in 2005, using no control, and exhausting inside the building.

This mixer is used to blend resins for Rosite Mixer L1 through Rosite mixer L4.

- (c) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 492 pounds per hour, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
- (d) One (1) packaging operation, no control, consisting of the following:
 - (1) two (2) compound feeders,
 - (2) six (6) extruders used to package BMC material for shipping, and
 - (3) four (4) bulk extruders.

A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(1) Laboratory mixers:

Under 40 CFR 63, NESHAP, Subpart WWWW, these laboratory mixers are affected units.

- (a) Two (2) SMC laboratory mixers, consisting of the following:
 - (1) One (1) mixer, identified as Mixer #24, with a maximum capacity of 50 pounds per hour, using baghouse B3 for particulate control, and exhausting to stack S3.
 - (2) One (1) mixer, identified as Mixer #25, with a maximum capacity of 15 pounds per hour, using no control, and exhausting inside the building.
- (b) Three (3) laboratory bulk molding compound (BMC) mixers;
 - (1) One (1) BMC mixer, identified as BMC Mixer #18, with a maximum throughput of 250 pounds per hour, using a baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
 - (2) Two (2) BMC mixers, identified as BMC Mixer #19 and BMC Mixer #20, each with a maximum throughput of 20 pounds per hour, using a common baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
- (2) One (1) PolyM Dispersion Mixer, used to set up scrap SMC and BMC material through polymerization, using no control and exhausting inside the building.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this mixer is an affected unit.
- (3) QA/QC process involving laboratory testing and six (6) sample molding presses, using no control, and exhausting inside the building.

Under 40 CFR 63, NESHAP, Subpart WWWW, this is an affected unit.

(4) One (1) Vazo Blender, constructed in 2005, with a maximum throughput of 180 batches of material per year, with each batch composed of 758 pounds of raw materials, using a baghouse, identified as Vazo Baghouse B5, for particulate control, and exhausting to Stack S5.

Under 40 CFR 63, NESHAP, Subpart WWWW, this blender is considered an affected unit.

- (5) Four (4) compression molding presses:
 - (a) One (1) compression molding press, identified as #1, approved in 2015 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - (b) One (1) compression molding press, identified as Press #2, approved in 2015 for construction, with a maximum throughput of twenty-five(25) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - (c) One (1) compression molding press, identified as Press #3, approved in 2016 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - (d) One (1) compression molding press, identified as Press #4, approved in 2016 for construction, with a maximum throughput of one hundred (100) of BMC or SMC per hour, using no control and exhausting to the indoors.

Under 40 CFR 63, NESHAP, Subpart WWWW, these presses are considered affected units.

- (6) One (1) Conductex weigh out room, approved in 2018 for construction, with a maximum throughput of 300 lbs of Conductex per hour, using a baghouse, identified as B6, for particulate control, and exhausting to stack S6.
- (7) Cleaning solvent identified as S-0280 Super Flush having a vapor pressure equal to or less than 0.7kPa;5mmHg; or 0.1 psi measured at 20°C (68°F) and used as follows:
 - (a) Two (2) SMC Cleaning Room soak/cleaning tanks, and
 - (b) One (1) BMC soak/cleaning tank, and
 - (c) One (1) Pigment Area soak/cleaning tank.
- (8) A laboratory as defined in 326 IAC 2-7-1(21)(G), which includes the following:
 - (a) Two (2) ovens, two (2) muffle furnaces, and one (1) Bunsen burner
- (9) Ten (10) storage tanks:
 - (a) Eight (8) above ground polyester resin storage tanks, identified as T_1 through T_6 and T_9 and T_{11} . Tanks T_1 through T_6 have a maximum capacity of 7,200 gallons, and tanks T_9 and T_{11} each have a capacity of 5,400 gallons. Each above ground tank is equipped with one vent and each has the potential to emit less than 1 ton VOC/year.

DRAFT

Permit Reviewer: Jeries Smirat

- (b) Two (2) above ground styrene storage tanks, identified as T₈ and T₁₀, each with a capacity of 5,400 gallons. Each above ground tank is equipped with one vent and each has the potential to emit less than 1 ton VOC per year.
- (10) Natural gas-fired combustion sources with a total maximum heat input equal to or less than ten million (10,000,000) Btu per hour.
- (11) One (1) saw, identified as SA₁, for plastic sheet production, with a maximum capacity of 20 pounds per hour, with no emission controls and no outside exhaust.
- One (1) stationary emergency generator burning diesel fuel, with a maximum output of 10 KW, manufactured in 2012.
 - Under 40 CFR 60, Subpart IIII, this is an affected unit.
- (13) Stationary fire pumps.
- (14) The following equipment related to manufacturing activities not resulting in the emission of HAPs: cutting torches, soldering equipment, welding equipment.
- (15) Replacement or repair of electrostatic precipitators, bags in baghouses and filters in other air filtration equipment.
- (16) Paved and unpaved roads and parking lots with public access.
- (17) Blowdown for any of the following: sight glass; boiler; compressors; pumps; and cooling tower.

A.4 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

- (a) It is a major source, as defined in 326 IAC 2-7-1(22);
- (b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 Applicability).

Page 10 of 47 T057-39236-00042

SECTION B

GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

- (a) This permit, T057-39236-00042, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.
- (b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

- (a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or
- (b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]

- (a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.
- (b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

- (1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and
- (2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.
- (c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source's compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5 Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

- (b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) The annual compliance certification report shall include the following:
 - (1) The appropriate identification of each term or condition of this permit that is the basis of the certification:
 - (2) The compliance status;
 - (3) Whether compliance was continuous or intermittent;
 - (4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
 - (5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

Page 12 of 47 T057-39236-00042

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

- (a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - (2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
 - (3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

- (b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - (2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
 - (3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee's control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

- (a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.
- (b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:
 - (1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
 - (2) The permitted facility was at the time being properly operated;
 - (3) During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
 - (4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered:

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality,

Compliance and Enforcement Branch), or

Telephone Number: 317-233-0178 (ask for Office of Air Quality,

Compliance and Enforcement Branch) Facsimile Number: 317-233-6865

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

- (A) A description of the emergency;
- (B) Any steps taken to mitigate the emissions; and
- (C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (6) The Permittee immediately took all reasonable steps to correct the emergency.
- (c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.
- (d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.
- (e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.
- (f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.
- (g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order. DRAF

Permit Reviewer: Jeries Smirat

- (c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.
- (d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:
 - (1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;
 - The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;
 - (3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and
 - (4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.
- (e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).
- (f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]
- (g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

- (a) All terms and conditions of permits established prior to T057-39236-00042 and issued pursuant to permitting programs approved into the state implementation plan have been either:
 - (1) incorporated as originally stated,
 - (2) revised under 326 IAC 2-7-10.5, or
 - (3) deleted under 326 IAC 2-7-10.5.
- (b) Provided that all terms and conditions are accurately reflected in this combined permit, all previous registrations and permits are superseded by this combined new source review and part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).

- B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
 - (a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or

Noblesville, Indiana Permit Reviewer: Jeries Smirat

anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:
 - (1) That this permit contains a material mistake.
 - (2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
 - (3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]
- (c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]
- (d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (b) A timely renewal application is one that is:
 - (1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and
 - (2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) If the Permittee submits a timely and complete application for renewal of this permit, the source's failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if,

Noblesville, Indiana Permit Reviewer: Jeries Smirat

subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

- (a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.
- (b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
Any such application does require a certification that meets the recommendation.

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

- (a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.
- (b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

- (a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:
 - (1) The changes are not modifications under any provision of Title I of the Clean Air Act:
 - (2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
 - (3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
 - (4) The Permittee notifies the:

Page 18 of 47 T057-39236-00042

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5 Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

- (b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:
 - (1) A brief description of the change within the source;
 - (2) The date on which the change will occur;
 - (3) Any change in emissions; and
 - (4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) Emission Trades [326 IAC 2-7-20(c)]
 The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
- (d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]
 The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.

(e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.20 Source Modification Requirement [326 IAC 2-7-10.5]

A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

- (a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
- (b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;
- (c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;
- (d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and
- (e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

- (a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.
- (b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

Page 20 of 47 T057-39236-00042

B.23 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

- (a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.
- (b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.
- (c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.

DRAFT

SECTION C

SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

- (a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.5 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.6 Stack Height [326 IAC 1-7]

The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted. The provisions of 326 IAC 1-7-1(3), 326 IAC 1-7-2, 326 IAC 1-7-3(c) and (d), 326 IAC 1-7-4, and 326 IAC 1-7-5(a), (b), and (d) are not federally enforceable.

C.7 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least

thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

- (b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:
 - (1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or
 - (2) If there is a change in the following:
 - (A) Asbestos removal or demolition start date;
 - (B) Removal or demolition contractor; or
 - (C) Waste disposal site.
- (c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).
- (d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (e) Procedures for Asbestos Emission Control
 The Permittee shall comply with the applicable emission control procedures in
 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control
 requirements are applicable for any removal or disturbance of RACM greater than three
 (3) linear feet on pipes or three (3) square feet on any other facility components or a total
 of at least 0.75 cubic feet on all facility components.
- (f) Demolition and Renovation
 The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).
- (g) Indiana Licensed Asbestos Inspector
 The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator,
 prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to

Page 23 of 47 T057-39236-00042

thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

Performance Testing [326 IAC 3-6] C.8

For performance testing required by this permit, a test protocol, except as provided (a) elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
- Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later (c) than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U.S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

- (a) For new units:
 - Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.
- (b) For existing units:
 - Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Page 24 of 47 T057-39236-00042

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.
- (d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.11 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

- (a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.
- (b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.12 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

- (a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.
- (b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

DRAFT

C.13 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

- C.14 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5] [326 IAC 2-7-6]
 - (I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:
 - (a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.
 - (b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:
 - (1) initial inspection and evaluation;
 - (2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or
 - (3) any necessary follow-up actions to return operation to normal or usual manner of operation.
 - (c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:
 - (1) monitoring results;
 - (2) review of operation and maintenance procedures and records; and/or
 - (3) inspection of the control device, associated capture system, and the process.
 - (d) Failure to take reasonable response steps shall be considered a deviation from the permit.
 - (e) The Permittee shall record the reasonable response steps taken.

(II)

- (a) CAM Response to excursions or exceedances.
 - (1) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal

Noblesville, Indiana Permit Reviewer: Jeries Smirat

without operator action (such as through response by a computerized distribution control system), or any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.

- (2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process.
- (b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.
- (c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a Quality Improvement Plan (QIP). The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.
- (d) Elements of a QIP:
 The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8 b (2).
- (e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.
- (f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:
 - Failed to address the cause of the control device performance problems;
 or
 - (2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.

Page 27 of 47 T057-39236-00042

(h) CAM recordkeeping requirements.

- (1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(c) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
- (2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements

C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

- (a) When the results of a stack test performed in conformance with Section C Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.
- (b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.
- (c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

C.16 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(b)(2), starting in 2005 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

- (1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);
- (2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management Technical Support and Modeling Section, Office of Air Quality 100 North Senate Avenue

Page 28 of 47 T057-39236-00042

MC 61-50 IGCN 1003 Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6]

- (a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:
 - (AA) All calibration and maintenance records.
 - (BB) All original strip chart recordings for continuous monitoring instrumentation.
 - (CC) Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:

- (AA) The date, place, as defined in this permit, and time of sampling or measurements.
- (BB) The dates analyses were performed.
- (CC) The company or entity that performed the analyses.
- (DD) The analytical techniques or methods used.
- (EE) The results of such analyses.
- (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [40 CFR 64][326 IAC 3-8]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

On and after the date by which the Permittee must use monitoring that meets the requirements of 40 CFR Part 64 and 326 IAC 3-8, the Permittee shall submit CAM reports to the IDEM, OAQ.

DRAFT

Page 29 of 47 T057-39236-00042

A report for monitoring under 40 CFR Part 64 and 326 IAC 3-8 shall include, at a minimum, the information required under paragraph (a) of this condition and the following information, as applicable:

- (1) Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken;
- (2) Summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime associated with zero and span or other daily calibration checks, if applicable); and
- (3) A description of the actions taken to implement a QIP during the reporting period as specified in Section C-Response to Excursions or Exceedances. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring.

The Permittee may combine the Quarterly Deviation and Compliance Monitoring Report and a report pursuant to 40 CFR 64 and 326 IAC 3-8.

(b) The address for report submittal is:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit "calendar year" means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.

DRAFT

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(1) SMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the SMC production are considered affected units.

- (a) One (1) sheet molding compound (SMC) mixer, identified as SMC Drum Mixer, constructed prior to 1980, with a maximum throughput of 1,200 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to stack S2.
- (b) One (1) 48" sheet molding compound (SMC) line, identified as SMC Line 1, originally constructed prior to 1980 and modified in 2012, with maximum throughput of 7.252 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 48" SMC machine.

The Large Mixer and glass chopper is controlled by a baghouse, identified as SMC baghouse B2, exhausting to stack S2.

- (c) One (1) 39" sheet molding compound (SMC) line, identified as SMC Line 2, constructed in 2002, with maximum throughput of 5,628 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 39" SMC machine.

The Large Mixer and glass chopper are controlled by a baghouse, identified as SMC Baghouse B2, and exhausting to stack S2.

- (d) One (1) 36" sample sheeting molding compound (SMC) line, identified as SMC Line 3, consisting of the following:
 - (1) One (1) mixer, identified as SMC Drum Mixer #2, constructed in 2016, located in the Technical Center, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center baghouse B4, for particulate control, and exhausting to stack S4.
 - One (1) 36" SMC Machine, constructed in 2016, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center Baghouse B4, for particulate control, and exhausting to

Noblesville, Indiana Permit Reviewer: Jeries Smirat DRAFT

stack S4.

- (e) One (1) independent SMC mixer, typically located in the Technical Center, identified as Mixer #26, approved in 2016 for construction, with a maximum throughput of 50 pounds per hour, using a baghouse, identified as 3i Technology Center baghouse B4, for particulate control, and exhausting to stack S4.
- (f) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 2,400 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to Stack S2.

(2) BMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the BMC production are considered affected units.

- (a) Ten (10) bulk molding compound (BMC) mixers, consisting of the following:
 - (1) Five (5) bulk molding compound (BMC) mixers, identified as BMC Mixer #1 through BMC Mixer #5, constructed after 1980, each with a maximum throughput of 1,200 pounds per hour, using a common baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (2) One (1) bulk molding compound (BMC) mixer, identified as BMC Mixer #6, constructed in 2008, with a maximum throughput of 2,200 lb/hr, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (3) Four (4) bulk molding compound (BMC) mixers, identified as Rosite mixer L1 through Rosite mixer L4, constructed in 2005, each with a maximum capacity of 1,000 pounds per hour, using a common baghouse, identified as SMC baghouse B2, for particulate control, and exhausting to Stack S2.
- (b) One (1) Rosite resin blending mixer, constructed in 2005, using no control, and exhausting inside the building.

This mixer is used to blend resins for Rosite Mixer L1 through Rosite mixer L4.

- (c) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 492 pounds per hour, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
- (d) One (1) packaging operation, no control, consisting of the following:
 - (1) two (2) compound feeders,
 - (2) six (6) extruders used to package BMC material for shipping, and
 - (3) four (4) bulk extruders.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

PSD Minor Limits [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following:

The PM, PM10, and PM2.5 emissions after control from each emission unit identified in the table below shall not exceed its specified limit:

	Control	PM limit	PM10 limit	PM2.5 limit
Emission Unit		(pounds per hour)	(pounds per hour)	(pounds per hour)
SMC Drum Mixer	SMC Baghouse B2	2.91	2.91	2.91
48" SMC Line 1	SMC Baghouse B2	9.71	9.71	9.71
39" SMC Line 2	SMC Baghouse B2	8.21	8.21	8.21
36" SMC Line 3	3i Tech Center baghouse B4	7.20	7.20	7.20
SMC Mixer #26			0.35	0.35
BMC Mixer #1	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #2	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #3	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #4	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #5	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #6	BMC Baghouse B1	4.37	4.37	4.37
Rosite Mixer L1	Rosite Mixer L1 SMC baghouse B2 2.58		2.58	2.58
Rosite Mixer L2	SMC baghouse B2	2.58	2.58	2.58
Rosite Mixer L3	SMC baghouse B2	2.58	2.58	2.58
Rosite Mixer L4	SMC baghouse B2	2.58	2.58	2.58
BMC Mixer #18	Lab Baghouse B3	1.02	1.02	1.02

Compliance with these limits, combined with the potential to emit PM, PM10, and PM2.5 from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM10, and PM2.5, to less than 250 tons per 12 consecutive month period, each and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

Particulate Matter (PM) [326 IAC 6-3-2(e)]

Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations, Work Practices and Control Technologies), the allowable PM emission rate from the below facilities shall not exceed the rates outlined below:

Facility	P = Process Weight (tons/hr)	E = Allowable Emissions (lbs/hr)
SMC Drum Mixer	0.6	2.91
48" SMC Line 1	3.62	9.71
39" SMC Line 2	2.81	8.21
36" SMC Line 3	1.15	4.52
BMC Mixer #1	0.6	2.91
BMC Mixer #2	0.6	2.91
BMC Mixer #3	0.6	2.91
BMC Mixer #4	0.6	2.91
BMC Mixer #5	0.6	2.91
BMC Mixer #6	1.1	4.37
Rosite Mixer L1	0.50	2.58
Rosite Mixer L2	0.50	2.58

Noblesville, Indiana

Permit Reviewer: Jeries Smirat

Facility	P = Process Weight (tons/hr)	E = Allowable Emissions (lbs/hr)
Rosite Mixer L3	0.50	2.58
Rosite Mixer L4	0.50	2.58
BMC Mixer #18	0.125	1.01

The pounds per hour PM limitations shall be calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 4.10 P^{0.67}$ where

E = rate of emission in pounds per hour; and

P = process weight rate in tons per hour

D.1.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these emission units and control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the Preventive Maintenance Plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.1.4 Particulate Matter (PM)

(a) In order to comply with Conditions D.1.1 and D.1.2, the following controls shall in operation at all times when raw material is being added into or blended product is being removed from the mixers operation:

Emission Unit	Control
SMC Drum Mixer	SMC Baghouse B2
48" SMC Line 1	SMC Baghouse B2
39" SMC Line 2	SMC Baghouse B2
36" SMC Line 3	3i Tech Center baghouse B4
SMC Mixer #26	3i Tech Center baghouse B4
BMC Mixer #1	BMC Baghouse B1
BMC Mixer #2	BMC Baghouse B1
BMC Mixer #3	BMC Baghouse B1
BMC Mixer #4	BMC Baghouse B1
BMC Mixer #5	BMC Baghouse B1
BMC Mixer #6	BMC Baghouse B1
Rosite Mixer L1	SMC baghouse B2
Rosite Mixer L2	SMC baghouse B2
Rosite Mixer L3	SMC baghouse B2
Rosite Mixer L4	SMC baghouse B2
BMC Mixer #18	Lab Baghouse B3

Compliance Monitoring Requirements [326 IAC 2-7-6(1)][326 IAC 2-7-5(1)]

D.1.5 Visible Emissions Notations [40 CFR 64]

(a) Visible emission notations of the stack exhausts of the following exhausts:

Emission Unit	Control
SMC Drum Mixer	SMC Baghouse B2
48" SMC Line 1	SMC Baghouse B2

DRAFT

England on Hadi	Control
Emission Unit	Control
39" SMC Line 2	SMC Baghouse B2
36" SMC Line 3	3i Tech Center baghouse B4
SMC Mixer #26	3i Tech Center baghouse B4
BMC Mixer #1	BMC Baghouse B1
BMC Mixer #2	BMC Baghouse B1
BMC Mixer #3	BMC Baghouse B1
BMC Mixer #4	BMC Baghouse B1
BMC Mixer #5	BMC Baghouse B1
BMC Mixer #6	BMC Baghouse B1
Rosite Mixer L1	SMC baghouse B2
Rosite Mixer L2	SMC baghouse B2
Rosite Mixer L3	SMC baghouse B2
Rosite Mixer L4	SMC baghouse B2
BMC Mixer #18	Lab Baghouse B3

shall be performed once per day during normal daylight operations. Visible emission notations of the stack exhausts of the Tech Center Baghouse B4 exhausting to Stack S4 are not required due to the slightly lower level of PM emissions from the SMC Line 3. A trained employee shall record whether emissions are normal or abnormal.

- (b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.
- (c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.
- (d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.
- (e) If abnormal emissions are observed, the Permittee shall take reasonable response steps in accordance with Section C- Response to Excursions or Exceedances. Failure to take response steps in accordance with Section C Response to Excursions or Exceedances shall be considered a deviation from this permit.

These monitoring are also required under 40 CFR 64 (CAM) for the 39" SMC Line 2 Mixer and 48" SMC Line 1 Mixer for PM, PM2.5, and PM10.

D.1.6 Parametric Monitoring [40 CFR 64]

The Permittee shall record the pressure drop across the following baghouses at least once per day when the associated processes are in operation and exhausting to the atmosphere.

Emission Unit	Control
SMC Drum Mixer	SMC Baghouse B2
48" SMC Line 1	SMC Baghouse B2
39" SMC Line 2	SMC Baghouse B2
36" SMC Line 3	3i Tech Center baghouse B4
SMC Mixer #26	3i Tech Center baghouse B4
BMC Mixer #1	BMC Baghouse B1
BMC Mixer #2	BMC Baghouse B1
BMC Mixer #3	BMC Baghouse B1
BMC Mixer #4	BMC Baghouse B1

Permit Reviewer: Jeries Smirat

DRAFT

Emission Unit	Control
BMC Mixer #5	BMC Baghouse B1
BMC Mixer #6	BMC Baghouse B1
Rosite Mixer L1	SMC baghouse B2
Rosite Mixer L2	SMC baghouse B2
Rosite Mixer L3	SMC baghouse B2
Rosite Mixer L4	SMC baghouse B2
BMC Mixer #18	Lab Baghouse B3

When for any one reading, the pressure drop across the dust collector is outside the normal range the Permittee shall take reasonable response steps in accordance with Section C - Response to Excursions or Exceedances. The normal range for this dust collector is a pressure drop range between 0.2 and 6.0 inches of water unless a different upper-bound or lower-bound value for this range is determined during the most recent valid stack test. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps in accordance with Section C - Response to Excursions or Exceedances, shall be considered a deviation from this permit.

The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

These monitoring are also required under 40 CFR 64 (CAM) for the 39" SMC Line 2 Mixer and 48" SMC Line 1 Mixer for PM, PM2.5, and PM10.

D.1.7 Broken or Failed Bag Detection

- (a) For a single compartment dust collector controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B Emergency Provisions).
- (b) For a single compartment dust collector controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the line. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B Emergency Provisions).

Bag failure can be indicated by a significant drop in the dust collector's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.1.8 Record Keeping Requirements

(a) To document the compliance status with Condition D.1.5, the Permittee shall maintain records of once per day visible emission notations of the following:

Emission Unit	Control
SMC Drum Mixer	SMC Baghouse B2
48" SMC Line 1	SMC Baghouse B2
39" SMC Line 2	SMC Baghouse B2
36" SMC Line 3	3i Tech Center baghouse B4

Permit Reviewer: Jeries Smirat

DRAFT

Emission Unit	Control		
SMC Mixer #26	3i Tech Center baghouse B4		
BMC Mixer #1	BMC Baghouse B1		
BMC Mixer #2	BMC Baghouse B1		
BMC Mixer #3	BMC Baghouse B1		
BMC Mixer #4	BMC Baghouse B1		
BMC Mixer #5	BMC Baghouse B1		
BMC Mixer #6	BMC Baghouse B1		
Rosite Mixer L1	SMC baghouse B2		
Rosite Mixer L2	SMC baghouse B2		
Rosite Mixer L3	SMC baghouse B2		
Rosite Mixer L4	SMC baghouse B2		
BMC Mixer #18	Lab Baghouse B3		

The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g. the process did not operate that day).

(b) To document the compliance status with Condition D.1.6, the Permittee shall maintain records once per day of the pressure drop across the following:

Emission Unit	Control			
SMC Drum Mixer	SMC Baghouse B2			
48" SMC Line 1	SMC Baghouse B2			
39" SMC Line 2	SMC Baghouse B2			
36" SMC Line 3	3i Tech Center baghouse B4			
SMC Mixer #26	3i Tech Center baghouse B4			
BMC Mixer #1	BMC Baghouse B1			
BMC Mixer #2	BMC Baghouse B1			
BMC Mixer #3	BMC Baghouse B1			
BMC Mixer #4	BMC Baghouse B1			
BMC Mixer #5	BMC Baghouse B1			
BMC Mixer #6	BMC Baghouse B1			
Rosite Mixer L1	SMC baghouse B2			
Rosite Mixer L2	SMC baghouse B2			
Rosite Mixer L3	SMC baghouse B2			
Rosite Mixer L4	SMC baghouse B2			
BMC Mixer #18	Lab Baghouse B3			

during normal operation when venting to the atmosphere. The Permittee shall include in its daily record when a pressure drop reading is not taken and the reason for the lack of a pressure drop reading (e.g. the process did not operate that day).

(c) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

Page 37 of 47 T057-39236-00042

SECTION E.1 NSPS

Emissions Unit Description:

Insignificant Activity:

(11) One (1) stationary emergency generator burning diesel fuel, with a maximum output of 10 KW, manufactured in 2012.

Under 40 CFR 60, Subpart IIII, this is an affected unit.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

- E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]
 - (a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart IIII.
 - (b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

E.1.2 Standards of Performance for Stationary Compression Ignition Internal Combustion Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart IIII]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart IIII (included as Attachment A to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

- (1) 40 CFR 60.4200(2)(i)
- (2) 40 CFR 60.4205(b)
- (3) 40 CFR 60.4206
- (4) 40 CFR 60.4207(b)
- (5) 40 CFR 60.4209
- (6) 40 CFR 60.4211(a),(c),(f),(g)(1)
- (7) 40 CFR 60.4212
- (8) 40 CFR 60.4214(b)(c)
- (9) 40 CFR 60.4218
- (10) 40 CFR 60.4219
- (11) Table 2 to 40 CFR 60 Subpart IIII (the applicable portions)
- (12) Table 8 to 40 CFR 60 Subpart IIII (the applicable portions)

SECTION E.2 NESHAP

Emissions Unit Description:

(1) SMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the SMC production are considered affected units.

- (a) One (1) sheet molding compound (SMC) mixer, identified as SMC Drum Mixer, constructed prior to 1980, with a maximum throughput of 1,200 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to stack S2.
- (b) One (1) 48" sheet molding compound (SMC) line, identified as SMC Line 1, originally constructed prior to 1980 and modified in 2012, with maximum throughput of 7,252 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 48" SMC machine.

The Large Mixer and glass chopper is controlled by a baghouse, identified as SMC baghouse B2, exhausting to stack S2.

- (c) One (1) 39" sheet molding compound (SMC) line, identified as SMC Line 2, constructed in 2002, with maximum throughput of 5,628 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 39" SMC machine.

The Large Mixer and glass chopper are controlled by a baghouse, identified as SMC Baghouse B2, and exhausting to stack S2.

- (d) One (1) 36" sample sheeting molding compound (SMC) line, identified as SMC Line 3, consisting of the following:
 - (1) One (1) mixer, identified as SMC Drum Mixer #2, constructed in 2016, located in the Technical Center, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center baghouse B4, for particulate control, and exhausting to stack S4.
 - (2) One (1) 36" SMC Machine, constructed in 2016, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i

Permit Reviewer: Jeries Smirat

Tech Center Baghouse B4, for particulate control, and exhausting to stack S4.

- (e) One (1) independent SMC mixer, typically located in the Technical Center, identified as Mixer #26, approved in 2016 for construction, with a maximum throughput of 50 pounds per hour, using a baghouse, identified as 3i Technology Center baghouse B4, for particulate control, and exhausting to stack S4.
- (f) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 2,400 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to Stack S2.

(2) BMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the BMC production are considered affected units.

- (a) Ten (10) bulk molding compound (BMC) mixers, consisting of the following:
 - (1) Five (5) bulk molding compound (BMC) mixers, identified as BMC Mixer #1 through BMC Mixer #5, constructed after 1980, each with a maximum throughput of 1,200 pounds per hour, using a common baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (2) One (1) bulk molding compound (BMC) mixer, identified as BMC Mixer #6, constructed in 2008, with a maximum throughput of 2,200 lb/hr, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (3) Four (4) bulk molding compound (BMC) mixers, identified as Rosite mixer L1 through Rosite mixer L4, constructed in 2005, each with a maximum capacity of 1,000 pounds per hour, using a common baghouse, identified as SMC baghouse B2, for particulate control, and exhausting to Stack S2.
- (b) One (1) Rosite resin blending mixer, constructed in 2005, using no control, and exhausting inside the building.

This mixer is used to blend resins for Rosite Mixer L1 through Rosite mixer L4.

- (c) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 492 pounds per hour, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
- (d) One (1) packaging operation, no control, consisting of the following:
 - (1) two (2) compound feeders,
 - (2) six (6) extruders used to package BMC material for shipping, and
 - (3) four (4) bulk extruders.

Insignificant activities:

(1) Laboratory mixers:

Permit Reviewer: Jeries Smirat

DRAFT

Under 40 CFR 63, NESHAP, Subpart WWWW, these laboratory mixers are affected units.

- (a) Two (2) SMC laboratory mixers, consisting of the following:
 - (1) One (1) mixer, identified as Mixer #24, with a maximum capacity of 50 pounds per hour, using baghouse B3 for particulate control, and exhausting to stack S3.
 - (2) One (1) mixer, identified as Mixer #25, with a maximum capacity of 15 pounds per hour, using no control, and exhausting inside the building.
- (b) Three (3) laboratory bulk molding compound (BMC) mixers;
 - (1) One (1) BMC mixer, identified as BMC Mixer #18, with a maximum throughput of 250 pounds per hour, using a baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
 - (2) Two (2) BMC mixers, identified as BMC Mixer #19 and BMC Mixer #20, each with a maximum throughput of 20 pounds per hour, using a common baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
- One (1) PolyM Dispersion Mixer, used to set up scrap SMC and BMC material through polymerization, using no control and exhausting inside the building.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this mixer is an affected unit.
- (3) QA/QC process involving laboratory testing and six (6) sample molding presses, using no control, and exhausting inside the building.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this is an affected unit.
- (4) One (1) Vazo Blender, constructed in 2005, with a maximum throughput of 180 batches of material per year, with each batch composed of 758 pounds of raw materials, using a baghouse, identified as Vazo Baghouse B5, for particulate control, and exhausting to Stack S5.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this blender is considered an affected unit.
- (5) Four (4) compression molding presses:
 - (a) One (1) compression molding press, identified as #1, approved in 2015 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - (b) One (1) compression molding press, identified as Press #2, approved in 2015 for construction, with a maximum throughput of twenty-five(25) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - (c) One (1) compression molding press, identified as Press #3, approved in 2016 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.

Noblesville, Indiana Permit Reviewer: Jeries Smirat DRAFT

(d) One (1) compression molding press, identified as Press #4, approved in 2016 for construction, with a maximum throughput of one hundred (100) of BMC or SMC per hour, using no control and exhausting to the indoors.

Under 40 CFR 63, NESHAP, Subpart WWWW, these presses are considered affected units

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

- E.2.1 General Provisions Relating to National Emission Standards for Hazardous Air Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]
 - (a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart WWWW.
 - (b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

E.2.2 National Emission Standards for Reinforced Plastics Composites Production NESHAP [40 CFR Part 63, Subpart WWWW] [326 IAC 20-1]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart WWWW (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 20-1, for the emission units listed above:

- (1) 40 CFR 63.5780
- (2) 40 CFR 63.5785(a)
- (3) 40 CFR 63.5790(a)(b)
- (4) 40 CFR 63.5795(b)
- (5) 40 CFR 63.5796
- (6) 40 CFR 63.5797
- (7) 40 CFR 63.5798
- (8) 40 CFR 63.5799
- (9) 40 CFR 63.5800
- (10) 40 CFR 63.5805(a)
- (11) 40 CFR 63.5830(b)
- (12) 40 CFR 63.5835(a) and (c)
- (13) 40 CFR 63.5840
- (14) 40 CFR 63.5860(a)
- (15) 40 CFR 63.5895(b) and (e)
- (16) 40 CFR 63.5900(a)(4),(b), and (e)
- (17) 40 CFR 63.5905
- (18) 40 CFR 63.5910(a),(b),(c),(d),(g) and (h)

Industrial Dielectrics, Inc. dba IDI Composites International

Noblesville, Indiana

Permit Reviewer: Jeries Smirat

Page 42 of 47 T057-39236-00042

- (19) 40 CFR 63.5915(a) and (d)
- (20) 40 CFR 63.5920
- (21) 40 CFR 63.5925
- (22) 40 CFR 63.5930
- (23) 40 CFR 63.5935
- (24) Table 1 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (25) Table 3 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (26) Table 4 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (27) Table 5 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (28) Table 7 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (29) Table 8 to 40 CFR 63 Subpart WWWW (the applicable portions)
 (30) Table 9 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (31) Table 13 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (32) Table 14 to 40 CFR 63 Subpart WWWW (the applicable portions)

Noblesville, Indiana

Permit Reviewer: Jeries Smirat

Page 43 of 47 T057-39236-00042

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT CERTIFICATION

Source Name: Industrial Dielectrics, Inc. dba IDI Composites International

Source Address: 407 South 7th Street, Noblesville, Indiana 46060

Part 70 Permit No.: T057-39236-00042

Please check what document is being certified: Annual Compliance Certification Letter Test Result (specify) Report (specify) Notification (specify) Affidavit (specify) Other (specify) I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone: Date:	This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.
□ Test Result (specify) □ Report (specify) □ Notification (specify) □ Affidavit (specify) □ Other (specify) □ I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	Please check what document is being certified:
□ Report (specify) □ Notification (specify) □ Affidavit (specify) □ Other (specify) I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Annual Compliance Certification Letter
□ Notification (specify) □ Affidavit (specify) □ Other (specify) I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Test Result (specify)
□ Affidavit (specify) □ Other (specify) I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Report (specify)
Other (specify) I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Notification (specify)
I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Affidavit (specify)
information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	□ Other (specify)
information in the document are true, accurate, and complete. Signature: Printed Name: Title/Position: Phone:	
Printed Name: Title/Position: Phone:	
Title/Position: Phone:	Signature:
Phone:	Printed Name:
	Title/Position:
Date:	Phone:
	Date:

Page 44 of 47 T057-39236-00042

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
100 North Senate Avenue

MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251 Phone: (317) 233-0178 Fax: (317) 233-6865

PART 70 OPERATING PERMIT EMERGENCY OCCURRENCE REPORT

Source Name: Industrial Dielectrics, Inc. dba IDI Composites International

Source Address: 407 South 7th Street, Noblesville, Indiana 46060

Part 70 Permit No.: T057-39236-00042

This form consists of 2 pages

Page 1 of 2

- ☐ This is an emergency as defined in 326 IAC 2-7-1(12)
 - The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 - The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:
Control Equipment:
Permit Condition or Operation Limitation in Permit:
Description of the Emergency:
Describe the cause of the Emergency:

Permit Reviewer: Jeries Smirat

Page 45 of 47 T057-39236-00042

If any of the following are not applicable, mark N/A Page 2 of 2 Date/Time Emergency started: Date/Time Emergency was corrected: Was the facility being properly operated at the time of the emergency? Y Ν Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NO_X, CO, Pb, other: Estimated amount of pollutant(s) emitted during emergency: Describe the steps taken to mitigate the problem: Describe the corrective actions/response steps taken: Describe the measures taken to minimize emissions: If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value: Form Completed by:

Title / Position:

Phone: ____

Date:____

Permit Reviewer: Jeries Smirat

Page 46 of 47 T057-39236-00042

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT **OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT**

Source Name: Industrial Dielectrics, Inc. dba IDI Composites International Source Address: 407 South 7th Street, Noblesville, Indiana 46060 Part 70 Permit No.: T057-39236-00042					
Mo	onths:	to	Year:		
				Page 1 of 2	
Section B –Emergen General Reporting. A the probable cause of required to be reported shall be reported according to the included in this re	cy Provisions satis Any deviation from of the deviation, and ed pursuant to an a cording to the sched port. Additional pa	fies the rep the requirer d the respon applicable re dule stated ges may be	calendar year. Proper not orting requirements of para nents of this permit, the dathse steps taken must be reequirement that exists indepin the applicable requirement attached if necessary. If recurred this reporting period	graph (a) of Section C- te(s) of each deviation, ported. A deviation pendent of the permit, ent and does not need to no deviations occurred,	
☐ NO DEVIATIONS	OCCURRED THIS	REPORTI	NG PERIOD.		
☐ THE FOLLOWING	DEVIATIONS OC	CURRED 1	THIS REPORTING PERIO)	
Permit Requiremen	t (specify permit co	ondition #)			
Date of Deviation:			Duration of Deviation:		
Number of Deviatio	ns:				
Probable Cause of	Probable Cause of Deviation:				
Response Steps Ta	ken:				
Permit Requirement (specify permit condition #)					
Date of Deviation: Duration of Deviation:					
Number of Deviations:					
Probable Cause of	Deviation:				
Response Steps Ta	ken:				

Page 47 of 47 T057-39236-00042

Page 2 of 2

	1 agc 2 of 2
Permit Requirement (specify permit condition #)	
Date of Deviation:	Duration of Deviation:
Number of Deviations:	
Probable Cause of Deviation:	
Response Steps Taken:	
Permit Requirement (specify permit condition #)	
Date of Deviation:	Duration of Deviation:
Number of Deviations:	
Probable Cause of Deviation:	
Response Steps Taken:	
Permit Requirement (specify permit condition #)	
Date of Deviation:	Duration of Deviation:
Number of Deviations:	
Probable Cause of Deviation:	
Response Steps Taken:	
Form Completed by:	
Title / Position:	
Date:	
Phone:	

Attachment A

Part 70 Operating Permit No: T057-39236-00042

[Downloaded from the eCFR on September 6, 2016]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart IIII—Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Source: 71 FR 39172, July 11, 2006, unless otherwise noted.

What This Subpart Covers

§60.4200 Am I subject to this subpart?

- (a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in paragraphs (a)(1) through (4) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.
- (1) Manufacturers of stationary CI ICE with a displacement of less than 30 liters per cylinder where the model year is:
- (i) 2007 or later, for engines that are not fire pump engines;
- (ii) The model year listed in Table 3 to this subpart or later model year, for fire pump engines.
- (2) Owners and operators of stationary CI ICE that commence construction after July 11, 2005, where the stationary CI ICE are:
- (i) Manufactured after April 1, 2006, and are not fire pump engines, or
- (ii) Manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006.
- (3) Owners and operators of any stationary CI ICE that are modified or reconstructed after July 11, 2005 and any person that modifies or reconstructs any stationary CI ICE after July 11, 2005.
- (4) The provisions of §60.4208 of this subpart are applicable to all owners and operators of stationary CI ICE that commence construction after July 11, 2005.
- (b) The provisions of this subpart are not applicable to stationary CI ICE being tested at a stationary CI ICE test cell/stand.
- (c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart applicable to area sources.
- (d) Stationary CI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C (or the exemptions described in 40 CFR part 89, subpart J and 40 CFR part 94, subpart J, for

Page 2 of 30

TV No. T057-39236-00042

engines that would need to be certified to standards in those parts), except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

(e) Owners and operators of facilities with CI ICE that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011]

Emission Standards for Manufacturers

§60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?

- (a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later non-emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 89.112, 40 CFR 89.113, 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same model year and maximum engine power.
- (b) Stationary CI internal combustion engine manufacturers must certify their 2007 through 2010 model year nonemergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.
- (c) Stationary CI internal combustion engine manufacturers must certify their 2011 model year and later non-emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same maximum engine power.
- (d) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the certification emission standards for new marine CI engines in 40 CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power:
- (1) Their 2007 model year through 2012 non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;
- (2) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and
- (3) Their 2013 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.
- (e) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the certification emission standards and other requirements for new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.110, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, as applicable, for all pollutants, for the same displacement and maximum engine power:
- (1) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

- Page 3 of 30 TV No. T057-39236-00042 Attachment A
- (2) Their 2014 model year and later non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder.
- (f) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary non-emergency CI ICE identified in paragraphs (a) and (c) may be certified to the provisions of 40 CFR part 94 or, if Table 1 to 40 CFR 1042.1 identifies 40 CFR part 1042 as being applicable, 40 CFR part 1042, if the engines will be used solely in either or both of the following locations:
- (1) Remote areas of Alaska: and
- (2) Marine offshore installations.
- (g) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power, and displacement of the reconstructed stationary CI ICE.
- (h) Stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with auxiliary emission control devices (AECDs) as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR 89.112 while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011; 81 FR 44219, July 7, 2016]

§60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?

- (a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (a)(1) through (2) of this section.
- (1) For engines with a maximum engine power less than 37 KW (50 HP):
- (i) The certification emission standards for new nonroad CI engines for the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants for model year 2007 engines, and
- (ii) The certification emission standards for new nonroad CI engines in 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, 40 CFR 1039.115, and table 2 to this subpart, for 2008 model year and later engines.
- (2) For engines with a maximum engine power greater than or equal to 37 KW (50 HP), the certification emission standards for new nonroad CI engines for the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants beginning in model year 2007.
- (b) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (b)(1) through (2) of this section.
- (1) For 2007 through 2010 model years, the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.
- (2) For 2011 model year and later, the certification emission standards for new nonroad CI engines for engines of the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants.

Page 4 of 30

TV No. T057-39236-00042

(c) [Reserved]

- (d) Beginning with the model years in table 3 to this subpart, stationary CI internal combustion engine manufacturers must certify their fire pump stationary CI ICE to the emission standards in table 4 to this subpart, for all pollutants, for the same model year and NFPA nameplate power.
- (e) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE that are not fire pump engines to the certification emission standards for new marine CI engines in 40 CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power:
- (1) Their 2007 model year through 2012 emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;
- (2) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder;
- (3) Their 2013 model year emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder; and
- (4) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.
- (f) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE to the certification emission standards and other requirements applicable to Tier 3 new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, for all pollutants, for the same displacement and maximum engine power:
- (1) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and
- (2) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power less than 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.
- (g) Notwithstanding the requirements in paragraphs (a) through (d) of this section, stationary emergency CI internal combustion engines identified in paragraphs (a) and (c) may be certified to the provisions of 40 CFR part 94 or, if Table 2 to 40 CFR 1042.101 identifies Tier 3 standards as being applicable, the requirements applicable to Tier 3 engines in 40 CFR part 1042, if the engines will be used solely in either or both of the following locations:
- (1) Remote areas of Alaska; and
- (2) Marine offshore installations.
- (h) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (f) of this section that are applicable to the model year, maximum engine power and displacement of the reconstructed emergency stationary CI ICE.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016]

Page 5 of 30

TV No. T057-39236-00042

§60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines?

Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§60.4201 and 60.4202 during the certified emissions life of the engines.

[76 FR 37968, June 28, 2011]

Emission Standards for Owners and Operators

§60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

- (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of less than 10 liters per cylinder must comply with the emission standards in table 1 to this subpart. Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder must comply with the emission standards in 40 CFR 94.8(a)(1).
- (b) Owners and operators of 2007 model year and later non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder must comply with the emission standards for new CI engines in §60.4201 for their 2007 model year and later stationary CI ICE, as applicable.
- (c) Owners and operators of non-emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the following requirements:
- (1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 17.0 grams per kilowatt-hour (g/KW-hr) (12.7 grams per horsepower-hr (g/HP-hr)) when maximum engine speed is less than 130 revolutions per minute (rpm);
- (ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and
- (iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.
- (2) For engines installed on or after January 1, 2012 and before January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and
- (iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.
- (3) For engines installed on or after January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 3.4 g/KW-hr (2.5 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $9.0 \cdot n^{-0.20}$ g/KW-hr (6.7 \cdot $n^{-0.20}$ g/HP-hr) where n (maximum engine speed) is 130 or more but less than 2,000 rpm; and
- (iii) 2.0 g/KW-hr (1.5 g/HP-hr) where maximum engine speed is greater than or equal to 2,000 rpm.

Page 6 of 30

TV No. T057-39236-00042

- (4) Reduce particulate matter (PM) emissions by 60 percent or more, or limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.15 g/KW-hr (0.11 g/HP-hr).
- (d) Owners and operators of non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the not-to-exceed (NTE) standards as indicated in §60.4212.
- (e) Owners and operators of any modified or reconstructed non-emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed non-emergency stationary CI ICE that are specified in paragraphs (a) through (d) of this section.
- (f) Owners and operators of stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with AECDs as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR 89.112 while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016]

§60.4205 What emission standards must I meet for emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

- (a) Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of less than 10 liters per cylinder that are not fire pump engines must comply with the emission standards in Table 1 to this subpart. Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards in 40 CFR 94.8(a)(1).
- (b) Owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards for new nonroad CI engines in §60.4202, for all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI ICE.
- (c) Owners and operators of fire pump engines with a displacement of less than 30 liters per cylinder must comply with the emission standards in table 4 to this subpart, for all pollutants.
- (d) Owners and operators of emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the requirements in this section.
- (1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and
- (iii) 9.8 g/kW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.
- (2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

- Page 7 of 30 TV No. T057-39236-00042 Attachment A
- (iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.
- (3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).
- (e) Owners and operators of emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the NTE standards as indicated in §60.4212.
- (f) Owners and operators of any modified or reconstructed emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed CI ICE that are specified in paragraphs (a) through (e) of this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

§60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?

Owners and operators of stationary CI ICE must operate and maintain stationary CI ICE that achieve the emission standards as required in §§60.4204 and 60.4205 over the entire life of the engine.

[76 FR 37969, June 28, 2011]

Fuel Requirements for Owners and Operators

§60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?

- (a) Beginning October 1, 2007, owners and operators of stationary CI ICE subject to this subpart that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 80.510(a).
- (b) Beginning October 1, 2010, owners and operators of stationary CI ICE subject to this subpart with a displacement of less than 30 liters per cylinder that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to October 1, 2010, may be used until depleted.
- (c) [Reserved]
- (d) Beginning June 1, 2012, owners and operators of stationary CI ICE subject to this subpart with a displacement of greater than or equal to 30 liters per cylinder are no longer subject to the requirements of paragraph (a) of this section, and must use fuel that meets a maximum per-gallon sulfur content of 1,000 parts per million (ppm).
- (e) Stationary CI ICE that have a national security exemption under §60.4200(d) are also exempt from the fuel requirements in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 78 FR 6695, Jan. 30, 2013]

Other Requirements for Owners and Operators

§60.4208 What is the deadline for importing or installing stationary CI ICE produced in previous model years?

(a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the applicable requirements for 2007 model year engines.

part IIII Page 8 of 30 : A TV No. T057-39236-00042

- (b) After December 31, 2009, owners and operators may not install stationary CI ICE with a maximum engine power of less than 19 KW (25 HP) (excluding fire pump engines) that do not meet the applicable requirements for 2008 model year engines.
- (c) After December 31, 2014, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 19 KW (25 HP) and less than 56 KW (75 HP) that do not meet the applicable requirements for 2013 model year non-emergency engines.
- (d) After December 31, 2013, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 56 KW (75 HP) and less than 130 KW (175 HP) that do not meet the applicable requirements for 2012 model year non-emergency engines.
- (e) After December 31, 2012, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 130 KW (175 HP), including those above 560 KW (750 HP), that do not meet the applicable requirements for 2011 model year non-emergency engines.
- (f) After December 31, 2016, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 560 KW (750 HP) that do not meet the applicable requirements for 2015 model year non-emergency engines.
- (g) After December 31, 2018, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power greater than or equal to 600 KW (804 HP) and less than 2,000 KW (2,680 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that do not meet the applicable requirements for 2017 model year non-emergency engines.
- (h) In addition to the requirements specified in §§60.4201, 60.4202, 60.4204, and 60.4205, it is prohibited to import stationary CI ICE with a displacement of less than 30 liters per cylinder that do not meet the applicable requirements specified in paragraphs (a) through (g) of this section after the dates specified in paragraphs (a) through (g) of this section.
- (i) The requirements of this section do not apply to owners or operators of stationary CI ICE that have been modified, reconstructed, and do not apply to engines that were removed from one existing location and reinstalled at a new location.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

§60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?

If you are an owner or operator, you must meet the monitoring requirements of this section. In addition, you must also meet the monitoring requirements specified in §60.4211.

- (a) If you are an owner or operator of an emergency stationary CI internal combustion engine that does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter prior to startup of the engine.
- (b) If you are an owner or operator of a stationary CI internal combustion engine equipped with a diesel particulate filter to comply with the emission standards in §60.4204, the diesel particulate filter must be installed with a backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

Page 9 of 30 TV No. T057-39236-00042

Compliance Requirements

§60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

- (a) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of less than 10 liters per cylinder to the emission standards specified in §60.4201(a) through (c) and §60.4202(a), (b) and (d) using the certification procedures required in 40 CFR part 89, subpart B, or 40 CFR part 1039, subpart C, as applicable, and must test their engines as specified in those parts. For the purposes of this subpart, engines certified to the standards in table 1 to this subpart shall be subject to the same requirements as engines certified to the standards in 40 CFR part 89. For the purposes of this subpart, engines certified to the standards in table 4 to this subpart shall be subject to the same requirements as engines certified to the standards in 40 CFR part 89, except that engines with NFPA nameplate power of less than 37 KW (50 HP) certified to model year 2011 or later standards shall be subject to the same requirements as engines certified to the standards in 40 CFR part 1039.
- (b) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder to the emission standards specified in §60.4201(d) and (e) and §60.4202(e) and (f) using the certification procedures required in 40 CFR part 94, subpart C, or 40 CFR part 1042, subpart C, as applicable, and must test their engines as specified in 40 CFR part 94 or 1042, as applicable.
- (c) Stationary CI internal combustion engine manufacturers must meet the requirements of 40 CFR 1039.120, 1039.125, 1039.130, and 1039.135, and 40 CFR part 1068 for engines that are certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine manufacturers must meet the corresponding provisions of 40 CFR part 89, 40 CFR part 94 or 40 CFR part 1042 for engines that would be covered by that part if they were nonroad (including marine) engines. Labels on such engines must refer to stationary engines, rather than or in addition to nonroad or marine engines, as appropriate. Stationary CI internal combustion engine manufacturers must label their engines according to paragraphs (c)(1) through (3) of this section.
- (1) Stationary CI internal combustion engines manufactured from January 1, 2006 to March 31, 2006 (January 1, 2006 to June 30, 2006 for fire pump engines), other than those that are part of certified engine families under the nonroad CI engine regulations, must be labeled according to 40 CFR 1039.20.
- (2) Stationary CI internal combustion engines manufactured from April 1, 2006 to December 31, 2006 (or, for fire pump engines, July 1, 2006 to December 31 of the year preceding the year listed in table 3 to this subpart) must be labeled according to paragraphs (c)(2)(i) through (iii) of this section:
- (i) Stationary CI internal combustion engines that are part of certified engine families under the nonroad regulations must meet the labeling requirements for nonroad CI engines, but do not have to meet the labeling requirements in 40 CFR 1039.20.
- (ii) Stationary CI internal combustion engines that meet Tier 1 requirements (or requirements for fire pumps) under this subpart, but do not meet the requirements applicable to nonroad CI engines must be labeled according to 40 CFR 1039.20. The engine manufacturer may add language to the label clarifying that the engine meets Tier 1 requirements (or requirements for fire pumps) of this subpart.
- (iii) Stationary CI internal combustion engines manufactured after April 1, 2006 that do not meet Tier 1 requirements of this subpart, or fire pumps engines manufactured after July 1, 2006 that do not meet the requirements for fire pumps under this subpart, may not be used in the U.S. If any such engines are manufactured in the U.S. after April 1, 2006 (July 1, 2006 for fire pump engines), they must be exported or must be brought into compliance with the appropriate standards prior to initial operation. The export provisions of 40 CFR 1068.230 would apply to engines for export and the manufacturers must label such engines according to 40 CFR 1068.230.
- (3) Stationary CI internal combustion engines manufactured after January 1, 2007 (for fire pump engines, after January 1 of the year listed in table 3 to this subpart, as applicable) must be labeled according to paragraphs (c)(3)(i) through (iii) of this section.

Page 10 of 30

TV No. T057-39236-00042

- (i) Stationary CI internal combustion engines that meet the requirements of this subpart and the corresponding requirements for nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR parts 89, 94, 1039 or 1042, as appropriate.
- (ii) Stationary CI internal combustion engines that meet the requirements of this subpart, but are not certified to the standards applicable to nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR parts 89, 94, 1039 or 1042, as appropriate, but the words "stationary" must be included instead of "nonroad" or "marine" on the label. In addition, such engines must be labeled according to 40 CFR 1039.20.
- (iii) Stationary CI internal combustion engines that do not meet the requirements of this subpart must be labeled according to 40 CFR 1068.230 and must be exported under the provisions of 40 CFR 1068.230.
- (d) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards applicable under 40 CFR parts 89, 94, 1039 or 1042 for that model year may certify any such family that contains both nonroad (including marine) and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking and trading provisions applicable for such engines under those parts.
- (e) Manufacturers of engine families discussed in paragraph (d) of this section may meet the labeling requirements referred to in paragraph (c) of this section for stationary CI ICE by either adding a separate label containing the information required in paragraph (c) of this section or by adding the words "and stationary" after the word "nonroad" or "marine," as appropriate, to the label.
- (f) Starting with the model years shown in table 5 to this subpart, stationary CI internal combustion engine manufacturers must add a permanent label stating that the engine is for stationary emergency use only to each new emergency stationary CI internal combustion engine greater than or equal to 19 KW (25 HP) that meets all the emission standards for emergency engines in §60.4202 but does not meet all the emission standards for non-emergency engines in §60.4201. The label must be added according to the labeling requirements specified in 40 CFR 1039.135(b). Engine manufacturers must specify in the owner's manual that operation of emergency engines is limited to emergency operations and required maintenance and testing.
- (g) Manufacturers of fire pump engines may use the test cycle in table 6 to this subpart for testing fire pump engines and may test at the NFPA certified nameplate HP, provided that the engine is labeled as "Fire Pump Applications Only".
- (h) Engine manufacturers, including importers, may introduce into commerce uncertified engines or engines certified to earlier standards that were manufactured before the new or changed standards took effect until inventories are depleted, as long as such engines are part of normal inventory. For example, if the engine manufacturers' normal industry practice is to keep on hand a one-month supply of engines based on its projected sales, and a new tier of standards starts to apply for the 2009 model year, the engine manufacturer may manufacture engines based on the normal inventory requirements late in the 2008 model year, and sell those engines for installation. The engine manufacturer may not circumvent the provisions of §60.4201 or §60.4202 by stockpiling engines that are built before new or changed standards take effect. Stockpiling of such engines beyond normal industry practice is a violation of this subpart.
- (i) The replacement engine provisions of 40 CFR 89.1003(b)(7), 40 CFR 94.1103(b)(3), 40 CFR 94.1103(b)(4) and 40 CFR 1068.240 are applicable to stationary CI engines replacing existing equipment that is less than 15 years old.
- (j) Stationary CI ICE manufacturers may equip their stationary CI internal combustion engines certified to the emission standards in 40 CFR part 1039 with AECDs for qualified emergency situations according to the requirements of 40 CFR 1039.665. Manufacturers of stationary CI ICE equipped with AECDs as allowed by 40 CFR 1039.665 must meet all of the requirements in 40 CFR 1039.665 that apply to manufacturers. Manufacturers must document that the engine complies with the Tier 1 standard in 40 CFR 89.112 when the AECD is activated. Manufacturers must provide any relevant testing, engineering analysis, or other information in sufficient detail to support such statement when applying for certification (including amending an existing certificate) of an engine equipped with an AECD as allowed by 40 CFR 1039.665.

Page 11 of 30

TV No. T057-39236-00042

§60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?

- (a) If you are an owner or operator and must comply with the emission standards specified in this subpart, you must do all of the following, except as permitted under paragraph (g) of this section:
- (1) Operate and maintain the stationary CI internal combustion engine and control device according to the manufacturer's emission-related written instructions;
- (2) Change only those emission-related settings that are permitted by the manufacturer; and
- (3) Meet the requirements of 40 CFR parts 89, 94 and/or 1068, as they apply to you.
- (b) If you are an owner or operator of a pre-2007 model year stationary CI internal combustion engine and must comply with the emission standards specified in §§60.4204(a) or 60.4205(a), or if you are an owner or operator of a CI fire pump engine that is manufactured prior to the model years in table 3 to this subpart and must comply with the emission standards specified in §60.4205(c), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) through (5) of this section.
- (1) Purchasing an engine certified according to 40 CFR part 89 or 40 CFR part 94, as applicable, for the same model year and maximum engine power. The engine must be installed and configured according to the manufacturer's specifications.
- (2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.
- (3) Keeping records of engine manufacturer data indicating compliance with the standards.
- (4) Keeping records of control device vendor data indicating compliance with the standards.
- (5) Conducting an initial performance test to demonstrate compliance with the emission standards according to the requirements specified in §60.4212, as applicable.
- (c) If you are an owner or operator of a 2007 model year and later stationary CI internal combustion engine and must comply with the emission standards specified in §60.4204(b) or §60.4205(b), or if you are an owner or operator of a CI fire pump engine that is manufactured during or after the model year that applies to your fire pump engine power rating in table 3 to this subpart and must comply with the emission standards specified in §60.4205(c), you must comply by purchasing an engine certified to the emission standards in §60.4204(b), or §60.4205(b) or (c), as applicable, for the same model year and maximum (or in the case of fire pumps, NFPA nameplate) engine power. The engine must be installed and configured according to the manufacturer's emission-related specifications, except as permitted in paragraph (g) of this section.
- (d) If you are an owner or operator and must comply with the emission standards specified in §60.4204(c) or §60.4205(d), you must demonstrate compliance according to the requirements specified in paragraphs (d)(1) through (3) of this section.
- (1) Conducting an initial performance test to demonstrate initial compliance with the emission standards as specified in §60.4213.
- (2) Establishing operating parameters to be monitored continuously to ensure the stationary internal combustion engine continues to meet the emission standards. The owner or operator must petition the Administrator for approval of operating parameters to be monitored continuously. The petition must include the information described in paragraphs (d)(2)(i) through (v) of this section.
- (i) Identification of the specific parameters you propose to monitor continuously;

Page 12 of 30

TV No. T057-39236-00042

(ii) A discussion of the relationship between these parameters and NO_X and PM emissions, identifying how the emissions of these pollutants change with changes in these parameters, and how limitations on these parameters will serve to limit NO_X and PM emissions:

- (iii) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
- (iv) A discussion identifying the methods and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and
- (v) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.
- (3) For non-emergency engines with a displacement of greater than or equal to 30 liters per cylinder, conducting annual performance tests to demonstrate continuous compliance with the emission standards as specified in §60.4213.
- (e) If you are an owner or operator of a modified or reconstructed stationary CI internal combustion engine and must comply with the emission standards specified in §60.4204(e) or §60.4205(f), you must demonstrate compliance according to one of the methods specified in paragraphs (e)(1) or (2) of this section.
- (1) Purchasing, or otherwise owning or operating, an engine certified to the emission standards in §60.4204(e) or §60.4205(f), as applicable.
- (2) Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in §60.4212 or §60.4213, as appropriate. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.
- (f) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (f)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (3) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (3) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
- (1) There is no time limit on the use of emergency stationary ICE in emergency situations.
- (2) You may operate your emergency stationary ICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (f)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).
- (i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.
- (ii) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

Page 13 of 30

TV No. T057-39236-00042

(iii) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5

- (3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraph (f)(3)(i) of this section, the 50 hours per calendar year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
- (i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

percent or greater below standard voltage or frequency.

- (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
- (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
- (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
- (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
- (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.
- (ii) [Reserved]
- (g) If you do not install, configure, operate, and maintain your engine and control device according to the manufacturer's emission-related written instructions, or you change emission-related settings in a way that is not permitted by the manufacturer, you must demonstrate compliance as follows:
- (1) If you are an owner or operator of a stationary CI internal combustion engine with maximum engine power less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, if you do not install and configure the engine and control device according to the manufacturer's emission-related written instructions, or you change the emission-related settings in a way that is not permitted by the manufacturer, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of such action.
- (2) If you are an owner or operator of a stationary CI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer.
- (3) If you are an owner or operator of a stationary CI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer. You must conduct subsequent

Page 14 of 30

TV No. T057-39236-00042

performance testing every 8,760 hours of engine operation or 3 years, whichever comes first, thereafter to demonstrate compliance with the applicable emission standards.

(h) The requirements for operators and prohibited acts specified in 40 CFR 1039.665 apply to owners or operators of stationary CI ICE equipped with AECDs for qualified emergency situations as allowed by 40 CFR 1039.665.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37970, June 28, 2011; 78 FR 6695, Jan. 30, 2013; 81 FR 44219, July 7, 2016]

Testing Requirements for Owners and Operators

§60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests pursuant to this subpart must do so according to paragraphs (a) through (e) of this section.

- (a) The performance test must be conducted according to the in-use testing procedures in 40 CFR part 1039, subpart F, for stationary CI ICE with a displacement of less than 10 liters per cylinder, and according to 40 CFR part 1042, subpart F, for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder.
- (b) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1039 must not exceed the not-to-exceed (NTE) standards for the same model year and maximum engine power as required in 40 CFR 1039.101(e) and 40 CFR 1039.102(g)(1), except as specified in 40 CFR 1039.104(d). This requirement starts when NTE requirements take effect for nonroad diesel engines under 40 CFR part 1039.
- (c) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR 89.112 or 40 CFR 94.8, as applicable, must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in 40 CFR 89.112 or 40 CFR 94.8, as applicable, determined from the following equation:

NTE requirement for each pollutant = $(1.25) \times (STD)$ (Eq. 1)

Where:

STD = The standard specified for that pollutant in 40 CFR 89.112 or 40 CFR 94.8, as applicable.

Alternatively, stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR 89.112 or 40 CFR 94.8 may follow the testing procedures specified in §60.4213 of this subpart, as appropriate.

(d) Exhaust emissions from stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in §60.4204(a), §60.4205(a), or §60.4205(c) must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in §60.4204(a), §60.4205(a), or §60.4205(c), determined from the equation in paragraph (c) of this section.

Where:

STD = The standard specified for that pollutant in §60.4204(a), §60.4205(a), or §60.4205(c).

Alternatively, stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in $\S60.4204(a)$, $\S60.4205(a)$, or $\S60.4205(c)$ may follow the testing procedures specified in $\S60.4213$, as appropriate.

(e) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1042 must not exceed the NTE standards for the same model year and maximum engine power as

Page 15 of 30

TV No. T057-39236-00042

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

§60.4213 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of greater than or equal to 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder must conduct performance tests according to paragraphs (a) through (f) of this section.

- (a) Each performance test must be conducted according to the requirements in §60.8 and under the specific conditions that this subpart specifies in table 7. The test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load.
- (b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c).
- (c) You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must last at least 1 hour.
- (d) To determine compliance with the percent reduction requirement, you must follow the requirements as specified in paragraphs (d)(1) through (3) of this section.
- (1) You must use Equation 2 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 = R \qquad (Eq. 2)$$

required in 40 CFR 1042.101(c).

Where:

 C_i = concentration of NO_X or PM at the control device inlet,

 C_0 = concentration of NO_X or PM at the control device outlet, and

R = percent reduction of NO_X or PM emissions.

(2) You must normalize the NO_X or PM concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen (O_2) using Equation 3 of this section, or an equivalent percent carbon dioxide (CO_2) using the procedures described in paragraph (d)(3) of this section.

$$C_{adj} = C_d \frac{5.9}{20.9 - \% O_2}$$
 (Eq. 3)

Where:

 C_{adj} = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

 C_d = Measured concentration of NO_X or PM, uncorrected.

5.9 = 20.9 percent O_2 –15 percent O_2 , the defined O_2 correction value, percent.

Page 16 of 30 TV No. T057-39236-00042

 $%O_2$ = Measured O_2 concentration, dry basis, percent.

- (3) If pollutant concentrations are to be corrected to 15 percent O_2 and CO_2 concentration is measured in lieu of O_2 concentration measurement, a CO_2 correction factor is needed. Calculate the CO_2 correction factor as described in paragraphs (d)(3)(i) through (iii) of this section.
- (i) Calculate the fuel-specific F_o value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_{o} = \frac{0.209_{F_{d}}}{F_{c}}$$
 (Eq. 4)

Where:

 F_0 = Fuel factor based on the ratio of O_2 volume to the ultimate CO_2 volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is O₂, percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO_2 produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

$$X_{CO_2} = \frac{5.9}{F_o}$$
 (Eq. 5)

Where:

 $X_{CO2} = CO_2$ correction factor, percent.

5.9 = 20.9 percent O_2 -15 percent O_2 , the defined O_2 correction value, percent.

(iii) Calculate the NO_X and PM gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

$$C_{adj} = C_d \frac{X_{CO_2}}{\%CO_2}$$
 (Eq. 6)

Where:

 C_{adj} = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

C_d = Measured concentration of NO_X or PM, uncorrected.

 $%CO_2$ = Measured CO_2 concentration, dry basis, percent.

(e) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 7 of this section:

$$ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{KW-hour}$$
 (Eq. 7)

Where:

ER = Emission rate in grams per KW-hour.

 C_d = Measured NO_X concentration in ppm.

1.912x10⁻³ = Conversion constant for ppm NO_X to grams per standard cubic meter at 25 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Brake work of the engine, in KW-hour.

(f) To determine compliance with the PM mass per unit output emission limitation, convert the concentration of PM in the engine exhaust using Equation 8 of this section:

$$ER = \frac{C_{adj} \times Q \times T}{KW-hour}$$
 (Eq. 8)

Where:

ER = Emission rate in grams per KW-hour.

C_{adj} = Calculated PM concentration in grams per standard cubic meter.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Energy output of the engine, in KW.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

Notification, Reports, and Records for Owners and Operators

§60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?

- (a) Owners and operators of non-emergency stationary CI ICE that are greater than 2,237 KW (3,000 HP), or have a displacement of greater than or equal to 10 liters per cylinder, or are pre-2007 model year engines that are greater than 130 KW (175 HP) and not certified, must meet the requirements of paragraphs (a)(1) and (2) of this section.
- (1) Submit an initial notification as required in §60.7(a)(1). The notification must include the information in paragraphs (a)(1)(i) through (v) of this section.
- (i) Name and address of the owner or operator;
- (ii) The address of the affected source:

40 CFR 60, Subpart IIII Attachment A

Page 18 of 30

TV No. T057-39236-00042

(iii) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

- (iv) Emission control equipment; and
- (v) Fuel used.
- (2) Keep records of the information in paragraphs (a)(2)(i) through (iv) of this section.
- (i) All notifications submitted to comply with this subpart and all documentation supporting any notification.
- (ii) Maintenance conducted on the engine.
- (iii) If the stationary CI internal combustion is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards.
- (iv) If the stationary CI internal combustion is not a certified engine, documentation that the engine meets the emission standards.
- (b) If the stationary CI internal combustion engine is an emergency stationary internal combustion engine, the owner or operator is not required to submit an initial notification. Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during that time.
- (c) If the stationary CI internal combustion engine is equipped with a diesel particulate filter, the owner or operator must keep records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached.
- (d) If you own or operate an emergency stationary CI ICE with a maximum engine power more than 100 HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §60.4211(f)(2)(ii) and (iii) or that operates for the purposes specified in §60.4211(f)(3)(i), you must submit an annual report according to the requirements in paragraphs (d)(1) through (3) of this section.
- (1) The report must contain the following information:
- (i) Company name and address where the engine is located.
- (ii) Date of the report and beginning and ending dates of the reporting period.
- (iii) Engine site rating and model year.
- (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- (v) Hours operated for the purposes specified in §60.4211(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §60.4211(f)(2)(ii) and (iii).
- (vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §60.4211(f)(2)(ii) and (iii).
- (vii) Hours spent for operation for the purposes specified in §60.4211(f)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in §60.4211(f)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

Page 19 of 30

TV No. T057-39236-00042

- (2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- (3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §60.4.
- (e) Owners or operators of stationary CI ICE equipped with AECDs pursuant to the requirements of 40 CFR 1039.665 must report the use of AECDs as required by 40 CFR 1039.665(e).

[71 FR 39172, July 11, 2006, as amended at 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016]

Special Requirements

§60.4215 What requirements must I meet for engines used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands?

- (a) Stationary CI ICE with a displacement of less than 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the applicable emission standards in §§60.4202 and 60.4205.
- (b) Stationary CI ICE that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are not required to meet the fuel requirements in §60.4207.
- (c) Stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the following emission standards:
- (1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and
- (iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.
- (2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:
- (i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;
- (ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and
- (iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.
- (3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

Page 20 of 30

TV No. T057-39236-00042

§60.4216 What requirements must I meet for engines used in Alaska?

- (a) Prior to December 1, 2010, owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder located in areas of Alaska not accessible by the FAHS should refer to 40 CFR part 69 to determine the diesel fuel requirements applicable to such engines.
- (b) Except as indicated in paragraph (c) of this section, manufacturers, owners and operators of stationary CI ICE with a displacement of less than 10 liters per cylinder located in remote areas of Alaska may meet the requirements of this subpart by manufacturing and installing engines meeting the requirements of 40 CFR parts 94 or 1042, as appropriate, rather than the otherwise applicable requirements of 40 CFR parts 89 and 1039, as indicated in §§60.4201(f) and 60.4202(g).
- (c) Manufacturers, owners and operators of stationary CI ICE that are located in remote areas of Alaska may choose to meet the applicable emission standards for emergency engines in §§60.4202 and 60.4205, and not those for non-emergency engines in §§60.4201 and 60.4204, except that for 2014 model year and later non-emergency CI ICE, the owner or operator of any such engine that was not certified as meeting Tier 4 PM standards, must meet the applicable requirements for PM in §§60.4201 and 60.4204 or install a PM emission control device that achieves PM emission reductions of 85 percent, or 60 percent for engines with a displacement of greater than or equal to 30 liters per cylinder, compared to engine-out emissions.
- (d) The provisions of §60.4207 do not apply to owners and operators of pre-2014 model year stationary CI ICE subject to this subpart that are located in remote areas of Alaska.
- (e) The provisions of §60.4208(a) do not apply to owners and operators of stationary CI ICE subject to this subpart that are located in areas of Alaska not accessible by the FAHS until after December 31, 2009.
- (f) The provisions of this section and §60.4207 do not prevent owners and operators of stationary CI ICE subject to this subpart that are located in remote areas of Alaska from using fuels mixed with used lubricating oil, in volumes of up to 1.75 percent of the total fuel. The sulfur content of the used lubricating oil must be less than 200 parts per million. The used lubricating oil must meet the on-specification levels and properties for used oil in 40 CFR 279.11.

[76 FR 37971, June 28, 2011, as amended at 81 FR 44219, July 7, 2016]

§60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?

Owners and operators of stationary CI ICE that do not use diesel fuel may petition the Administrator for approval of alternative emission standards, if they can demonstrate that they use a fuel that is not the fuel on which the manufacturer of the engine certified the engine and that the engine cannot meet the applicable standards required in $\S60.4204$ or $\S60.4205$ using such fuels and that use of such fuel is appropriate and reasonably necessary, considering cost, energy, technical feasibility, human health and environmental, and other factors, for the operation of the engine.

[76 FR 37972, June 28, 2011]

General Provisions

§60.4218 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§60.1 through 60.19 apply to you.

Page 21 of 30

TV No. T057-39236-00042

Definitions

§60.4219 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary CI ICE with a displacement of less than 10 liters per cylinder are given in 40 CFR 1039.101(g). The values for certified emissions life for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder are given in 40 CFR 94.9(a).

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and subcomponents comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

- (1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.
- (2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.
- (3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Diesel particulate filter means an emission control technology that reduces PM emissions by trapping the particles in a flow filter substrate and periodically removes the collected particles by either physical action or by oxidizing (burning off) the particles in a process called regeneration.

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in §60.4211(f) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in §60.4211(f), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied

Page 22 of 30

TV No. T057-39236-00042

to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.

- (2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §60.4211(f).
- (3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §60.4211(f)(2)(ii) or (iii) and §60.4211(f)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Fire pump engine means an emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Manufacturer has the meaning given in section 216(1) of the Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for sale or resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1039.801.

Model year means the calendar year in which an engine is manufactured (see "date of manufacture"), except as follows:

- (1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see "date of manufacture"), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.
- (2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see "date of manufacture").

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Reciprocating internal combustion engine means any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work.

Remote areas of Alaska means areas of Alaska that meet either paragraph (1) or (2) of this definition.

- (1) Areas of Alaska that are not accessible by the Federal Aid Highway System (FAHS).
- (2) Areas of Alaska that meet all of the following criteria:
- (i) The only connection to the FAHS is through the Alaska Marine Highway System, or the stationary CI ICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.
- (ii) At least 10 percent of the power generated by the stationary CI ICE on an annual basis is used for residential purposes.

Page 23 of 30

TV No. T057-39236-00042

(iii) The generating capacity of the source is less than 12 megawatts, or the stationary CI ICE is used exclusively for backup power for renewable energy.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to a gasoline, natural gas, or liquefied petroleum gas fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Subpart means 40 CFR part 60, subpart IIII.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011; 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016]

Table 1 to Subpart IIII of Part 60—Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of <10 Liters per Cylinder and 2007-2010 Model Year Engines >2,237 KW (3,000 HP) and With a Displacement of <10 Liters per Cylinder

[As stated in $\S 60.4201(b)$, 60.4202(b), 60.4204(a), and 60.4205(a), you must comply with the following emission standards]

Maximum angina	Emission standards for stationary pre-2007 model year engines with a displacement of <10 liters per cylinder and 2007-2010 model year engines >2,237 KW (3,000 HP) and with a displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)					
Maximum engine power	NMHC + NOx	НС	NOx	СО	PM	
KW<8 (HP<11)	10.5 (7.8)			8.0 (6.0)	1.0 (0.75)	
8≤KW<19 (11≤HP<25)	9.5 (7.1)			6.6 (4.9)	0.80 (0.60)	
19≤KW<37 (25≤HP<50)	9.5 (7.1)			5.5 (4.1)	0.80 (0.60)	
37≤KW<56 (50≤HP<75)			9.2 (6.9)			
56≤KW<75 (75≤HP<100)			9.2 (6.9)			
75≤KW<130 (100≤HP<175)			9.2 (6.9)			
130≤KW<225 (175≤HP<300)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
225≤KW<450 (300≤HP<600)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	

Page 24 of 30 TV No. T057-39236-00042

	<10 liters per cylinder a displacement of <10 lit	stationary pre-2007 model year engines with a displacement of nd 2007-2010 model year engines >2,237 KW (3,000 HP) and with a rs per cylinder in g/KW-hr (g/HP-hr)			
Maximum engine power	NMHC + NO _X	нс	NO _X	СО	РМ
450≤KW≤560 (600≤HP≤750)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)
KW>560 (HP>750)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)

Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE <37 KW (50 HP) With a Displacement of <10 Liters per Cylinder

[As stated in §60.4202(a)(1), you must comply with the following emission standards]

	Emission standards for 2008 model year and later emergency stationary CI ICE <37 KW (50 HP) with a displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)					
Engine power	Model year(s)	NO _x + NMHC	со	РМ		
KW<8 (HP<11)	2008 +	7.5 (5.6)	8.0 (6.0)	0.40 (0.30)		
8≤KW<19 (11≤HP<25)	2008 +	7.5 (5.6)	6.6 (4.9)	0.40 (0.30)		
19≤KW<37 (25≤HP<50)	2008 +	7.5 (5.6)	5.5 (4.1)	0.30 (0.22)		

Table 3 to Subpart IIII of Part 60—Certification Requirements for Stationary Fire Pump Engines

As stated in §60.4202(d), you must certify new stationary fire pump engines beginning with the following model years:

Engine power	Starting model year engine manufacturers must certify new stationary fire pump engines according to §60.4202(d) ¹
KW<75 (HP<100)	2011
75≤KW<130 (100≤HP<175)	2010
130≤KW≤560 (175≤HP≤750)	2009
KW>560 (HP>750)	2008

¹Manufacturers of fire pump stationary CI ICE with a maximum engine power greater than or equal to 37 kW (50 HP) and less than 450 KW (600 HP) and a rated speed of greater than 2,650 revolutions per minute (rpm) are not required to certify such engines until three model years following the model year indicated in this Table 3 for engines in the applicable engine power category.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011]

Page 25 of 30

TV No. T057-39236-00042

Table 4 to Subpart IIII of Part 60—Emission Standards for Stationary Fire Pump Engines

[As stated in §§60.4202(d) and 60.4205(c), you must comply with the following emission standards for stationary fire pump engines]

Maximum engine power	Model year(s)	NMHC + NO _X	со	PM
KW<8 (HP<11)	2010 and earlier	10.5 (7.8)	8.0 (6.0)	1.0 (0.75)
	2011 +	7.5 (5.6)		0.40 (0.30)
8≤KW<19 (11≤HP<25)	2010 and earlier	9.5 (7.1)	6.6 (4.9)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.40 (0.30)
19≤KW<37 (25≤HP<50)	2010 and earlier	9.5 (7.1)	5.5 (4.1)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.30 (0.22)
37≤KW<56 (50≤HP<75)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
56≤KW<75 (75≤HP<100)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
75≤KW<130 (100≤HP<175)	2009 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2010 + ²	4.0 (3.0)		0.30 (0.22)
130≤KW<225 (175≤HP<300)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 + ³	4.0 (3.0)		0.20 (0.15)
225≤KW<450 (300≤HP<600)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 + ³	4.0 (3.0)		0.20 (0.15)
450≤KW≤560 (600≤HP≤750)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 +	4.0 (3.0)		0.20 (0.15)
KW>560 (HP>750)	2007 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2008 +	6.4 (4.8)		0.20 (0.15)

¹For model years 2011-2013, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 revolutions per minute (rpm) may comply with the emission limitations for 2010 model year engines.

²For model years 2010-2012, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2009 model year engines.

³In model years 2009-2011, manufacturers of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2008 model year engines.

Page 26 of 30 TV No. T057-39236-00042

Table 5 to Subpart IIII of Part 60—Labeling and Recordkeeping Requirements for New Stationary Emergency Engines

[You must comply with the labeling requirements in §60.4210(f) and the recordkeeping requirements in §60.4214(b) for new emergency stationary CI ICE beginning in the following model years:]

Engine power	Starting model year
19≤KW<56 (25≤HP<75)	2013
56≤KW<130 (75≤HP<175)	2012
KW≥130 (HP≥175)	2011

Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

[As stated in $\S60.4210(g)$, manufacturers of fire pump engines may use the following test cycle for testing fire pump engines:]

Mode No.	Engine speed ¹	Torque (percent) ²	Weighting factors
1	Rated	100	0.30
2	Rated	75	0.50
3	Rated	50	0.20

¹Engine speed: ±2 percent of point.

 $^{^2}$ Torque: NFPA certified nameplate HP for 100 percent point. All points should be ± 2 percent of engine percent load value.

Page 27 of 30

As stated in $\S60.4213$, you must comply with the following requirements for performance tests for stationary CI ICE with a displacement of ≥ 30 liters per cylinder:

Each	Complying with the requirement to	You must	Using	According to the following requirements
1. Stationary CI internal combustion engine with a displacement of ≥ 30 liters per cylinder	emissions by 90 percent or more;	i. Select the sampling port location and number/location of traverse points at the inlet and outlet of the control device;		(a) For NO _X , O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Measure O ₂ at the inlet and outlet of the control device;	(1) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for NO _x concentration.
		iii. If necessary, measure moisture content at the inlet and outlet of the control device; and	(2) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurements for NO _X concentration.
		iv. Measure NO _X at the inlet and outlet of the control device.	(3) Method 7E of 40 CFR part 60, appendix A-4, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

Each	Complying with the requirement to		Using	According to the following requirements
	b. Limit the concentration of NO _X in the stationary CI internal combustion engine exhaust.	i. Select the sampling port location and number/location of traverse points at the exhaust of the stationary internal combustion engine;		(a) For NOx, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;	3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurement for NO _X concentration.
		iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(2) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurement for NO _X concentration.
		iv. Measure NO _X at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device.	(3) Method 7E of 40 CFR part 60, appendix A-4, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	c. Reduce PM emissions by 60 percent or more	i. Select the sampling port location and the number of traverse points;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1	(a) Sampling sites must be located at the inlet and outlet of the control device.

Each	Complying with the requirement to	You must	Using	According to the following requirements
		ii. Measure O ₂ at the inlet and outlet of the control device;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
		iii. If necessary, measure moisture content at the inlet and outlet of the control device; and	(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine and moisture content must be made at the same time as the measurements for PM concentration.
		iv. Measure PM at the inlet and outlet of the control device.	(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	concentration of PM in the	i. Select the sampling port location and the number of traverse points;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1	(a) If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;	3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
		iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine moisture content must be made at the same time as the measurements for PM concentration.
		iv. Measure PM at the exhaust of the stationary internal combustion engine.	(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

[79 FR 11251, Feb. 27, 2014]

Table 8 to Subpart IIII of Part 60—Applicability of General Provisions to Subpart IIII

[As stated in §60.4218, you must comply with the following applicable General Provisions:]

General Provisions citation	Subject of citation	Applies to subpart	Explanation
§60.1	General applicability of the General Provisions	Yes	
§60.2	Definitions	Yes	Additional terms defined in §60.4219.

General Provisions citation	Subject of citation	Applies to subpart	Explanation
§60.3	Units and abbreviations	Yes	
§60.4	Address	Yes	
§60.5	Determination of construction or modification	Yes	
§60.6	Review of plans	Yes	
§60.7	Notification and Recordkeeping	Yes	Except that §60.7 only applies as specified in §60.4214(a).
§60.8	Performance tests	Yes	Except that §60.8 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder and engines that are not certified.
§60.9	Availability of information	Yes	
§60.10	State Authority	Yes	
§60.11	Compliance with standards and maintenance requirements	No	Requirements are specified in subpart IIII.
§60.12	Circumvention	Yes	
§60.13	Monitoring requirements	Yes	Except that §60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder.
§60.14	Modification	Yes	
§60.15	Reconstruction	Yes	
§60.16	Priority list	Yes	
§60.17	Incorporations by reference	Yes	
§60.18	General control device requirements	No	
§60.19	General notification and reporting requirements	Yes	

Attachment B

Part 70 Operating Permit No: T057-39236-00042

[Downloaded from the eCFR on May 15, 2013]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 63—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

Subpart WWWW—National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production

Source: 68 FR 19402, Apr. 21, 2003, unless otherwise noted.

What This Subpart Covers

§ 63.5780 What is the purpose of this subpart?

This subpart establishes national emissions standards for hazardous air pollutants (NESHAP) for reinforced plastic composites production. This subpart also establishes requirements to demonstrate initial and continuous compliance with the hazardous air pollutants (HAP) emissions standards.

§ 63.5785 Am I subject to this subpart?

- (a) You are subject to this subpart if you own or operate a reinforced plastic composites production facility that is located at a major source of HAP emissions. Reinforced plastic composites production is limited to operations in which reinforced and/or nonreinforced plastic composites or plastic molding compounds are manufactured using thermoset resins and/or gel coats that contain styrene to produce plastic composites. The resins and gel coats may also contain materials designed to enhance the chemical, physical, and/or thermal properties of the product. Reinforced plastic composites production also includes cleaning, mixing, HAP-containing materials storage, and repair operations associated with the production of plastic composites.
- (b) You are not subject to this subpart if your facility only repairs reinforced plastic composites. Repair includes the non-routine manufacture of individual components or parts intended to repair a larger item as defined in § 63.5935
- (c) You are not subject to this subpart if your facility is a research and development facility as defined in section 112(c)(7) of the Clean Air Act (CAA).
- (d) You are not subject to this subpart if your reinforced plastic composites operations use less than 1.2 tons per year (tpy) of thermoset resins and gel coats that contain styrene combined.

§ 63.5787 What if I also manufacture fiberglass boats or boat parts?

- (a) If your source meets the applicability criteria in § 63.5785, and is not subject to the Boat Manufacturing NESHAP (40 CFR part 63, subpart VVVV), you are subject to this subpart regardless of the final use of the parts you manufacture.
- (b) If your source is subject to 40 CFR part 63, subpart VVVV, and all the reinforced plastic composites you manufacture are used in manufacturing your boats, you are not subject to this subpart.

Page 2 of 69 TV No. T057-39236-00042 Attachment B

- (c) If you are subject to 40 CFR part 63, subpart VVVV, and meet the applicability criteria in § 63.5785, and produce reinforced plastic composites that are not used in fiberglass boat manufacture at your facility, all operations associated with the manufacture of the reinforced plastic composites parts that are not used in fiberglass boat manufacture at your facility are subject to this subpart, except as noted in paragraph (d) of this section.
- (d) Facilities potentially subject to both this subpart and 40 CFR part 63, subpart VVVV may elect to have the operations in paragraph (c) of this section covered by 40 CFR part 63, subpart VVVV, in lieu of this subpart, if they can demonstrate that this will not result in any organic HAP emissions increase compared to complying with this subpart.

§ 63.5790 What parts of my plant does this subpart cover?

- (a) This subpart applies to each new or existing affected source at reinforced plastic composites production facilities.
- (b) The affected source consists of all parts of your facility engaged in the following operations: Open molding, closed molding, centrifugal casting, continuous lamination, continuous casting, polymer casting, pultrusion, sheet molding compound (SMC) manufacturing, bulk molding compound (BMC) manufacturing, mixing, cleaning of equipment used in reinforced plastic composites manufacture, HAP-containing materials storage, and repair operations on parts you also manufacture.
- (c) The following operations are specifically excluded from any requirements in this subpart: application of mold sealing and release agents; mold stripping and cleaning; repair of parts that you did not manufacture, including nonroutine manufacturing of parts; personal activities that are not part of the manufacturing operations (such as hobby shops on military bases); prepreg materials as defined in § 63.5935; non-gel coat surface coatings; application of putties, polyputties, and adhesives; repair or production materials that do not contain resin or gel coat; research and development operations as defined in section 112(c)(7) of the CAA; polymer casting; and closed molding operations (except for compression/injection molding). Note that the exclusion of certain operations from any requirements applies only to operations specifically listed in this paragraph. The requirements for any co-located operations still apply.
- (d) Production resins that must meet military specifications are allowed to meet the organic HAP limit contained in that specification. In order for this exemption to be used, you must supply to the permitting authority the specifications certified as accurate by the military procurement officer, and those specifications must state a requirement for a specific resin, or a specific resin HAP content. Production resins for which this exemption is used must be applied with nonatomizing resin application equipment unless you can demonstrate this is infeasible. You must keep a record of the resins for which you are using this exemption.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

§ 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source?

- (a) A reinforced plastic composites production facility is a new affected source if it meets all the criteria in paragraphs (a)(1) and (2) of this section.
- (1) You commence construction of the source after August 2, 2001.
- (2) You commence construction, and no other reinforced plastic composites production source exists at that site.
- (b) For the purposes of this subpart, an existing affected source is any affected source that is not a new affected source.

[70 FR 50124, Aug. 25, 2005]

Page 3 of 69

TV No. T057-39236-00042

Calculating Organic HAP Emissions Factors for Open Molding and Centrifugal Casting

§ 63.5796 What are the organic HAP emissions factor equations in Table 1 to this subpart, and how are they used in this subpart?

Emissions factors are used in this subpart to determine compliance with certain organic HAP emissions limits in Tables 3 and 5 to this subpart. You may use the equations in Table 1 to this subpart to calculate your emissions factors. Equations are available for each open molding operation and centrifugal casting operation and have units of pounds of organic HAP emitted per ton (lb/ton) of resin or gel coat applied. These equations are intended to provide a method for you to demonstrate compliance without the need to conduct for a HAP emissions test. In lieu of these equations, you can elect to use site-specific organic HAP emissions factors to demonstrate compliance provided your site-specific organic HAP emissions factors are incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data. You may also use the organic HAP emissions factors calculated using the equations in Table 1 to this subpart, combined with resin and gel coat use data, to calculate your organic HAP emissions.

§ 63.5797 How do I determine the organic HAP content of my resins and gel coats?

In order to determine the organic HAP content of resins and gel coats, you may rely on information provided by the material manufacturer, such as manufacturer's formulation data and material safety data sheets (MSDS), using the procedures specified in paragraphs (a) through (c) of this section, as applicable.

- (a) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for Occupational Safety and Health Administration-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other organic HAP compounds.
- (b) If the organic HAP content is provided by the material supplier or manufacturer as a range, you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content, such as an analysis of the material by EPA Method 311 of appendix A to 40 CFR part 63, exceeds the upper limit of the range of the total organic HAP content provided by the material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.
- (c) If the organic HAP content is provided as a single value, you may use that value to determine compliance. If a separate measurement of the total organic HAP content is made and is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you still may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to determine compliance.

§ 63.5798 What if I want to use, or I manufacture, an application technology (new or existing) whose organic HAP emissions characteristics are not represented by the equations in Table 1 to this subpart?

If you wish to use a resin or gel coat application technology (new or existing), whose emission characteristics are not represented by the equations in Table 1 to this subpart, you may use the procedures in paragraphs (a) or (b) of this section to establish an organic HAP emissions factor. This organic HAP emissions factor may then be used to determine compliance with the emission limits in this subpart, and to calculate facility organic HAP emissions.

- (a) Perform an organic HAP emissions test to determine a site-specific organic HAP emissions factor using the test procedures in § 63.5850.
- (b) Submit a petition to the Administrator for administrative review of this subpart. This petition must contain a description of the resin or gel coat application technology and supporting organic HAP emissions test data obtained using EPA test methods or their equivalent. The emission test data should be obtained using a range of resin or gel coat HAP contents to demonstrate the effectiveness of the technology under the different conditions, and to demonstrate that the technology will be effective at different sites. We will review the submitted data, and, if appropriate, update the equations in Table 1 to this subpart.

Page 4 of 69

TV No. T057-39236-00042

§ 63.5799 How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining which paragraphs of § 63.5805 apply?

To calculate your facility's organic HAP emissions in tpy for purposes of determining which paragraphs in § 63.5805 apply to you, you must use the procedures in either paragraph (a) of this section for new facilities prior to startup, or paragraph (b) of this section for existing facilities and new facilities after startup. You are not required to calculate or report emissions under this section if you are an existing facility that does not have centrifugal casting or continuous lamination/casting operations, or a new facility that does not have any of the following operations: Open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing. Emissions calculation and emission reporting procedures in other sections of this subpart still apply. Calculate organic HAP emissions prior to any add-on control device, and do not include organic HAP emissions from any resin or gel coat used in operations subject to the Boat Manufacturing NESHAP, 40 CFR part 63, subpart VVVV, or from the manufacture of large parts as defined in § 63.5805(d)(2). For centrifugal casting operations at existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the Table 1 footnotes to this subpart present more information on calculating centrifugal casting organic HAP emissions. The timing and reporting of these calculations is discussed in paragraph (c) of this section.

- (a) For new facilities prior to startup, calculate a weighted average organic HAP emissions factor for the operations specified in § 63.5805(c) and (d) on a lbs/ton of resin and gel coat basis. Base the weighted average on your projected operation for the 12 months subsequent to facility startup. Multiply the weighted average organic HAP emissions factor by projected resin use over the same period. You may calculate your organic HAP emissions factor based on the factors in Table 1 to this subpart, or you may use any HAP emissions factor approved by us, such as factors from the "Compilation of Air Pollutant Emissions Factors, Volume I: Stationary Point and Area Sources (AP-42)," or organic HAP emissions test data from similar facilities.
- (b) For existing facilities and new facilities after startup, you may use the procedures in either paragraph (b)(1) or (2) of this section. If the emission factors for an existing facility have changed over the period of time prior to their initial compliance date due to incorporation of pollution-prevention control techniques, existing facilities may base the average emission factor on their operations as they exist on the compliance date. If an existing facility has accepted an enforceable permit limit that would result in less than 100 tpy of HAP measured prior to any add-on controls, and can demonstrate that they will operate at that level subsequent to the compliance date, they can be deemed to be below the 100 tpy threshold.
- (1) Use a calculated emission factor. Calculate a weighted average organic HAP emissions factor on a lbs/ton of resin and gel coat basis. Base the weighted average on the prior 12 months of operation. Multiply the weighted average organic HAP emissions factor by resin and gel coat use over the same period. You may calculate this organic HAP emissions factor based on the equations in Table 1 to this subpart, or you may use any organic HAP emissions factor approved by us, such as factors from AP-42, or site-specific organic HAP emissions factors if they are supported by HAP emissions test data.
- (2) Conduct performance testing. Conduct performance testing using the test procedures in § 63.5850 to determine a site-specific organic HAP emissions factor in units of lbs/ton of resin and gel coat used. Conduct the test under conditions expected to result in the highest possible organic HAP emissions. Multiply this factor by annual resin and gel coat use to determine annual organic HAP emissions. This calculation must be repeated and reported annually.
- (c) Existing facilities must initially perform this calculation based on their 12 months of operation prior to April 21, 2003, and include this information with their initial notification report. Existing facilities must repeat the calculation based on their resin and gel coat use in the 12 months prior to their initial compliance date, and submit this information with their initial compliance report. After their initial compliance date, existing and new facilities must recalculate organic HAP emissions over the 12-month period ending June 30 or December 31, whichever date is the first date following their compliance date specified in § 63.5800. Subsequent calculations should cover the periods in the semiannual compliance reports.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

Page 5 of 69

TV No. T057-39236-00042

Compliance Dates and Standards

§ 63.5800 When do I have to comply with this subpart?

You must comply with the standards in this subpart by the dates specified in Table 2 to this subpart. Facilities meeting an organic HAP emissions standard based on a 12-month rolling average must begin collecting data on the compliance date in order to demonstrate compliance.

§ 63.5805 What standards must I meet to comply with this subpart?

You must meet the requirements of paragraphs (a) through (h) of this section that apply to you. You may elect to comply using any options to meet the standards described in §§ 63.5810 through 63.5830. Use the procedures in § 63.5799 to determine if you meet or exceed the 100 tpy threshold.

- (a) If you have an existing facility that has any centrifugal casting or continuous casting/lamination operations, you must meet the requirements of paragraph (a)(1) or (2) of this section:
- (1) If the combination of all centrifugal casting and continuous lamination/casting operations emit 100 tpy or more of HAP, you must reduce the total organic HAP emissions from centrifugal casting and continuous lamination/casting operations by at least 95 percent by weight. As an alternative to meeting the 95 percent by weight requirement, centrifugal casting operations may meet the applicable organic HAP emissions limits in Table 5 to this subpart and continuous lamination/casting operations may meet an organic HAP emissions limit of 1.47 lbs/ton of neat resin plus and neat gel coat plus applied. For centrifugal casting, the percent reduction requirement does not apply to organic HAP emissions that occur during resin application onto an open centrifugal casting mold using open molding application techniques.
- (2) If the combination of all centrifugal casting and continuous lamination/casting operations emit less than 100 tpy of HAP, then centrifugal casting and continuous lamination/casting operations must meet the appropriate requirements in Table 3 to this subpart.
- (b) All operations at existing facilities not listed in paragraph (a) of this section must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply, regardless of the quantity of HAP emitted.
- (c) If you have a new facility that emits less than 100 tpy of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply to you.
- (d)(1) Except as provided in paragraph (d)(2) of this section, if you have a new facility that emits 100 tpy or more of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must reduce the total organic HAP emissions from these operations by at least 95 percent by weight and meet any applicable work practice standards in Table 4 to this subpart that apply to you. As an alternative to meeting 95 percent by weight, you may meet the organic HAP emissions limits in Table 5 to this subpart. If you have a continuous lamination/casting operation, that operation may alternatively meet an organic HAP emissions limit of 1.47 lbs/ton of neat resin plus and neat gel coat plus applied.
- (2)(i) If your new facility manufactures large reinforced plastic composites parts using open molding or pultrusion operations, the specific open molding and pultrusion operations used to produce large parts are not required to reduce HAP emissions by 95 weight percent, but must meet the emission limits in Table 3 to this subpart.
- (ii) A large open molding part is defined as a part that, when the final finished part is enclosed in the smallest rectangular six-sided box into which the part can fit, the total interior volume of the box exceeds 250 cubic feet, or any interior sides of the box exceed 50 square feet.
- (iii) A large pultruded part is a part that exceeds an outside perimeter of 24 inches or has more than 350 reinforcements.

- Page 6 of 69 TV No. T057-39236-00042 Attachment B
- (e) If you have a new or existing facility subject to paragraph (a)(2) or (c) of this section at its initial compliance date that subsequently meets or exceeds the 100 tpy threshold in any calendar year, you must notify your permitting authority in your compliance report. You may at the same time request a one-time exemption from the requirements of paragraph (a)(1) or (d) of this section in your compliance report if you can demonstrate all of the following:
- (1) The exceedance of the threshold was due to circumstances that will not be repeated.
- (2) The average annual organic HAP emissions from the potentially affected operations for the last 3 years were below 100 tov.
- (3) Projected organic HAP emissions for the next calendar year are below 100 tpy, based on projected resin and gel coat use and the HAP emission factors calculated according to the procedures in § 63.5799.
- (f) If you apply for an exemption in paragraph (e) of this section and subsequently exceed the HAP emission thresholds specified in paragraph (a)(2) or (c) of this section over the next 12-month period, you must notify the permitting authority in your semiannual report, the exemption is removed, and your facility must comply with paragraph (a)(1) or (d) of this section within 3 years from the time your organic HAP emissions first exceeded the threshold.
- (g) If you have repair operations subject to this subpart as defined in § 63.5785, these repair operations must meet the requirements in Tables 3 and 4 to this subpart and are not required to meet the 95 percent organic HAP emissions reduction requirements in paragraph (a)(1) or (d) of this section.
- (h) If you use an add-on control device to comply with this subpart, you must meet all requirements contained in 40 CFR part 63, subpart SS.

[70 FR 50124, Aug. 25, 2005]

Options for Meeting Standards

§ 63.5810 What are my options for meeting the standards for open molding and centrifugal casting operations at new and existing sources?

You must use one of the following methods in paragraphs (a) through (d) of this section to meet the standards for open molding or centrifugal casting operations in Table 3 or 5 to this subpart. You may use any control method that reduces organic HAP emissions, including reducing resin and gel coat organic HAP content, changing to nonatomized mechanical application, using covered curing techniques, and routing part or all of your emissions to an add-on control. You may use different compliance options for the different operations listed in Table 3 or 5 to this subpart. The necessary calculations must be completed within 30 days after the end of each month. You may switch between the compliance options in paragraphs (a) through (d) of this section. When you change to an option based on a 12-month rolling average, you must base the average on the previous 12 months of data calculated using the compliance option you are changing to, unless you were previously using an option that did not require you to maintain records of resin and gel coat use. In this case, you must immediately begin collecting resin and gel coat use data and demonstrate compliance 12 months after changing options.

(a) Demonstrate that an individual resin or gel coat, as applied, meets the applicable emission limit in Table 3 or 5 to this subpart. (1) Calculate your actual organic HAP emissions factor for each different process stream within each operation type. A process stream is defined as each individual combination of resin or gel coat, application technique, and control technique. Process streams within operations types are considered different from each other if any of the following four characteristics vary: the neat resin plus or neat gel coat plus organic HAP content, the gel coat type, the application technique, or the control technique. You must calculate organic HAP emissions factors for each different process stream by using the appropriate equations in Table 1 to this subpart for open molding and for centrifugal casting, or site-specific organic HAP emissions factors discussed in § 63.5796. The emission factor calculation should include any and all emission reduction techniques used including any add-on controls. If you are using vapor suppressants to reduce HAP emissions, you must determine the vapor suppressant effectiveness (VSE) by conducting testing according to the procedures specified in appendix A to subpart WWWW of 40 CFR part 63. If you are using an add-on control device to reduce HAP emissions, you must determine the add-on control factor by conducting capture and control efficiency testing using the procedures specified in § 63.5850. The organic HAP

Page 7 of 69 TV No. T057-39236-00042

emissions factor calculated from the equations in Table 1 to this subpart, or a site-specific emissions factor, is multiplied by the add-on control factor to calculate the organic HAP emissions factor after control. Use Equation 1 of this section to calculate the add-on control factor used in the organic HAP emissions factor equations.

Add-on Control Factor =
$$1 - \frac{\% \text{ Control Efficiency}}{100}$$
 (Eq. 1)

Where:

Percent Control Efficiency=a value calculated from organic HAP emissions test measurements made according to the requirements of § 63.5850 to this subpart.

- (2) If the calculated emission factor is less than or equal to the appropriate emission limit, you have demonstrated that this process stream complies with the emission limit in Table 3 to this subpart. It is not necessary that all your process streams, considered individually, demonstrate compliance to use this option for some process streams. However, for any individual resin or gel coat you use, if any of the process streams that include that resin or gel coat are to be used in any averaging calculations described in paragraphs (b) through (d) of this section, then all process streams using that individual resin or gel coat must be included in the averaging calculations.
- (b) Demonstrate that, on average, you meet the individual organic HAP emissions limits for each combination of operation type and resin application method or gel coat type. Demonstrate that on average you meet the individual organic HAP emissions limits for each unique combination of operation type and resin application method or gel coat type shown in Table 3 to this subpart that applies to you.
- (1)(i) Group the process streams described in paragraph (a) to this section by operation type and resin application method or gel coat type listed in Table 3 to this subpart and then calculate a weighted average emission factor based on the amounts of each individual resin or gel coat used for the last 12 months. To do this, sum the product of each individual organic HAP emissions factor calculated in paragraph (a)(1) of this section and the amount of neat resin plus and neat gel coat plus usage that corresponds to the individual factors and divide the numerator by the total amount of neat resin plus and neat gel coat plus used in that operation type as shown in Equation 2 of this section.

Average organic
$$\sum_{i=1}^{n} (Actual \text{ Process Stream } EF_i * Material_i)$$

HAP Emissions = $\sum_{i=1}^{n} (Actual \text{ Process Stream } EF_i * Material_i)$

(Eq. 2)

Where:

Actual Process Stream EF; =actual organic HAP emissions factor for process stream i, lbs/ton;

Materiali = neat resin plus or neat gel coat plus used during the last 12 calendar months for process stream i, tons;

n=number of process streams where you calculated an organic HAP emissions factor.

- (ii) You may, but are not required to, include process streams where you have demonstrated compliance as described in paragraph (a) of this section, subject to the limitations described in paragraph (a)(2) of this section, and you are not required to and should not include process streams for which you will demonstrate compliance using the procedures in paragraph (d) of this section.
- (2) Compare each organic HAP emissions factor calculated in paragraph (b)(1) of this section with its corresponding organic HAP emissions limit in Table 3 or 5 to this subpart. If all emissions factors are equal to or less than their corresponding emission limits, then you are in compliance.

Page 8 of 69 TV No. T057-39236-00042

- (c) Demonstrate compliance with a weighted average emission limit. Demonstrate each month that you meet each weighted average of the organic HAP emissions limits in Table 3 or 5 to this subpart that apply to you. When using this option, you must demonstrate compliance with the weighted average organic HAP emissions limit for all your open molding operations, and then separately demonstrate compliance with the weighted average organic HAP emissions limit for all your centrifugal casting operations. Open molding operations and centrifugal casting operations may not be averaged with each other.
- (1) Each month calculate the weighted average organic HAP emissions limit for all open molding operations and the weighted average organic HAP emissions limit for all centrifugal casting operations for your facility for the last 12-month period to determine the organic HAP emissions limit you must meet. To do this, multiply the individual organic HAP emissions limits in Table 3 or 5 to this subpart for each open molding (centrifugal casting) operation type by the amount of neat resin plus or neat gel coat plus used in the last 12 months for each open molding (centrifugal casting) operation type, sum these results, and then divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) over the last 12 months as shown in Equation 3 of this section.

Where:

EL_i =organic HAP emissions limit for operation type i, lbs/ton from Tables 3 or 5 to this subpart;

Material_i =neat resin plus or neat gel coat plus used during the last 12-month period for operation type i, tons;

n=number of operations.

(2) Each month calculate your weighted average organic HAP emissions factor for open molding and centrifugal casting. To do this, multiply your actual open molding (centrifugal casting) operation organic HAP emissions factors calculated in paragraph (b)(1) of this section and the amount of neat resin plus and neat gel coat plus used in each open molding (centrifugal casting) operation type, sum the results, and divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) operations as shown in Equation 4 of this section.

Actual Weighted

Average organic

HAP Emissions

Factor

$$\frac{\sum_{i=1}^{n} (Actual Operation EF_i * Material_i)}{\sum_{i=1}^{n} Material_i}$$
(Eq. 4)

Where:

Actual Individual EF_i =Actual organic HAP emissions factor for operation type i, lbs/ton;

Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for operation type i, tons;

n=number of operations.

Page 9 of 69

TV No. T057-39236-00042

- (3) Compare the values calculated in paragraphs (c)(1) and (2) of this section. If each 12-month rolling average organic HAP emissions factor is less than or equal to the corresponding 12-month rolling average organic HAP emissions limit, then you are in compliance.
- (d) Meet the organic HAP emissions limit for one application method and use the same resin(s) for all application methods of that resin type. This option is limited to resins of the same type. The resin types for which this option may be used are noncorrosion-resistant, corrosion-resistant and/or high strength, and tooling.
- (1) For any combination of manual resin application, mechanical resin application, filament application, or centrifugal casting, you may elect to meet the organic HAP emissions limit for any one of these application methods and use the same resin in all of the resin application methods listed in this paragraph (d)(1). Table 7 to this subpart presents the possible combinations based on a facility selecting the application process that results in the highest allowable organic HAP content resin. If the resin organic HAP content is below the applicable value shown in Table 7 to this subpart, the resin is in compliance.
- (2) You may also use a weighted average organic HAP content for each application method described in paragraph (d)(1) of this section. Calculate the weighted average organic HAP content monthly. Use Equation 2 in paragraph (b)(1) of this section except substitute organic HAP content for organic HAP emissions factor. You are in compliance if the weighted average organic HAP content based on the last 12 months of resin use is less than or equal to the applicable organic HAP contents in Table 7 to this subpart.
- (3) You may simultaneously use the averaging provisions in paragraph (b) or (c) of this section to demonstrate compliance for any operations and/or resins you do not include in your compliance demonstrations in paragraphs (d)(1) and (2) of this section. However, any resins for which you claim compliance under the option in paragraphs (d)(1) and (2) of this section may not be included in any of the averaging calculations described in paragraph (b) or (c) of this section.
- (4) You do not have to keep records of resin use for any of the individual resins where you demonstrate compliance under the option in paragraph (d)(1) of this section unless you elect to include that resin in the averaging calculations described in paragraph (d)(2) of this section.

[70 FR 50125, Aug. 25, 2005]

§ 63.5820 What are my options for meeting the standards for continuous lamination/casting operations?

You must use one or more of the options in paragraphs (a) through (d) of this section to meet the standards in § 63.5805. Use the calculation procedures in §§ 63.5865 through 63.5890.

- (a) Compliant line option. Demonstrate that each continuous lamination line and each continuous casting line complies with the applicable standard.
- (b) Averaging option. Demonstrate that all continuous lamination and continuous casting lines combined, comply with the applicable standard.
- (c) Add-on control device option. If your operation must meet the 58.5 weight percent organic HAP emissions reduction limit in Table 3 to this subpart, you have the option of demonstrating that you achieve 95 percent reduction of all wet-out area organic HAP emissions.
- (d) Combination option. Use any combination of options in paragraphs (a) and (b) of this section or, for affected sources at existing facilities, any combination of options in paragraphs (a), (b), and (c) of this section (in which one or more lines meet the standards on their own, two or more lines averaged together meet the standards, and one or more lines have their wet-out areas controlled to a level of 95 percent).

Page 10 of 69

TV No. T057-39236-00042

§ 63.5830 What are my options for meeting the standards for pultrusion operations subject to the 60 weight percent organic HAP emissions reductions requirement?

You must use one or more of the options in paragraphs (a) through (e) of this section to meet the 60 weight percent organic HAP emissions limit in Table 3 to this subpart, as required in § 63.5805.

- (a) Achieve an overall reduction in organic HAP emissions of 60 weight percent by capturing the organic HAP emissions and venting them to a control device or any combination of control devices. Conduct capture and destruction efficiency testing as specified in 63.5850 to this subpart to determine the percent organic HAP emissions reduction.
- (b) Design, install, and operate wet area enclosures and resin drip collection systems on pultrusion machines that meet the criteria in paragraphs (b)(1) through (10) of this section.
- (1) The enclosure must cover and enclose the open resin bath and the forming area in which reinforcements are prewet or wet-out and moving toward the die(s). The surfaces of the enclosure must be closed except for openings to allow material to enter and exit the enclosure.
- (2) For open bath pultrusion machines with a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 12.5 inches or less of the entrance of the radio frequency pre-heat unit. If the stock that is within 12.5 inches or less of the entrance to the radio frequency pre-heat unit has any drip, it must be enclosed. The stock exiting the radio frequency pre-heat unit is not required to be in an enclosure if the stock has no drip between the exit of the radio frequency pre-heat unit to within 0.5 inches of the entrance of the die.
- (3) For open bath pultrusion machines without a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 0.5 inches or less of the die entrance.
- (4) For pultrusion lines with pre-wet area(s) prior to direct die injection, no more than 12.5 inches of open wet stock is permitted between the entrance of the first pre-wet area and the entrance to the die. If the pre-wet stock has any drip, it must be enclosed.
- (5) The total open area of the enclosure must not exceed two times the cross sectional area of the puller window(s) and must comply with the requirements in paragraphs (b)(5)(i) through (iii) of this section.
- (i) All areas that are open need to be included in the total open area calculation with the exception of access panels, doors, and/or hatches that are part of the enclosure.
- (ii) The area that is displaced by entering reinforcement or exiting product is considered open.
- (iii) Areas that are covered by brush covers are considered closed.
- (6) Open areas for level control devices, monitoring devices, agitation shafts, and fill hoses must have no more than 1.0 inch clearance.
- (7) The access panels, doors, and/or hatches that are part of the enclosure must close tightly. Damaged access panels, doors, and/or hatches that do not close tightly must be replaced.
- (8) The enclosure may not be removed from the pultrusion line, and access panels, doors, and/or hatches that are part of the enclosure must remain closed whenever resin is in the bath, except for the time period discussed in paragraph (b)(9) of this section.
- (9) The maximum length of time the enclosure may be removed from the pultrusion line or the access panels, doors, and/or hatches and may be open, is 30 minutes per 8 hour shift, 45 minutes per 12 hour shift, or 90 minutes per day if the machine is operated for 24 hours in a day. The time restrictions do not apply if the open doors or panels do not cause the limit of two times the puller window area to be exceeded. Facilities may average the times that access panels, doors, and/or hatches are open across all operating lines. In that case the average must not exceed the times

Page 11 of 69

TV No. T057-39236-00042

shown in this paragraph (b)(9). All lines included in the average must have operated the entire time period being averaged.

- (10) No fans, blowers, and/or air lines may be allowed within the enclosure. The enclosure must not be ventilated.
- (c) Use direct die injection pultrusion machines with resin drip collection systems that meet all the criteria specified in paragraphs (c)(1) through (3) of this section.
- (1) All the resin that is applied to the reinforcement is delivered directly to the die.
- (2) No exposed resin is present, except at the face of the die.
- (3) Resin drip is captured in a closed system and recycled back to the process.
- (d) Use a preform injection system that meets the definition in § 63.5935
- (e) Use any combination of options in paragraphs (a) through (d) of this section in which different pultrusion lines comply with different options described in paragraphs (a) through (d) of this section, and
- (1) Each individual pultrusion machine meets the 60 percent reduction requirement, or
- (2) The weighted average reduction based on resin throughput of all machines combined is 60 percent. For purposes of the average percent reduction calculation, wet area enclosures reduce organic HAP emissions by 60 percent, and direct die injection and preform injection reduce organic HAP emissions by 90 percent.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50127, Aug. 25, 2005]

General Compliance Requirements

§ 63.5835 What are my general requirements for complying with this subpart?

- (a) You must be in compliance at all times with the work practice standards in Table 4 to this subpart, as well as the organic HAP emissions limits in Tables 3, or 5, or the organic HAP content limits in Table 7 to this subpart, as applicable, that you are meeting without the use of add-on controls.
- (b) You must be in compliance with all organic HAP emissions limits in this subpart that you meet using add-on controls, except during periods of startup, shutdown, and malfunction.
- (c) You must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions in § 63.6(e)(1)(i).
- (d) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3) for any organic HAP emissions limits you meet using an add-on control.

[68 FR 19402, Apr. 21, 2003, as amended at 71 FR 20466, Apr. 20, 2006]

Testing and Initial Compliance Requirements

§ 63.5840 By what date must I conduct a performance test or other initial compliance demonstration?

You must conduct performance tests, performance evaluations, design evaluations, capture efficiency testing, and other initial compliance demonstrations by the compliance date specified in Table 2 to this subpart, with three exceptions. Open molding and centrifugal casting operations that elect to meet an organic HAP emissions limit on a 12-month rolling average must initiate collection of the required data on the compliance date, and demonstrate

Page 12 of 69

TV No. T057-39236-00042

compliance 1 year after the compliance date. New sources that use add-on controls to initially meet compliance must demonstrate compliance within 180 days after their compliance date.

§ 63.5845 When must I conduct subsequent performance tests?

You must conduct a performance test every 5 years following the initial performance test for any standard you meet with an add-on control device.

§ 63.5850 How do I conduct performance tests, performance evaluations, and design evaluations?

- (a) If you are using any add-on controls to meet an organic HAP emissions limit in this subpart, you must conduct each performance test, performance evaluation, and design evaluation in 40 CFR part 63, subpart SS, that applies to you. The basic requirements for performance tests, performance evaluations, and design evaluations are presented in Table 6 to this subpart.
- (b) Each performance test must be conducted according to the requirements in § 63.7(e)(1) and under the specific conditions that 40 CFR part 63, subpart SS, specifies.
- (c) Each performance evaluation must be conducted according to the requirements in § 63.8(e) as applicable and under the specific conditions that 40 CFR part 63, subpart SS, specifies.
- (d) You may not conduct performance tests or performance evaluations during periods of startup, shutdown, or malfunction, as specified in § 63.7(e)(1).
- (e) You must conduct the control device performance test using the emission measurement methods specified in paragraphs (e)(1) through (5) of this section.
- (1) Use either Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select the sampling sites.
- (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.
- (3) Use Method 18 of appendix A to 40 CFR part 60 to measure organic HAP emissions or use Method 25A of appendix A to 40 CFR part 60 to measure total gaseous organic emissions as a surrogate for total organic HAP emissions. If you use Method 25A, you must assume that all gaseous organic emissions measured as carbon are organic HAP emissions. If you use Method 18 and the number of organic HAP in the exhaust stream exceeds five, you must take into account the use of multiple chromatographic columns and analytical techniques to get an accurate measure of at least 90 percent of the total organic HAP mass emissions. Do not use Method 18 to measure organic HAP emissions from a combustion device; use instead Method 25A and assume that all gaseous organic mass emissions measured as carbon are organic HAP emissions.
- (4) You may use American Society for Testing and Materials (ASTM) D6420-99 (available for purchase from at least one of the following addresses: 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.) in lieu of Method 18 of 40 CFR part 60, appendix A, under the conditions specified in paragraphs (c)(4)(i) through (iii) of this section.
- (i) If the target compound(s) is listed in Section 1.1 of ASTM D6420-99 and the target concentration is between 150 parts per billion by volume and 100 parts per million by volume.
- (ii) If the target compound(s) is not listed in Section 1.1 of ASTM D6420-99, but is potentially detected by mass spectrometry, an additional system continuing calibration check after each run, as detailed in Section 10.5.3 of ASTM D6420-99, must be followed, met, documented, and submitted with the performance test report even if you do not use a moisture condenser or the compound is not considered soluble.
- (iii) If a minimum of one sample/analysis cycle is completed at least every 15 minutes.

Page 13 of 69

TV No. T057-39236-00042

- (5) Use the procedures in EPA Method 3B of appendix A to 40 CFR part 60 to determine an oxygen correction factor if required by § 63.997(e)(2)(iii)(C). You may use American Society of Mechanical Engineers (ASME) PTC 19-10-1981-Part 10 (available for purchase from ASME, P.O. Box 2900, 22 Law Drive, Fairfield, New Jersey, 07007-2900, or online at www.asme.org/catalog) as an alternative to EPA Method 3B of appendix A to 40 CFR part 60.
- (f) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates.
- (g) If you are using a concentrator/oxidizer control device, you must test the combined flow upstream of the concentrator, and the combined outlet flow from both the oxidizer and the concentrator to determine the overall control device efficiency. If the outlet flow from the concentrator and oxidizer are exhausted in separate stacks, you must test both stacks simultaneously with the inlet to the concentrator to determine the overall control device efficiency.
- (h) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device.

§ 63.5855 What are my monitor installation and operation requirements?

You must monitor and operate all add-on control devices according to the procedures in 40 CFR part 63, subpart SS.

§ 63.5860 How do I demonstrate initial compliance with the standards?

- (a) You demonstrate initial compliance with each organic HAP emissions standard in paragraphs (a) through (h) of § 63.5805 that applies to you by using the procedures shown in Tables 8 and 9 to this subpart.
- (b) If using an add-on control device to demonstrate compliance, you must also establish each control device operating limit in 40 CFR part 63, subpart SS, that applies to you.

Emission Factor, Percent Reduction, and Capture Efficiency Calculation Procedures for Continuous Lamination/Casting Operations

§ 63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations?

- (a) For continuous lamination/casting affected sources complying with a percent reduction requirement, you must generate the data identified in Tables 10 and 11 to this subpart for each data requirement that applies to your facility.
- (b) For continuous lamination/casting affected sources complying with a lbs/ton limit, you must generate the data identified in Tables 11 and 12 to this subpart for each data requirement that applies to your facility.

§ 63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations?

To calculate your annual uncontrolled and controlled organic HAP emissions from your wet-out areas and from your ovens, you must develop uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to apply to each formula applied on each line, determine how much of each formula for each end product is applied each year on each line, and assign uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to each formula. You must determine the overall capture efficiency using the procedures in § 63.5850 to this subpart.

Page 14 of 69

TV No. T057-39236-00042

- (a) To develop uncontrolled and controlled organic HAP emissions estimation equations and factors, you must, at a minimum, do the following, as specified in paragraphs (a)(1) through (6) of this section:
- (1) Identify each end product and the thickness of each end product produced on the line. Separate end products into the following end product groupings, as applicable: corrosion-resistant gel coated end products, noncorrosion-resistant gel coated end products, corrosion-resistant nongel coated end products, and noncorrosion-resistant nongel coated end products. This step creates end product/thickness combinations.
- (2) Identify each formula used on the line to produce each end product/thickness combination. Identify the amount of each such formula applied per year. Rank each formula used to produce each end product/thickness combination according to usage within each end product/thickness combination.
- (3) For each end product/thickness combination being produced, select the formula with the highest usage rate for testing.
- (4) If not already selected, also select the worst-case formula (likely to be associated with the formula with the highest organic HAP content, type of HAP, application of gel coat, thin product, low line speed, higher resin table temperature) amongst all formulae. (You may use the results of the worst-case formula test for all formulae if desired to limit the amount of testing required.)
- (5) For each formula selected for testing, conduct at least one test (consisting of three runs). During the test, track information on organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table.
- (6) Using the test results, develop uncontrolled and controlled organic HAP emissions estimation equations (or factors) or series of equations (or factors) that best fit the results for estimating uncontrolled and controlled organic HAP emissions, taking into account the organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table.
- (b) In lieu of using the method specified in paragraph (a) of this section for developing uncontrolled and controlled organic HAP emissions estimation equations and factors, you may either method specified in paragraphs (b)(1) and (2) of this section, as applicable.
- (1) For either uncontrolled or controlled organic HAP emissions estimates, you may use previously established, facility-specific organic HAP emissions equations or factors, provided they allow estimation of both wet-out area and oven organic HAP emissions, where necessary, and have been approved by your permitting authority. If a previously established equation or factor is specific to the wet-out area only, or to the oven only, then you must develop the corresponding uncontrolled or controlled equation or factor for the other organic HAP emissions source.
- (2) For uncontrolled (controlled) organic HAP emissions estimates, you may use controlled (uncontrolled) organic HAP emissions estimates and control device destruction efficiency to calculate your uncontrolled (controlled) organic HAP emissions provided the control device destruction efficiency was calculated at the same time you collected the data to develop your facility's controlled (uncontrolled) organic HAP emissions estimation equations and factors.
- (c) Assign to each formula an uncontrolled organic HAP emissions estimation equation or factor based on the end product/thickness combination for which that formula is used.
- (d)(1) To calculate your annual uncontrolled organic HAP emissions from wet-out areas that do not have any capture and control and from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to a control device, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results.
- (2) To calculate your annual uncontrolled organic HAP emissions that escape from the enclosure on the wet-out area, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor, sum the individual results, and multiply the summation by 1 minus the percent capture (expressed as a fraction).

Page 15 of 69

TV No. T057-39236-00042

(3) To calculate your annual uncontrolled oven organic HAP emissions, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor and sum the individual results.

(4) To calculate your annual controlled organic HAP emissions, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results to obtain total annual controlled organic HAP emissions.

(e) Where a facility is calculating both uncontrolled and controlled organic HAP emissions estimation equations and factors, you must test the same formulae. In addition, you must develop both sets of equations and factors from the same tests.

§ 63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations?

- (a) The capture efficiency of a wet-out area enclosure is assumed to be 100 percent if it meets the design and operation requirements for a permanent total enclosure (PTE) specified in EPA Method 204 of appendix M to 40 CFR part 51. If a PTE does not exist, then a temporary total enclosure must be constructed and verified using EPA Method 204, and capture efficiency testing must be determined using EPA Methods 204B through E of appendix M to 40 CFR part 51.
- (b) The capture efficiency of an oven is to be considered 100 percent, provided the oven is operated under negative pressure.

§ 63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations?

Use the following procedures to determine how much neat resin plus and neat gel coat plus is applied to the line each year.

- (a) Track formula usage by end product/thickness combinations.
- (b) Use in-house records to show usage. This may be either from automated systems or manual records.
- (c) Record daily the usage of each formula/end product combination on each line. This is to be recorded at the end of each run (*i.e.*, when a changeover in formula or product is made) and at the end of each shift.
- (d) Sum the amounts from the daily records to calculate annual usage of each formula/end product combination by line.

§ 63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/casting operations?

You may calculate percent reduction using any of the methods in paragraphs (a) through (d) of this section.

(a) Compliant line option. If all of your wet-out areas have PTE that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51, and all of your wet-out area organic HAP emissions and oven organic HAP emissions are vented to an add-on control device, use Equation 1 of this section to demonstrate compliance. In all other situations, use Equation 2 of this section to demonstrate compliance.

$$PR = \frac{(\text{Inlet}) - (\text{Outlet})}{(\text{Inlet})} \times 100 \quad (\text{Eq. 1})$$

Where:

PR=percent reduction;

Page 16 of 69 TV No. T057-39236-00042

Inlet+HAP emissions entering the control device, lbs per year;

Outlet=HAP emissions existing the control device to the atmosphere, lbs per year.

$$PR = \frac{(WAE_{ci} + O_{ci}) - (WAE_{co} + O_{co})}{(WAE_{ci} + WAE_{n} + O_{ci} + O_{n})} \times 100$$
 (Eq. 2)

Where:

PR=percent reduction;

WAEici =wet-out area organic HAP emissions, lbs per year, vented to a control device;

WAEiu =wet-out area organic HAP emissions, lbs per year, not vented to a control device;

Oju =oven organic HAP emissions, lbs per year, not vented to a control device;

Ojci =oven organic HAP emissions, lbs per year, vented to a control device;

WAEico =wet-out area organic HAP emissions, lbs per year, from the control device outlet;

Ojco =oven organic HAP emissions, lbs per year, from the control device outlet.

(b) Averaging option. Use Equation 3 of this section to calculate percent reduction.

$$PR = \frac{\left(\sum_{i=1}^{m} WAEi_{ci} + \sum_{j=1}^{n} Oj_{ci}\right) - \left(\sum_{i=1}^{m} WAEi_{co} + \sum_{j=1}^{n} Oj_{co}\right)}{\left(\sum_{i=1}^{m} WAEi_{ci} + \sum_{j=1}^{n} Oj_{ci} + \sum_{i=1}^{m} WAEi_{u} + \sum_{j=1}^{n} Oj_{u}\right)} \times 100 \quad (Eq. 3)$$

Where:

PR=percent reduction;

WAEici =wet-out area organic HAP emissions from wet-out area i, lbs per year, sent to a control device;

WAEiu =wet-out area organic HAP emissions from wet-out area i, lbs per year, not sent to a control device;

WAEi∞ =wet-out area organic HAP emissions from wet-out area i, lbs per year, at the outlet of a control device;

Oju =organic HAP emissions from oven j, lbs per year, not sent to a control device;

Ojci =organic HAP emissions from oven j, lbs per year, sent to a control device;

O_{jco} =organic HAP emissions from oven j, lbs per year, at the outlet of the control device;

m=number of wet-out areas;

Page 17 of 69 TV No. T057-39236-00042

n=number of ovens.

- (c) Add-on control device option. Use Equation 1 of this section to calculate percent reduction.
- (d) Combination option. Use Equations 1 through 3 of this section, as applicable, to calculate percent reduction.

[70 FR 50127, Aug. 25, 2005]

§ 63.5890 How do I calculate an organic HAP emissions factor to demonstrate compliance for continuous lamination/casting operations?

(a) Compliant line option. Use Equation 1 of this section to calculate an organic HAP emissions factor in lbs/ton.

$$E = \frac{WAE_u + WAE_c + O_u + O_c}{(R + G)} \quad (Eq. \ 1)$$

Where:

E=HAP emissions factor in lbs/ton of resin and gel coat

WAE_u =uncontrolled wet-out area organic HAP emissions, lbs per year

WAEc =controlled wet-out area organic HAP emissions, lbs per year

O_u =uncontrolled oven organic HAP emissions, lbs per year

Oc =controlled oven organic HAP emissions, lbs per year

R=total usage of neat resin plus, tpy

G=total usage of neat gel coat plus, tpy

(b) Averaging option. Use Equation 2 of this section to demonstrate compliance.

$$E = \frac{\sum_{i=1}^{m} WAE_{ui} + \sum_{i=1}^{o} WAE_{ci} + \sum_{j=1}^{n} O_{uj} + \sum_{j=1}^{p} O_{cj}}{(R + G)}$$
 (Eq. 2)

Where:

E=HAP emissions factor in lbs/ton of resin and gel coat

WAEui =uncontrolled organic HAP emissions from wet-out area i, lbs per year

WAEci =controlled organic HAP emissions from wet-out area i, lbs per year

O_{uj} =uncontrolled organic HAP emissions from oven j, lbs per year

Ocj =controlled organic HAP emissions from oven j, lbs per year

Page 18 of 69 TV No. T057-39236-00042

i=number of wet-out areas

j=number of ovens

m=number of wet-out areas uncontrolled

n=number of ovens uncontrolled

o=number of wet-out areas controlled

p=number of ovens controlled

R=total usage of neat resin plus, tpy

G=total usage of neat gel coat plus, tpy

(c) Combination option. Use Equations 1 and 2 of this section, as applicable, to demonstrate compliance.

Continuous Compliance Requirements

§ 63.5895 How do I monitor and collect data to demonstrate continuous compliance?

- (a) During production, you must collect and keep a record of data as indicated in 40 CFR part 63, subpart SS, if you are using an add-on control device.
- (b) You must monitor and collect data as specified in paragraphs (b)(1) through (4) of this section.
- (1) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), you must conduct all monitoring in continuous operation (or collect data at all required intervals) at all times that the affected source is operating.
- (2) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities for purposes to this subpart, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing the operation of the control device and associated control system.
- (3) At all times, you must maintain necessary parts for routine repairs of the monitoring equipment.
- (4) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring equipment to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP emissions limits based on an organic HAP emissions limit in Tables 3 or 5 to this subpart. You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP content limits in Table 7 to this subpart if you are averaging organic HAP contents. Resin use records may be based on purchase records if you can reasonably estimate how the resin is applied. The organic HAP content records may be based on MSDS or on resin specifications supplied by the resin supplier.
- (d) Resin and gel coat use records are not required for the individual resins and gel coats that are demonstrated, as applied, to meet their applicable emission as defined in § 63.5810(a). However, you must retain the records of resin and gel coat organic HAP content, and you must include the list of these resins and gel coats and identify their application methods in your semiannual compliance reports. If after you have initially demonstrated that a specific combination of an individual resin or gel coat, application method, and controls meets its applicable emission limit,

Page 19 of 69

TV No. T057-39236-00042

and the resin or gel coat changes or the organic HAP content increases, or you change the application method or controls, then you again must demonstrate that the individual resin or gel coat meets its emission limit as specified in paragraph (a) of § 63.5810. If any of the previously mentioned changes results in a situation where an individual resin or gel coat now exceeds its applicable emission limit in Table 3 or 5 of this subpart, you must begin collecting resin and gel coat use records and calculate compliance using one of the averaging options on a 12-month rolling average.

(e) For each of your pultrusion machines, you must record all times that wet area enclosures doors or covers are open and there is resin present in the resin bath.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§ 63.5900 How do I demonstrate continuous compliance with the standards?

- (a) You must demonstrate continuous compliance with each standard in § 63.5805 that applies to you according to the methods specified in paragraphs (a)(1) through (3) of this section.
- (1) Compliance with organic HAP emissions limits for sources using add-on control devices is demonstrated following the procedures in 40 CFR part 63, subpart SS. Sources using add-on controls may also use continuous emissions monitors to demonstrate continuous compliance as an alternative to control parameter monitoring.
- (2) Compliance with organic HAP emissions limits is demonstrated by maintaining an organic HAP emissions factor value less than or equal to the appropriate organic HAP emissions limit listed in Table 3 or 5 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that individual resins and gel coats, as applied, meet the appropriate organic HAP emissions limits, as discussed in § 63.5895(d).
- (3) Compliance with organic HAP content limits in Table 7 to this subpart is demonstrated by maintaining an average organic HAP content value less than or equal to the appropriate organic HAP contents listed in Table 7 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that resins and gel coats individually meet the appropriate organic HAP content limits in Table 7 to this subpart, as discussed in § 63.5895(d).
- (4) Compliance with the work practice standards in Table 4 to this subpart is demonstrated by performing the work practice required for your operation.
- (b) You must report each deviation from each standard in § 63.5805 that applies to you. The deviations must be reported according to the requirements in § 63.5910.
- (c) Except as provided in paragraph (d) of this section, during periods of startup, shutdown or malfunction, you must meet the organic HAP emissions limits and work practice standards that apply to you.
- (d) When you use an add-on control device to meet standards in § 63.5805, you are not required to meet those standards during periods of startup, shutdown, or malfunction, but you must operate your affected source to minimize emissions in accordance with § 63.6(e)(1).
- (e) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of malfunction for those affected sources and standards specified in paragraph (d) of this section are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with § 63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, and malfunction are violations, according to the provisions in § 63.6(e).

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005; 71 FR 20466, Apr. 20, 2006]

Page 20 of 69

TV No. T057-39236-00042

Notifications, Reports, and Records

§ 63.5905 What notifications must I submit and when?

- (a) You must submit all of the notifications in Table 13 to this subpart that apply to you by the dates specified in Table 13 to this subpart. The notifications are described more fully in 40 CFR part 63, subpart A, referenced in Table 13 to this subpart.
- (b) If you change any information submitted in any notification, you must submit the changes in writing to the Administrator within 15 calendar days after the change.

§ 63.5910 What reports must I submit and when?

- (a) You must submit each report in Table 14 to this subpart that applies to you.
- (b) Unless the Administrator has approved a different schedule for submission of reports under § 63.10(a), you must submit each report by the date specified in Table 14 to this subpart and according to paragraphs (b)(1) through (5) of this section.
- (1) The first compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.5800 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in § 63.5800.
- (2) The first compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in § 63,5800.
- (3) Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
- (4) Each subsequent compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
- (5) For each affected source that is subject to permitting requirements pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to § 70.6 (a)(3)(iii)(A) or § 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (4) of this section.
- (c) The compliance report must contain the information in paragraphs (c)(1) through (6) of this section:
- (1) Company name and address.
- (2) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
- (3) Date of the report and beginning and ending dates of the reporting period.
- (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information in § 63.10(d)(5)(i).
- (5) If there are no deviations from any organic HAP emissions limitations (emissions limit and operating limit) that apply to you, and there are no deviations from the requirements for work practice standards in Table 4 to this subpart, a statement that there were no deviations from the organic HAP emissions limitations or work practice standards during the reporting period.

Page 21 of 69

TV No. T057-39236-00042

- (6) If there were no periods during which the continuous monitoring system (CMS), including a continuous emissions monitoring system (CEMS) and an operating parameter monitoring system were out of control, as specified in § 63.8(c)(7), a statement that there were no periods during which the CMS was out of control during the reporting period.
- (d) For each deviation from an organic HAP emissions limitation (*i.e.*, emissions limit and operating limit) and for each deviation from the requirements for work practice standards that occurs at an affected source where you are not using a CMS to comply with the organic HAP emissions limitations or work practice standards in this subpart, the compliance report must contain the information in paragraphs (c)(1) through (4) of this section and in paragraphs (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction.
- (1) The total operating time of each affected source during the reporting period.
- (2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- (e) For each deviation from an organic HAP emissions limitation (*i.e.*, emissions limit and operating limit) occurring at an affected source where you are using a CMS to comply with the organic HAP emissions limitation in this subpart, you must include the information in paragraphs (c)(1) through (4) of this section and in paragraphs (e)(1) through (12) of this section. This includes periods of startup, shutdown, and malfunction.
- (1) The date and time that each malfunction started and stopped.
- (2) The date and time that each CMS was inoperative, except for zero (low-level) and high-level checks.
- (3) The date, time, and duration that each CMS was out of control, including the information in § 63.8(c)(8).
- (4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of startup, shutdown, or malfunction, or during another period.
- (5) A summary of the total duration of the deviation during the reporting period and the total duration as a percent of the total source operating time during that reporting period.
- (6) A breakdown of the total duration of the deviations during the reporting period into those that are due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes.
- (7) A summary of the total duration of CMS downtime during the reporting period and the total duration of CMS downtime as a percent of the total source operating time during that reporting period.
- (8) An identification of each organic HAP that was monitored at the affected source.
- (9) A brief description of the process units.
- (10) A brief description of the CMS.
- (11) The date of the latest CMS certification or audit.
- (12) A description of any changes in CMS, processes, or controls since the last reporting period.
- (f) You must report if you have exceeded the 100 tpy organic HAP emissions threshold if that exceedance would make your facility subject to § 63.5805(a)(1) or (d). Include with this report any request for an exemption under § 63.5805(e). If you receive an exemption under § 63.5805(e) and subsequently exceed the 100 tpy organic HAP emissions threshold, you must report this exceedance as required in § 63.5805(f).
- (g) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by § 70.6(a)(3)(iii)(A) or

Page 22 of 69

TV No. T057-39236-00042

- § 71.6(a)(3)(iii)(A). If an affected source submits a compliance report pursuant to Table 14 to this subpart along with, or as part of, the semiannual monitoring report required by § 70.6(a)(3)(iii)(A) or § 71.6(a)(3)(iii)(A), and the compliance report includes all required information concerning deviations from any organic HAP emissions limitation (including any operating limit) or work practice requirement in this subpart, submission of the compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permitting authority.
- (h) Submit compliance reports and startup, shutdown, and malfunction reports based on the requirements in table 14 to this subpart, and not based on the requirements in § 63.999.
- (i) Where multiple compliance options are available, you must state in your next compliance report if you have changed compliance options since your last compliance report.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§ 63.5915 What records must I keep?

- (a) You must keep the records listed in paragraphs (a)(1) through (3) of this section.
- (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirements in § 63.10(b)(2)(xiv).
- (2) The records in § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.
- (3) Records of performance tests, design, and performance evaluations as required in § 63.10(b)(2).
- (b) If you use an add-on control device, you must keep all records required in 40 CFR part 63, subpart SS, to show continuous compliance with this subpart.
- (c) You must keep all data, assumptions, and calculations used to determine organic HAP emissions factors or average organic HAP contents for operations listed in tables 3, 5, and 7 to this subpart.
- (d) You must keep a certified statement that you are in compliance with the work practice requirements in Table 4 to this subpart, as applicable.
- (e) For a new or existing continuous lamination/ casting operation, you must keep the records listed in paragraphs (e)(1) through (4) of this section, when complying with the percent reduction and/or lbs/ton requirements specified in paragraphs (a) and (c) through (d) of § 63.5805.
- (1) You must keep all data, assumptions, and calculations used to determine percent reduction and/or lbs/ton as applicable:
- (2) You must keep a brief description of the rationale for the assignment of an equation or factor to each formula;
- (3) When using facility-specific organic HAP emissions estimation equations or factors, you must keep all data, assumptions, and calculations used to derive the organic HAP emissions estimation equations and factors and identification and rationale for the worst-case formula; and
- (4) For all organic HAP emissions estimation equations and organic HAP emissions factors, you must keep documentation that the appropriate permitting authority has approved them.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]

Page 23 of 69

TV No. T057-39236-00042

§ 63.5920 In what form and how long must I keep my records?

- (a) You must maintain all applicable records in such a manner that they can be readily accessed and are suitable for inspection according to § 63.10(b)(1).
- (b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- (c) You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1). You can keep the records offsite for the remaining 3 years.
- (d) You may keep records in hard copy or computer readable form including, but not limited to, paper, microfilm, computer floppy disk, magnetic tape, or microfiche.

Other Requirements and Information

§ 63.5925 What parts of the General Provisions apply to me?

Table 15 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you.

§ 63.5930 Who implements and enforces this subpart?

- (a) This subpart can be administered by us, the EPA, or a delegated authority such as your State, local, or tribal agency. If the EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency has the authority to administer and enforce this subpart. You should contact your EPA Regional Office to find out if this subpart is delegated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are not delegated.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section:
- (1) Approval of alternatives to the organic HAP emissions standards in § 63.5805 under § 63.6(g).
- (2) Approval of major changes to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.
- (3) Approval of major changes to monitoring under § 63.8(f) and as defined in § 63.90.
- (4) Approval of major changes to recordkeeping and reporting under § 63.10(f) and as defined in § 63.90.

§ 63.5935 What definitions apply to this subpart?

Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows:

Atomized mechanical application means application of resin or gel coat with spray equipment that separates the liquid into a fine mist. This fine mist may be created by forcing the liquid under high pressure through an elliptical orifice, bombarding a liquid stream with directed air jets, or a combination of these techniques.

Bulk molding compound (BMC) means a putty-like molding compound containing resin(s) in a form that is ready to mold. In addition to resins, BMC may contain catalysts, fillers, and reinforcements. Bulk molding compound can be used in compression molding and injection molding operations to manufacture reinforced plastic composites products.

Page 24 of 69

TV No. T057-39236-00042

BMC manufacturing means a process that involves the preparation of BMC.

Centrifugal casting means a process for fabricating cylindrical composites, such as pipes, in which composite materials are positioned inside a rotating hollow mandrel and held in place by centrifugal forces until the part is sufficiently cured to maintain its physical shape.

Charge means the amount of SMC or BMC that is placed into a compression or injection mold necessary to complete one mold cycle.

Cleaning means removal of composite materials, such as cured and uncured resin from equipment, finished surfaces, floors, hands of employees, or any other surfaces.

Clear production gel coat means an unpigmented, quick-setting resin used to improve the surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Closed molding means a grouping of processes for fabricating composites in a way that HAP-containing materials are not exposed to the atmosphere except during the material loading stage (e.g., compression molding, injection molding, and resin transfer molding). Processes where the mold is covered with plastic (or equivalent material) prior to resin application, and the resin is injected into the covered mold are also considered closed molding.

Composite means a shaped and cured part produced by using composite materials.

Composite materials means the raw materials used to make composites. The raw materials include styrene containing resins. They may also include gel coat, monomer, catalyst, pigment, filler, and reinforcement.

Compression molding means a closed molding process for fabricating composites in which composite materials are placed inside matched dies that are used to cure the materials under heat and pressure without exposure to the atmosphere. The addition of mold paste or in-mold coating is considered part of the closed molding process. The composite materials used in this process are generally SMC or BMC.

Compression/injection molding means a grouping of processes that involves the use of compression molding and/or injection molding.

Continuous casting means a continuous process for fabricating composites in which composite materials are placed on an in-line conveyor belt to produce cast sheets that are cured in an oven.

Continuous lamination means a continuous process for fabricating composites in which composite materials are typically sandwiched between plastic films, pulled through compaction rollers, and cured in an oven. This process is generally used to produce flat or corrugated products on an in-line conveyor.

Continuous lamination/casting means a grouping of processes that involves the use of continuous lamination and/or continuous casting.

Controlled emissions means those organic HAP emissions that are vented from a control device to the atmosphere.

Corrosion-resistant gel coat means a gel coat used on a product made with a corrosion-resistant resin that has a corrosion-resistant end-use application.

Corrosion-resistant end-use applications means applications where the product is manufactured specifically for an application that requires a level of chemical inertness or resistance to chemical attack above that required for typical reinforced plastic composites products. These applications include, but are not limited to, chemical processing and storage; pulp and paper production; sewer and wastewater treatment; power generation; potable water transfer and storage; food and drug processing; pollution or odor control; metals production and plating; semiconductor manufacturing; petroleum production, refining, and storage; mining; textile production; nuclear materials storage; swimming pools; and cosmetic production, as well as end-use applications that require high strength resins.

Page 25 of 69

TV No. T057-39236-00042

Corrosion-resistant industry standard includes the following standards: ASME RTP-1 or Sect. X; ASTM D5364, D3299, D4097, D2996, D2997, D3262, D3517, D3754, D3840, D4024, D4160, D4161, D4162, D4184, D3982, or D3839; ANSI/AWWA C950; UL 215, 1316 or 1746, IAPMO PS-199, or written customer requirements for resistance to specified chemical environments.

Corrosion-resistant product means a product made with a corrosion-resistant resin and is manufactured to a corrosion-resistant industry standard, or a food contact industry standard, or is manufactured for corrosion-resistant end-use applications involving continuous or temporary chemical exposures.

Corrosion-resistant resin means a resin that either:

- (1) Displays substantial retention of mechanical properties when undergoing ASTM C-581 coupon testing, where the resin is exposed for 6 months or more to one of the following materials: Material with a pH ≥ 12.0 or ≤ 3.0, oxidizing or reducing agents, organic solvents, or fuels or additives as defined in 40 CFR 79.2. In the coupon testing, the exposed resin needs to demonstrate a minimum of 50 percent retention of the relevant mechanical property compared to the same resin in unexposed condition. In addition, the exposed resin needs to demonstrate an increased retention of the relevant mechanical property of at least 20 percentage points when compared to a similarly exposed general-purpose resin. For example, if the general-purpose resin retains 45 percent of the relevant property when tested as specified above, then a corrosion-resistant resin needs to retain at least 65 percent (45 percent plus 20 percent) of its property. The general-purpose resin used in the test needs to have an average molecular weight of greater than 1,000, be formulated with a 1:2 ratio of maleic anhydride to phthalic anhydride and 100 percent diethylene glycol, and a styrene content between 43 to 48 percent; or
- (2) Complies with industry standards that require specific exposure testing to corrosive media, such as UL 1316, UL 1746, or ASTM F-1216.

Doctor box means the box or trough on an SMC machine into which the liquid resin paste is delivered before it is metered onto the carrier film.

Filament application means an open molding process for fabricating composites in which reinforcements are fed through a resin bath and wound onto a rotating mandrel. The materials on the mandrel may be rolled out or worked by using nonmechanical tools prior to curing. Resin application to the reinforcement on the mandrel by means other than the resin bath, such as spray guns, pressure-fed rollers, flow coaters, or brushes is not considered filament application.

Filled Resin means that fillers have been added to a resin such that the amount of inert substances is at least 10 percent by weight of the total resin plus filler mixture. Filler putty made from a resin is considered a filled resin.

Fillers means inert substances dispersed throughout a resin, such as calcium carbonate, alumina trihydrate, hydrous aluminum silicate, mica, feldspar, wollastonite, silica, and talc. Materials that are not considered to be fillers are glass fibers or any type of reinforcement and microspheres.

Fire retardant gel coat means a gel coat used for products for which low-flame spread/low-smoke resin is used.

Fluid impingement technology means a spray gun that produces an expanding non-misting curtain of liquid by the impingement of low-pressure uninterrupted liquid streams.

Food contact industry standard means a standard related to food contact application contained in Food and Drug Administration's regulations at 21 CFR 177.2420.

Gel Coat means a quick-setting resin used to improve surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Gel coat application means a process where either clear production, pigmented production, white/off-white or tooling gel coat is applied.

Page 26 of 69

TV No. T057-39236-00042

HAP-containing materials storage means an ancillary process which involves keeping HAP-containing materials, such as resins, gel coats, catalysts, monomers, and cleaners, in containers or bulk storage tanks for any length of time. Containers may include small tanks, totes, vessels, and buckets.

High Performance gel coat means a gel coat used on products for which National Sanitation Foundation, United States Department of Agriculture, ASTM, durability, or other property testing is required.

High strength gel coat means a gel coat applied to a product that requires high strength resin.

High strength resins means polyester resins which have a casting tensile strength of 10,000 pounds per square inch or more and which are used for manufacturing products that have high strength requirements such as structural members and utility poles.

Injection molding means a closed molding process for fabricating composites in which composite materials are injected under pressure into a heated mold cavity that represents the exact shape of the product. The composite materials are cured in the heated mold cavity.

Low Flame Spread/Low Smoke Products means products that meet the following requirements. The products must meet both the applicable flame spread requirements and the applicable smoke requirements. Interior or exterior building application products must meet an ASTM E-84 Flame Spread Index of less than or equal to 25, and Smoke Developed Index of less than or equal to 450, or pass National Fire Protection Association 286 Room Corner Burn Test with no flash over and total smoke released not exceeding 1000 meters square. Mass transit application products must meet an ASTM E-162 Flame Spread Index of less than or equal to 35 and ASTM E662 Smoke Density Ds @ 1.5 minutes less than or equal to 100 and Ds @ 4 minutes less than to equal to 200. Duct application products must meet ASTM E084 Flame Spread Index less than or equal to 25 and Smoke Developed Index less than or equal to 50 on the interior and/or exterior of the duct.

Manual resin application means an open molding process for fabricating composites in which composite materials are applied to the mold by pouring or by using hands and nonmechanical tools, such as brushes and rollers. Materials are rolled out or worked by using nonmechanical tools prior to curing. The use of pressure-fed rollers and flow coaters to apply resin is not considered manual resin application.

Mechanical resin application means an open molding process for fabricating composites in which composite materials (except gel coat) are applied to the mold by using mechanical tools such as spray guns, pressure-fed rollers, and flow coaters. Materials are rolled out or worked by using nonmechanical tools prior to curing.

Mixing means the blending or agitation of any HAP-containing materials in vessels that are 5.00 gallons (18.9 liters) or larger, and includes the mixing of putties or polyputties. Mixing may involve the blending of resin, gel coat, filler, reinforcement, pigments, catalysts, monomers, and any other additives.

Mold means a cavity or matrix into or onto which the composite materials are placed and from which the product takes its form.

Neat gel coat means the resin as purchased for the supplier, but not including any inert fillers.

Neat gel coat plus means neat gel coat plus any organic HAP-containing materials that are added to the gel coat by the supplier or the facility, excluding catalysts and promoters. Neat gel coat plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.

Neat resin means the resin as purchased from the supplier, but not including any inert fillers.

Neat resin plus means neat resin plus any organic HAP-containing materials that are added to the resin by the supplier or the facility. Neat resin plus does not include any added filler, reinforcements, catalysts, or promoters. Neat resin plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.

Page 27 of 69

TV No. T057-39236-00042

Nonatomized mechanical application means the use of application tools other than brushes to apply resin and gel coat where the application tool has documentation provided by its manufacturer or user that this design of the application tool has been organic HAP emissions tested, and the test results showed that use of this application tool results in organic HAP emissions that are no greater than the organic HAP emissions predicted by the applicable nonatomized application equation(s) in Table 1 to this subpart. In addition, the device must be operated according to the manufacturer's directions, including instructions to prevent the operation of the device at excessive spray pressures. Examples of nonatomized application include flow coaters, pressure fed rollers, and fluid impingement spray guns.

Noncorrosion-resistant resin means any resin other than a corrosion-resistant resin or a tooling resin.

Noncorrosion-resistant product means any product other than a corrosion-resistant product or a mold.

Non-routine manufacture means that you manufacture parts to replace worn or damaged parts of a reinforced plastic composites product, or a product containing reinforced plastic composite parts, that was originally manufactured in another facility. For a part to qualify as non-routine manufacture, it must be used for repair or replacement, and the manufacturing schedule must be based on the current or anticipated repair needs of the reinforced plastic composites product, or a product containing reinforced plastic composite parts.

Operation means a specific process typically found at a reinforced plastic composites facility. Examples of operations are noncorrosion-resistant manual resin application, corrosion-resistant mechanical resin application, pigmented gel coat application, mixing and HAP-containing materials storage.

Operation group means a grouping of individual operations based primarily on mold type. Examples are open molding, closed molding, and centrifugal casting.

Open molding means a process for fabricating composites in a way that HAP-containing materials are exposed to the atmosphere. Open molding includes processes such as manual resin application, mechanical resin application, filament application, and gel coat application. Open molding also includes application of resins and gel coats to parts that have been removed from the open mold.

Pigmented gel coat means a gel coat that has a color, but does not contain 10 percent of more titanium dioxide by weight. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Polymer casting means a process for fabricating composites in which composite materials are ejected from a casting machine or poured into an open, partially open, or closed mold and cured. After the composite materials are poured into the mold, they are not rolled out or worked while the mold is open, except for smoothing the material and/or vibrating the mold to remove bubbles. The composite materials may or may not include reinforcements. Products produced by the polymer casting process include cultured marble products and polymer concrete.

Preform Injection means a form of pultrusion where liquid resin is injected to saturate reinforcements in an enclosed system containing one or more chambers with openings only large enough to admit reinforcements. Resin, which drips out of the chamber(s) during the process, is collected in closed piping or covered troughs and then into a covered reservoir for recycle. Resin storage vessels, reservoirs, transfer systems, and collection systems are covered or shielded from the ambient air. Preform injection differs from direct die injection in that the injection chambers are not directly attached to the die.

Prepreg materials means reinforcing fabric received precoated with resin which is usually cured through the addition of heat.

Pultrusion means a continuous process for manufacturing composites that have a uniform cross-sectional shape. The process consists of pulling a fiber-reinforcing material through a resin impregnation chamber or bath and through a shaping die, where the resin is subsequently cured. There are several types of pultrusion equipment, such as open bath, resin injection, and direct die injection equipment.

Repair means application of resin or gel coat to a part to correct a defect, where the resin or gel coat application occurs after the part has gone through all the steps of its typical production process, or the application occurs outside

Page 28 of 69

TV No. T057-39236-00042

the normal production area. For purposes of this subpart, rerouting a part back through the normal production line, or part of the normal production line, is not considered repair.

Resin transfer molding means a process for manufacturing composites whereby catalyzed resin is transferred or injected into a closed mold in which fiberglass reinforcement has been placed.

Sheet molding compound (SMC) means a ready-to-mold putty-like molding compound that contains resin(s) processed into sheet form. The molding compound is sandwiched between a top and a bottom film. In addition to resin(s), it may also contain catalysts, fillers, chemical thickeners, mold release agents, reinforcements, and other ingredients. Sheet molding compound can be used in compression molding to manufacture reinforced plastic composites products.

Shrinkage controlled resin means a resin that when promoted, catalyzed, and filled according to the resin manufacturer's recommendations demonstrates less than 0.3 percent linear shrinkage when tested according to ASTM D2566.

SMC manufacturing means a process which involves the preparation of SMC.

Tooling gel coat means a gel coat that is used to form the surface layer of molds. Tooling gel coats generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Tooling resin means a resin that is used to produce molds. Tooling resins generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Uncontrolled oven organic HAP emissions means those organic HAP emissions emitted from the oven through closed vent systems to the atmosphere and not to a control device. These organic HAP emissions do not include organic HAP emissions that may escape into the workplace through the opening of panels or doors on the ovens or other similar fugitive organic HAP emissions in the workplace.

Uncontrolled wet-out area organic HAP emissions means any or all of the following: Organic HAP emissions from wet-out areas that do not have any capture and control, organic HAP emissions that escape from wet-out area enclosures, and organic HAP emissions from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to an add-on control device.

Unfilled means that there has been no addition of fillers to a resin or that less than 10 percent of fillers by weight of the total resin plus filler mixture has been added.

Vapor suppressant means an additive, typically a wax, that migrates to the surface of the resin during curing and forms a barrier to seal in the styrene and reduce styrene emissions.

Vapor-suppressed resin means a resin containing a vapor suppressant added for the purpose of reducing styrene emissions during curing.

White and off-white gel coat means a gel coat that contains 10 percent of more titanium dioxide by weight.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]

Table 1 to Subpart WWWW of Part 63—Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams

x 2000 x 2000 x 2000 EF = ((0.714 x \$HAP)-0.18) x 2000 x ж 2000 ZF = ([0.157 x %HAP)-0.0165) x 2000 x (1-[0.45 x VSE factor)] $BP = ((0.157 \times WMAP) - 0.0165) \times 2000$ x 2000 Use this organic HAP emissions Factor (EF) Equation for natorials with 33 percent or more organic HAP (19 pegent for nonatomized gel × 2000 x 2000 RF = [10.286 x *HAP]-0.0529) x 2000 Table 1 to Subpart WARW of Part 63 -- Equations to Calculate Organic MAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams. EF = ((0.714 x %HAP)-0.18) x 2000 0.85 x 2000 EF = 0.77 x ((0.714 x %HAE)-0.18) 2000 $EF = ((0.714 \times *MAP) - 0.18) \times 2000$ - ((0.2746 x 8BAP)-0.0298) SF = [10.2746 x NRAP]-0.0298} EZ = ((1.03646 x %HAP)-0.195) equations in the following table to calculate organic MAP emissions factors for specific open molding and EP = ((0.206 x %HAP)-0.0529) x (1-(0.5 x VSE factor)) EF = ((0.157 x %HAF)-0.0165) EF = ((0.286 x %HAP)-0.0529) EF = ((0.286 x %HAP)-0.0529) {\0.157 × \HAP}-0.0165} EF = ((0.714 x %HAP)-0.18) (1-(0.45 x VSE factor)) x 0.65 X 0.55 x 0.05 x 0.8 X 0.5 doat) 0.55 06 00 H Use this organic HAP Emissions Factor (EF) Equation for materials with less than 33 percent organic HAP (19 percent organic HAP for nonatomized gel cost) $RF = (0.126 \times WARP \times 2000)$ x 2000 RF = 0.126 x *MAP x 2000
(1-(0.5 x VBE factor)) EF = 0.107 x %HAP x 2000 [1-(0.45 x VSE factor]) KF = 0.107 x %HAP x 2000 0.85 EF = 0.107 x %HAP x 2000 0.55 EF = 0.169 x %HAP x 2000 (1-(0.45 x VSE factor)) BF = 0.169 x %HAP x 2000 0.85 EF = 0.169 x VHAP x 2000 EF = 0.107 x WHAP x 2000 - 0.184 x VHAP x 2000 - 0.445 x %HAP x 2000 EF = 0.126 x *HAF x 2000 0.8 EF = 0.169 x 8HAP x 2000 EF = 0.126 x MAAP x 2000 $= 0.12 \times 3 HAP \times 2000$ \$HAP EF = 0.169 x 0.77 0.55 0.0 66 D., 00 88 0s 0:0 vacuum bagging/closed-mold vacuum bagging/closed-mold iii. vacuum bagging/closed-mold curing with roll-out g. resin resin mold caring without rollresin nonvapor-suppressed resin closed-mold curing with nonvapor-suppressed resin ouring without roll-out curing without roll-out 961 resin vacuum baggibg/closed-mold curing with rell vapor-suppressed resin ii. vapor-suppressed resin vacuum bagging/closedvapor-suppressed resin nonvapor-suppressed nonvapor-suppressed nonvapor-suppressed vapor-suppressed roll-out iii. vacuum coat 111. 17. 44. 7.7 eri eri coat resin application with nonatomized mechanical robotic or automated spray control application atomized mechanical atomized spray gel application resin application resin application resin application As specified in \$63.5810, use the centrifugal casting process streams:
If your operation And you use...
type is a new or filament marrial ri Fi open molding

matemized spray gel nonvapor-suppressed gel RF = 0.185 x WHAP x 2000 RF = ((0.4506 x WHAP)-0.0505) x 2000 at application	EF = 0.445 x %HAP x 2000 x EF = $\{(1.03646 \text{ x WHAP})-0.195\}$ x 2000 0.73		EP = 0.558 × (MHAP) × 2000	b. vented moids, but air nonvapor-suppressed resin EF = 0.026 x (*HAF) x 2000 EF = 0.026 x (*HAF) x 2000 is not heared
RF = 0.185 x WAAP x 2000	EF = 0.445 x 8EAP x 2000 x 0.73		nonvapor-suppressed resin EF = 0.558 x (%HAP) x 2000 EF = 0.558 x (%HAP) x 2000	EF = 0.026 x (%HAP) x 2000
nonvapor-suppressed gel	nonvapor-suppressed gel		nonvapor-suppressed resin	nonvapor-suppressed resin
g. nonatomized spray gel coat application	h. atomized sprey gel cost application using redoctic or automated	spray	a. heated air blown through molds	b. vented molds, but air vented through the molds is not heated
•			. centrifugal	operations

Footnotes to Table 1

The equations in this table are intended for use in calculating emission factors to demonstrate compliance with the emission limits in subpart NNAW. These equations may not be the most appropriate mathod to calculate emission estimates for other purposes. However, this does not preclude a facilit from using the equations in this table to calculate emission factors for purposes other then rule compliance if these equations are the most accurate

² To obtain the organic HAP emissions factor value for an operation with an add-on control device multiply the EP above by the add-on control factor calculated using Equation 1 of \$63.5810. The organic HAP emissions factors have units of lbs of organic HAP per ton of resin or gel coat applied. cost prior to ³ Percent HAP means total weight percent of organic HAP (styrene, nethyl methacrylate, and any other organic HAP) in the resin or gel the addition of fillers, catalyst, and promoters. Input the percent HAP as a decimal, i.e., 33 percent HAP should be input as 0.33, n

* The VSE factor means the percent reduction in organic HAP enissions expressed as a decimal measured by the VSE test method of appendix A to this

for ⁵ This equation is based on a organic HAP emissions factor equation developed for mechanical atomized controlled spray. It may only be used sautomated or robotic spray guas must use the appropriate mechanical automated or robotic spray guas must use the appropriate mechanical or mechanical nonatomized organic HAP emissions factor equation. Automated or robotic spray systems using nonatomized spray should use the appropriate nonstomized mechanical resin application equation.

Centrifugal casting operations where the mold ΩZ use the appropriate manual If reain is applied manually or with a spray gun, 7 These equations are for centrifugal casting operations where the mold is vented during spinning. 6 Applies only to filament application using an open resin bath. nechanical application organic HAP emissions factor equation.

completely sealed after resin injection are considered to be closed molding operations.

Bif a centrifugal casting operation uses mechanical or manual resin application techniques to apply resin to an open centrifugal casting mold the the appropriate open molding equation with covered cure and no vollout to determine an emission factor for operations prior to the closed casting equation to centrifugal casting and a verse during appropriate the appropriate centrifugal casting equation to centrifugal casting mold. If the closed centrifugal casting mold is vented during appropriate centrifugal casting operation uses mechanical or calculate an emission factor for the portion of the process where spinning and cure occur. If a centrifugal casting operation uses mechanical or manual resin application techniques to apply resin to an open centrifugal casting mold, and the sold is then closed and is not vented, treat the entire operation as open molding with covered cure and no rollout to determine emission factors.

Page 31 of 69

TV No. T057-39236-00042

Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

As required in §§ 63.5800 and 63.5840 you must demonstrate compliance with the standards by the dates in the following table:

If your facility is	And	Then you must comply by this date
1. An existing source	a. Is a major source on or before the publication date of this subpart	i. April 21, 2006, or ii. You must accept and meet an enforceable HAP emissions limit below the major source threshold prior to April 21, 2006.
2. An existing source that is an area source	Becomes a major source after the publication date of this subpart	3 years after becoming a major source or April 21, 2006, whichever is later.
3. An existing source, and emits less than 100 tpy of organic HAP from the combination of all centrifugal casting and continuous lamination/casting operations at the time of initial compliance with this subpart	Subsequently increases its actual organic HAP emissions to 100 tpy or more from these operations, which requires that the facility must now comply with the standards in § 63.5805(b)	3 years of the date your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.
4. A new source	Is a major source at startup	Upon startup or April 21, 2003, whichever is later.
5. A new source	Is an area source at startup and becomes a major source	Immediately upon becoming a major source.
6. A new source, and emits less than 100 tpy of organic HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing operations at the time of initial compliance with this subpart	Subsequently increases its actual organic HAP emissions to 100 tpy or more from the combination of these operations, which requires that the facility must now meet the standards in § 63.5805(d)	3 years from the date that your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.

Table 3 to Subpart WWWW of Part 63—Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and Existing Centrifugal Casting and Continuous Lamination/Casting Sources that Emit Less Than 100 TPY of HAP

As specified in § 63.5805, you must meet the following organic HAP emissions limits that apply to you:

If your operation type is	And you use	¹ Your organic HAP emissions limit is
1. open molding—corrosion-resistant and/or high strength (CR/HS)	a. mechanical resin application b. filament application c. manual resin application	113 lb/ton. 171 lb/ton. 123 lb/ton.
2. open molding—non- CR/HS	a. mechanical resin application b. filament application c. manual resin application	88 lb/ton. 188 lb/ton. 87 lb/ton.
3. open molding—tooling	a. mechanical resin application b. manual resin application	254 lb/ton. 157 lb/ton.
4. open molding—low-flame spread/low-smoke products	a. mechanical resin application b. filament application c. manual resin application	497 lb/ton. 270 lb/ton. 238 lb/ton.

If your operation type is	And you use	¹ Your organic HAP emissions limit is
5. open molding—shrinkage controlled resins ²	a. mechanical resin application b. filament application c. manual resin application	354 lb/ton. 215 lb/ton. 180 lb/ton.
6. open molding—gel coat ³	a. tooling gel coating b. white/off white pigmented gel coating c. all other pigmented gel coating d. CR/HS or high performance gel coat e. fire retardant gel coat f. clear production gel coat	440 lb/ton. 267 lb/ton. 377 lb/ton. 605 lb/ton. 854 lb/ton. 522 lb/ton.
7. centrifugal casting— CR/HS	a. resin application with the mold closed, and the mold is vented during spinning and cure b. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning and cure	25 lb/ton. ⁴ NA—this is considered to be a closed molding operation. 25 lb/ton. ⁴ Use the appropriate open molding emission limit. ⁵
8. centrifugal casting—non- CR/HS	a. resin application with the mold closed, and the mold is vented during spinning and cure b. resin application with the mold closed, and mold is not vented during the spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning and cure during spinning and cure	20 lb/ton. ⁴ NA—this is considered to be a closed molding operation. 20 lb/ton. ⁴ Use the appropriate open molding emission limit. ⁵
9. pultrusion ⁶	N/A	reduce total organic HAP emissions by at least 60 weight percent.
10. continuous lamination/casting	N/A	reduce total organic HAP emissions by at least 58.5 weight percent or not exceed an organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus.

¹ Organic HAP emissions limits for open molding and centrifugal casting are expressed as lb/ton. You must be at or below these values based on a 12-month rolling average.

² This emission limit applies regardless of whether the shrinkage controlled resin is used as a production resin or a tooling resin.

Page 33 of 69 TV No. T057-39236-00042 Attachment B

[70 FR 50131, Aug. 25, 2005]

Table 4 to Subpart WWWW of Part 63—Work Practice Standards

As specified in § 63.5805, you must meet the work practice standards in the following table that apply to you:

For	You must
a new or existing closed molding operation using compression/injection molding	uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting.
2. a new or existing cleaning operation	not use cleaning solvents that contain HAP, except that styrene may be used as a cleaner in closed systems, and organic HAP containing cleaners may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin.
a new or existing materials HAP-containing materials storage operation	keep containers that store HAP-containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety.
4. an existing or new SMC manufacturing operation	close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open.
5. an existing or new SMC manufacturing operation	use a nylon containing film to enclose SMC.
6. all mixing or BMC manufacturing operations ¹	use mixer covers with no visible gaps present in the mixer covers, except that gaps of up to 1 inch are permissible around mixer shafts and any required instrumentation.
7. all mixing or BMC manufacturing operations ¹	close any mixer vents when actual mixing is occurring, except that venting is allowed during addition of materials, or as necessary prior to adding materials or opening the cover for safety. Vents routed to a 95 percent efficient control device are exempt from this requirement.

³ If you only apply gel coat with manual application, for compliance purposes treat the gel coat as if it were applied using atomized spray guns to determine both emission limits and emission factors. If you use multiple application methods and any portion of a specific gel coat is applied using nonatomized spray, you may use the nonatomized spray gel coat equation to calculate an emission factor for the manually applied portion of that gel coat. Otherwise, use the atomized spray gel coat application equation to calculate emission factors.

⁴ For compliance purposes, calculate your emission factor using only the appropriate centrifugal casting equation in item 2 of Table 1 to this subpart, or a site specific emission factor for after the mold is closed as discussed in § 63.5796.

⁵ Calculate your emission factor using the appropriate open molding covered cure emission factor in item 1 of Table 1 to this subpart, or a site specific emission factor as discussed in § 63.5796.

⁶ Pultrusion machines that produce parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more are not subject to this requirement. Their requirement is the work practice of air flow management which is described in Table 4 to this subpart.

For	You must
8. all mixing or BMC manufacturing operations ¹	keep the mixer covers closed while actual mixing is occurring except when adding materials or changing covers to the mixing vessels.
9. a new or existing pultrusion operation manufacturing parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more that is not subject to the 95 percent organic HAP emission reduction requirement	i. not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wetout area(s), ii. not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device, iii. use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s), iv. direct any compressed air exhausts away from resin and wet-out area(s),
	v. convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air, vi. cover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and vii. cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical.

¹ Containers of 5 gallons or less may be open when active mixing is taking place, or during periods when they are in process (i.e., they are actively being used to apply resin). For polymer casting mixing operations, containers with a surface area of 500 square inches or less may be open while active mixing is taking place.

[70 FR 50133, Aug. 25, 2005]

Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement

As specified in § 63.5805, as an alternative to the 95 percent organic HAP emissions reductions requirement, you may meet the appropriate organic HAP emissions limits in the following table:

If your operation type is	And you use	LYour organic HAP emissions limit is a ¹
1. Open molding—corrosion-resistant and/or high strength (CR/HS)	a. Mechanical resin application	6 lb/ton.
	b. Filament application	9 lb/ton.
	c. Manual resin application	7 lb/ton.
2. Open molding—non-CR/HS	a. mechanical resin application	13 lb/ton.
	b. Filament application	10 lb/ton.
	c. Manual resin application	5 lb/ton.
3. Open molding—tooling	a. Mechanical resin application	13 lb/ton.
	b. Manual resin application	8 lb/ton.
4. Open molding—low flame spread/low smoke products	a. Mechanical resin application	25 lb/ton.
	b. Filament application	14 lb/ton.
	c. Manual resin application	12 lb/ton.
5. Open molding—shrinkage controlled resins	a. Mechanical resin application	18 lb/ton.

If your operation type is	And you use	LYour organic HAP emissions limit is a ¹
	b. Filament application	11 lb/ton.
	c. Manual resin application	9 lb/ton.
6. Open molding—gel coat ²	a. Tooling gel coating	22 lb/ton.
	b. White/off white pigmented gel coating	22 lb/ton.
	c. All other pigmented gel coating	19 lb/ton.
	d. CR/HS or high performance gel coat	31 lb/ton.
	e. Fire retardant gel coat	43 lb/ton.
	f. Clear production gel coat	27 lb/ton.
7. Centrifugal casting—CR/HS ^{3,4}	A vent system that moves heated air through the mold	27 lb/ton.
8. Centrifugal casting—non-CR/HS 3,4	A vent system that moves heated air through the mold	21 lb/ton.
7. Centrifugal casting—CR/HS ^{3,4}	A vent system that moves ambient air through the mold	2 lb/ton.
8. Centrifugal casting—non-CR/HS 3,4	A vent system that moves ambient air through the mold	1 lb/ton.
9. SMC Manufacturing	N/A	2.4 lb/ton.

¹ Organic HAP emissions limits for open molding and centrifugal casting expressed as lb/ton are calculated using the equations shown in Table 1 to this subpart. You must be at or below these values based on a 12-month rolling average.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50133, Aug. 25, 2005]

² These limits are for spray application of gel coat. Manual gel coat application must be included as part of spray gel coat application for compliance purposes using the same organic HAP emissions factor equation and organic HAP emissions limit. If you only apply gel coat with manual application, treat the manually applied gel coat as if it were applied with atomized spray for compliance determinations.

³ Centrifugal casting operations where the mold is not vented during spinning and cure are considered to be closed molding and are not subject to any emissions limit. Centrifugal casting operations where the mold is not vented during spinning and cure, and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques are considered to be open molding operations and the appropriate open molding emission limits apply.

⁴ Centrifugal casting operations where the mold is vented during spinning and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques, use the appropriate centrifugal casting emission limit to determine compliance. Calculate your emission factor using the appropriate centrifugal casting emission factor in Table 1 to this subpart, or a site specific emission factor as discussed in § 63.5796.

Page 36 of 69

TV No. T057-39236-00042

Table 6 to Subpart WWWW of Part 63—Basic Requirements for Performance Tests, Performance Evaluations, and Design Evaluations for New and Existing Sources Using Add-On Control Devices

As required in § 63.5850 you must conduct performance tests, performance evaluations, and design evaluation according to the requirements in the following table:

For	You must	Using	According to the following requirements
1. Each enclosure used to collect and route organic HAP emissions to an addon control device that is a PTE	Meet the requirements for a PTE	EPA method 204 of appendix M of 40 CFR part 51	Enclosures that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51 for a PTE are assumed to have a capture efficiency of 100%. Note that the criteria that all access doors and windows that are not treated as natural draft openings shall be closed during routine operation of the process is not intended to require that these doors and windows be closed at all times. It means that doors and windows must be closed any time that you are not actually moving parts or equipment through them. Also, any styrene retained in hollow parts and liberated outside the PTE is not considered to be a violation of the EPA Method 204 criteria.
2. Each enclosure used to collect and route organic HAP emissions to an addon control device that is not a PTE	a. Determine the capture efficiency of each enclosure used to capture organic HAP emissions sent to an add-on control device	i. EPA methods 204B through E of appendix M of 40 CFR part 51, or	(1) Enclosures that do not meet the requirements for a PTE must determine the capture efficiency by constructing a temporary total enclosure according to the requirements of EPA Method 204 of appendix M of 40 CFR part 51 and measuring the mass flow rates of the organic HAP in the exhaust streams going to the atmosphere and to the control device. Test runs for EPA Methods 204B through E of appendix M of 40 CFR part 51 must be at least 3 hours.
		ii. An alternative test method that meets the requirements in 40 CFR part 51, appendix M	(1) The alternative test method must the data quality objectives and lower confidence limit approaches for alternative capture efficiency protocols requirements contained in 40 CFR part 63 subpart KK, appendix A.
3. Each control device used to comply with a percent reduction requirement, or an organic HAP emissions limit	Determine the control efficiency of each control device used to control organic HAP emissions	The test methods specified in § 63.5850 to this subpart	Testing and evaluation requirements are contained in 40 CFR part 63, subpart SS, and § 63.5850 to this subpart.
4. Determining organic HAP emission factors for any operation	Determine the mass organic HAP emissions rate	The test methods specified in § 63.5850 to this subpart	Testing and evaluation requirements are contained in 40 CFR part 63, subpart SS, and § 63.5850 to this subpart.

Table 7 to Subpart WWWW of Part 63—Options Allowing Use of the Same Resin Across Different Operations That Use the Same Resin Type

As specified in § 63.5810(d), when electing to use the same resin(s) for multiple resin application methods, you may use any resin(s) with an organic HAP content less than or equal to the values shown in the following table, or any

Page 37 of 69

TV No. T057-39236-00042

combination of resins whose weighted average organic HAP content based on a 12-month rolling average is less than or equal to the values shown the following table:

If your facility has the following resin type and application method	The highest resin weight is* * * percent organic HAP content, or weighted average weight percent organic HAP content, you can use for	is
1. CR/HS resins, centrifugal casting 1,2	a. CR/HS mechanical	3 48.0
	b. CR/HS filament application	48.0
	c. CR/HS manual	48.0
2. CR/HS resins, nonatomized mechanical	a. CR/HS filament application	46.4
	b. CR/HS manual	46.4
3. CR/HS resins, filament application	CR/HS manual	42.0
4. non-CR/HS resins, filament application	a. non-CR/HS mechanical	3 45.0
	b. non-CR/HS manual	45.0
	c. non-CR/HS centrifugal casting 1,2	45.0
5. non-CR/HS resins, nonatomized mechanical	a. non-CR/HS manual	38.5
	b. non-CR/HS centrifugal casting 1,2	38.5
6. non-CR/HS resins, centrifugal casting ^{1,2}	non-CR/HS manual	37.5
7. tooling resins, nonatomized mechanical	tooling manual	91.4
8. tooling resins, manual	tooling atomized mechanical	45.9

¹ If the centrifugal casting operation blows heated air through the molds, then 95 percent capture and control must be used if the facility wishes to use this compliance option.

[70 FR 50133, Aug. 25, 2005]

 $^{^2}$ If the centrifugal casting molds are not vented, the facility may treat the centrifugal casting operations as if they were vented if they wish to use this compliance option.

³ Nonatomized mechanical application must be used.

Page 38 of 69 TV No. T057-39236-00042

Table 8 to Subpart WWWW of Part 63—Initial Compliance With Organic HAP Emissions Limits

As specified in § 63.5860(a), you must demonstrate initial compliance with organic HAP emissions limits as specified in the following table:

For	That must meet the following organic HAP emissions limit	You have demonstrated initial compliance if
open molding and centrifugal casting operations	a. an organic HAP emissions limit shown in Tables 3 or 5 to this subpart, or an organic HAP content limit shown in Table 7 to this subpart	i. you have met the appropriate organic HAP emissions limits for these operations as calculated using the procedures in § 63.5810 on a 12-month rolling average 1 year after the appropriate compliance date, and/or ii. you demonstrate that any individual resins or gel coats not included in (i) above, as applied, meet their applicable emission limits, or iii. you demonstrate using the appropriate values in Table 7 to this subpart that the weighted average of all resins and gel coats for each resin type and application method meet the appropriate organic HAP contents.
2. open molding centrifugal casting, continuous lamination/casting, SMC and BMC manufacturing, and mixing operations	a. reduce total organic HAP emissions by at least 95 percent by weight	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.
3. continuous lamination/casting operations	a. reduce total organic HAP emissions, by at least 58.5 weight percent, or	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency in Table 6 to this subpart and the calculation procedures specified in §§ 63.5865 through 63.5890, are reduced by at least 58.5 percent by weight.
	b. not exceed an organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§ 63.5865 through 63.5890, do not exceed 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus.
4. continuous lamination/casting operations	a. reduce total organic HAP emissions by at least 95 weight percent or	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§ 63.5865 through 63.5890, are reduced by at least 95 percent by weight
	b. not exceed an organic HAP emissions limit of 1.47 lbs of organic HAP per ton of neat resin plus and neat gel coat plus	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 and the calculation procedures specified in §§ 63.5865 through 63.5890, do not exceed 1.47 lbs of organic HAP of per ton of neat resin plus and neat gel coat plus.

For	That must meet the following organic HAP emissions limit	You have demonstrated initial compliance if
5. pultrusion operations	a. reduce total organic HAP emissions by at least 60 percent by weight	i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 60 percent by weight, and/or ii. as part of the notification of initial compliance status, the owner/operator submits a certified statement that all pultrusion lines not controlled with an add-on control device, but for which an emission reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the criteria of § 63.5830.
6. pultrusion operations	a. reduce total organic HAP emissions by at least 95 percent by weight	i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.

[70 FR 50134, Aug. 25, 2005]

Table 9 to Subpart WWWW of Part 63—Initial Compliance With Work Practice Standards

As specified in \S 63.5860(a), you must demonstrate initial compliance with work practice standards as specified in the following table:

For	That must meet the following standards	You have demonstrated initial compliance if
a new or existing closed molding operation using compression/injection molding	uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting	the owner or operator submits a certified statement in the notice of compliance status that only one charge is uncovered, unwrapped, or exposed per mold cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when adding materials, and materials are recovered after slitting.
2. a new or existing cleaning operation	not use cleaning solvents that contain HAP, except that styrene may be used in closed systems, and organic HAP containing materials may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin between storage and applying resin to the mold or reinforcement	the owner or operator submits a certified statement in the notice of compliance status that all cleaning materials, except styrene contained in closed systems, or materials used to clean cured resin from application equipment, contain no HAP.

For	That must meet the following standards	You have demonstrated initial compliance if
3. a new or existing materials HAP-containing materials storage operation	keep containers that store HAP- containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety	the owner or operator submits a certified statement in the notice of compliance status that all HAP-containing storage containers are kept closed or covered except when adding or removing materials, and that any bulk storage tanks are vented only as necessary for safety.
an existing or new SMC manufacturing operation	close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open	the owner or operator submits a certified statement in the notice of compliance status that the resin delivery system is closed or covered.
5. an existing or new SMC manufacturing operation	use a nylon containing film to enclose SMC	the owner or operator submits a certified statement in the notice of compliance status that a nylon-containing film is used to enclose SMC.
6. an existing or new mixing or BMC manufacturing operation	use mixer covers with no visible gaps present in the mixer covers, except that gaps of up to 1 inch are permissible around mixer shafts and any required instrumentation	the owner or operator submits a certified statement in the notice of compliance status that mixer covers are closed during mixing except when adding materials to the mixers, and that gaps around mixer shafts and required instrumentation are less than 1 inch.
7. an existing mixing or BMC manufacturing operation	not actively vent mixers to the atmosphere while the mixing agitator is turning, except that venting is allowed during addition of materials, or as necessary prior to adding materials for safety	the owner or operator submits a certified statement in the notice of compliance status that mixers are not actively vented to the atmosphere when the agitator is turning except when adding materials or as necessary for safety.
a new or existing mixing or BMC manufacturing operation	keep the mixer covers closed during mixing except when adding materials to the mixing vessels	the owner or operator submits a certified statement in the notice of compliance status that mixers closed except when adding materials to the mixing vessels.

For	That must meet the following standards	You have demonstrated initial compliance if
9. a new or existing pultrusion operation manufacturing parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more that is not subject to the 95 percent organic HAP emission reduction requirement	i. Not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wet-out area(s), ii. not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device, iii. use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s), iv. direct any compressed air exhausts away from resin and wet-out area(s), v. convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air, vi. clover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and vii. cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical.	the owner or operator submits a certified statement in the notice of compliance status that they have complied with all the requirements listed in 9.i through 9.vii.

[70 FR 50135, Aug. 25, 2005]

Table 10 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Percent Reduction Limit on a Per Line Basis

As required in § 63.5865(a), in order to comply with a percent reduction limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each line where the wet-out area	And the oven	You must determine
Has an enclosure that is not a permanent total enclosure (PTE) and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. The capture efficiency of the wet-out area enclosure,
		v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.

For each line where the wet-out area	And the oven	You must determine
2. Has an enclosure that is a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
3. Is uncontrolled	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, iii. Annual controlled oven organic HAP emissions, iv. The capture efficiency of the oven, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.
4. Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. Annual controlled oven organic HAP emissions; v. The capture efficiency of the wet-out area enclosure, vi. Inlet organic HAP emissions to the addon control device, vii. Outlet organic HAP emissions from the add-on control device, and viii. The amount of neat resin plus and neat gel coat plus applied.
5. Has an enclosure that is a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is controlled by an add-on control device	i. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, ii. The capture efficiency of the oven, and
		iii. The destruction efficiency of the add-on control device.

Table 11 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination and Continuous Casting Lines Complying With a Percent Reduction Limit or a Lbs/Ton Limit on an Averaging Basis

As required in § 63.5865, in order to comply with a percent reduction limit or a lbs/ton limit on an averaging basis for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each	That	You must determine
1. Wet-out area	Is uncontrolled	Annual uncontrolled wet-out area organic HAP emissions.

For each	That	You must determine
2. Wet-out area		i. The capture efficiency of the enclosure, and ii. Annual organic HAP emissions that escape the enclosure.
3. Wet-out area	Has an enclosure that is a PTE	That the enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE.
4. Oven	Is uncontrolled	Annual uncontrolled oven organic HAP emissions.
5. Line		i. The amount of neat resin plus applied, and ii. The amount of neat gel coat plus applied.
6. Add-on control device		i. Total annual inlet organic HAP emissions, and total annual outlet organic HAP emissions.

Table 12 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Lbs/Ton Organic HAP Emissions Limit on a Per Line Basis

As required in § 63.5865(b), in order to comply with a lbs/ton organic HAP emissions limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each line where the wet- out area	And the oven	You must determine
1. Is uncontrolled	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, and iii. Annual neat resin plus and neat gel coat plus applied.
Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. The capture efficiency of the wet-out area enclosure, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
3. Has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
4. Is uncontrolled	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, iii. Annual controlled oven organic HAP emissions,

For each line where the wet- out area	And the oven	You must determine
		iv. The capture efficiency of the oven, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
5. Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. Annual controlled oven organic HAP emissions, v. The capture efficiency of the wet-out area enclosure, vi. The capture efficiency of the oven,
		vii. The destruction efficiency of the add-on control device, and viii. The amount of neat resin plus and neat gel coat plus applied.
6. Has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by add-on control device	a. Is controlled by an add-on control device	i. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, ii. The capture efficiency of the oven, iii. Inlet organic HAP emissions to the an addon control device, and
		iv. Outlet organic HAP emissions from the add-on control device.

Table 13 to Subpart WWWW of Part 63—Applicability and Timing of Notifications

As required in § 63.5905(a), you must determine the applicable notifications and submit them by the dates shown in the following table:

If your facility	You must submit	By this date
Is an existing source subject to this subpart	An Initial Notification containing the information specified in § 63.9(b)(2)	No later than the dates specified in § 63.9(b)(2).
2. Is a new source subject to this subpart	The notifications specified in § 63.9(b)(4) and (5)	No later than the dates specified § 63.9(b)(4) and (5).
3. Qualifies for a compliance extension as specified in § 63.9(c)	A request for a compliance extension as specified in § 63.9(c)	No later than the dates specified in § 63.6(i).
4. Is complying with organic HAP emissions limit averaging provisions	A Notification of Compliance Status as specified in § 63.9(h)	No later than 1 year plus 30 days after your facility's compliance date.
5. Is complying with organic HAP content limits, application equipment requirements, or organic HAP emissions limit other than organic HAP emissions limit averaging	A Notification of Compliance Status as specified in § 63.9(h)	No later than 30 calendar days after your facility's compliance date.
6. Is complying by using an add-on control device	a. A notification of intent to conduct a performance test as specified in § 63.9(e)	No later than the date specified in § 63.9(e).

If your facility	You must submit	By this date
	b. A notification of the date for the CMS performance evaluation as specified in § 63.9(g)	The date of submission of notification of intent to conduct a performance test.
	c. A Notification of Compliance Status as specified in § 63.9(h)	No later than 60 calendar days after the completion of the add-on control device performance test and CMS performance evaluation.

Table 14 to Subpart WWWW of Part 63—Requirements for Reports

As required in § 63.5910(a), (b), (g), and (h), you must submit reports on the schedule shown in the following table:

You must submit a(n)	The report must contain	You must submit the report
1. Compliance report	a. A statement that there were no deviations during that reporting period if there were no deviations from any emission limitations (emission limit, operating limit, opacity limit, and visible emission limit) that apply to you and there were no deviations from the requirements for work practice standards in Table 4 to this subpart that apply to you. If there were no periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control as specified in § 63.8(c)(7), the report must also contain a statement that there were no periods during which the CMS was out of control during the reporting period	Semiannually according to the requirements in § 63.5910(b).
	b. The information in § 63.5910(d) if you have a deviation from any emission limitation (emission limit, operating limit, or work practice standard) during the reporting period. If there were periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control, as specified in § 63.8(c)(7), the report must contain the information in § 63.5910(e)	Semiannually according to the requirements in § 63.5910(b).
	c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan	Semiannually according to the requirements in § 63.5910(b).
2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent with your startup, shutdown, and malfunction plan	a. Actions taken for the event	By fax or telephone within 2 working days after starting actions inconsistent with the plan.
	b. The information in § 63.10(d)(5)(ii)	By letter within 7 working days after the end of the event unless you have made alternative arrangements with the permitting authority. (§ 63.10(d)(5)(ii)).

Table 15 to Subpart WWWW of Part 63—Applicability of General Provisions (Subpart A) to Subpart WWWW of Part 63

Page 46 of 69 TV No. T057-39236-00042

As specified in § 63.5925, the parts of the General Provisions which apply to you are shown in the following table:

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.1(a)(1)	General applicability of the general provisions	Yes	Additional terms defined in subpart WWWW of Part 63, when overlap between subparts A and WWWW of Part 63 of this part, subpart WWWW of Part 63 takes precedence.
§ 63.1(a)(2) through (4)	General applicability of the general provisions	Yes	
§ 63.1(a)(5)	Reserved	No	
§ 63.1(a)(6)	General applicability of the general provisions	Yes	
§ 63.1(a)(7) through (9)	Reserved	No	
§ 63.1(a)(10) through (14)	General applicability of the general provisions	Yes	
§ 63.1(b)(1)	Initial applicability determination	Yes	Subpart WWWW of Part 63 clarifies the applicability in §§ 63.5780 and 63.5785.
§ 63.1(b)(2)	Reserved	No.	
§ 63.1(b)(3)	Record of the applicability determination	Yes	
§ 63.1(c)(1)	Applicability of this part after a relevant standard has been set under this part	Yes	Subpart WWWW of Part 63 clarifies the applicability of each paragraph of subpart A to sources subject to subpart WWWW of Part 63.
§ 63.1(c)(2)	Title V operating permit requirement	Yes	All major affected sources are required to obtain a title V operating permit. Area sources are not subject to subpart WWWW of Part 63.
§ 63.1(c)(3) and (4)	Reserved	No	
§ 63.1(c)(5)	Notification requirements for an area source that increases HAP emissions to major source levels	Yes	
§ 63.1(d)	Reserved	No	
§ 63.1(e)	Applicability of permit program before a relevant standard has been set under this part	Yes	
§ 63.2	Definitions	Yes	Subpart WWWW of Part 63 defines terms in § 63.5935. When overlap between subparts A and WWWW of Part 63 occurs, you must comply with the subpart WWWW of Part 63 definitions, which take precedence over the subpart A definitions.

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.3	Units and abbreviations	Yes	Other units and abbreviations used in subpart WWWW of Part 63 are defined in subpart WWWW of Part 63.
§ 63.4	Prohibited activities and circumvention	Yes	§ 63.4(a)(3) through (5) is reserved and does not apply.
§ 63.5(a)(1) and (2)	Applicability of construction and reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(b)(1)	Relevant standards for new sources upon construction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(b)(2)	Reserved	No	
§ 63.5(b)(3)	New construction/reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(b)(4)	Construction/reconstruction notification	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(b)(5)	Reserved	No	
§ 63.5(b)(6)	Equipment addition or process change	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(c)	Reserved	No	
§ 63.5(d)(1)	General application for approval of construction or reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.5(d)(2)	Application for approval of construction	Yes	
§ 63.5(d)(3)	Application for approval of reconstruction	No	
§ 63.5(d)(4)	Additional information	Yes	
§ 63.5(e)(1) through (5)	Approval of construction or reconstruction	Yes	
§ 63.5(f)(1) and (2)	Approval of construction or reconstruction based on prior State preconstruction review	Yes	
§ 63.6(a)(1)	Applicability of compliance with standards and maintenance requirements	Yes	
§ 63.6(a)(2)	Applicability of area sources that increase HAP emissions to become major sources	Yes	
§ 63.6(b)(1) through (5)	Compliance dates for new and reconstructed sources	Yes	Subpart WWWW of Part 63 clarifies compliance dates in § 63.5800.
§ 63.6(b)(6)	Reserved	No	
§ 63.6(b)(7)	Compliance dates for new operations or equipment that cause an area source to become a major source	Yes	New operations at an existing facility are not subject to new source standards.
§ 63.6(c)(1) and (2)	Compliance dates for existing sources	Yes	Subpart WWWW of Part 63 clarifies compliance dates in § 63.5800.

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.6(c)(3) and (4)	Reserved	No	
§ 63.6(c)(5)	Compliance dates for existing area sources that become major	Yes	Subpart WWWW of Part 63 clarifies compliance dates in § 63.5800.
§ 63.6(d)	Reserved	No	
§ 63.6(e)(1) and (2)	Operation & maintenance requirements	Yes	
§ 63.6(e)(3)	Startup, shutdown, and malfunction plan and recordkeeping	Yes	Subpart WWWW of Part 63 requires a startup, shutdown, and malfunction plan only for sources using add-on controls.
§ 63.6(f)(1)	Compliance except during periods of startup, shutdown, and malfunction	No	Subpart WWWW of Part 63 requires compliance during periods of startup, shutdown, and malfunction, except startup, shutdown, and malfunctions for sources using add-on controls.
§ 63.6(f)(2) and (3)	Methods for determining compliance	Yes	
§ 63.6(g)(1) through (3)	Alternative standard	Yes	
§ 63.6(h)	Opacity and visible emission Standards	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.
§ 63.6(i)(1) through (14)	Compliance extensions	Yes	
§ 63.6(i)(15)	Reserved	No	
§ 63.6(i)(16)	Compliance extensions	Yes	
§ 63.6(j)	Presidential compliance exemption	Yes	
§ 63.7(a)(1)	Applicability of performance testing requirements	Yes	
§ 63.7(a)(2)	Performance test dates	No	Subpart WWWW of Part 63 initial compliance requirements are in § 63.5840.
§ 63.7(a)(3)	CAA Section 114 authority	Yes	
§ 63.7(b)(1)	Notification of performance test	Yes	
§ 63.7(b)(2)	Notification rescheduled performance test	Yes	
§ 63.7(c)	Quality assurance program, including test plan	Yes	Except that the test plan must be submitted with the notification of the performance test.
§ 63.7(d)	Performance testing facilities	Yes	
§ 63.7(e)	Conditions for conducting performance tests	Yes	Performance test requirements are contained in § 63.5850. Additional requirements for conducting performance tests for continuous lamination/casting are included in § 63.5870.
§ 63.7(f)	Use of alternative test method	Yes	

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.7(g)	Performance test data analysis, recordkeeping, and reporting	Yes	
§ 63.7(h)	Waiver of performance tests	Yes	
§ 63.8(a)(1) and (2)	Applicability of monitoring requirements	Yes	
§ 63.8(a)(3)	Reserved	No	
§ 63.8(a)(4)	Monitoring requirements when using flares	Yes	
§ 63.8(b)(1)	Conduct of monitoring exceptions	Yes	
§ 63.8(b)(2) and (3)	Multiple effluents and multiple monitoring systems	Yes	
§ 63.8(c)(1)	Compliance with CMS operation and maintenance requirements	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(c)(2) and (3)	Monitoring system installation	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(c)(4)	CMS requirements	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(c)(5)	Continuous Opacity Monitoring System (COMS) minimum procedures	No	Subpart WWWW of Part 63 does not contain opacity standards.
§ 63.8(c)(6) through (8)	CMS calibration and periods CMS is out of control	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(d)	CMS quality control program, including test plan and all previous versions	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(e)(1)	Performance evaluation of CMS	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(e)(2)	Notification of performance evaluation	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(e)(3) and (4)	CMS requirements/alternatives	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(e)(5)(i)	Reporting performance evaluation results	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.8(e)(5)(ii)	Results of COMS performance evaluation	No	Subpart WWWW of Part 63 does not contain opacity standards.
§ 63.8(f)(1) through (3)	Use of an alternative monitoring method	Yes	
§ 63.8(f)(4)	Request to use an alternative monitoring method	Yes	
§ 63.8(f)(5)	Approval of request to use an alternative monitoring method	Yes	
§ 63.8(f)(6)	Request for alternative to relative accuracy test and associated records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.8(g)(1) through (5)	Data reduction	Yes	
§ 63.9(a)(1) through (4)	Notification requirements and general information	Yes	
§ 63.9(b)(1)	Initial notification applicability	Yes	
§ 63.9(b)(2)	Notification for affected source with initial startup before effective date of standard	Yes	
§ 63.9(b)(3)	Reserved	No	
§ 63.9(b)(4)(i)	Notification for a new or reconstructed major affected source with initial startup after effective date for which an application for approval of construction or reconstruction is required	Yes	
§ 63.9(b)(4)(ii) through (iv)	Reserved	No	
§ 63.9(b)(4)(v)	Notification for a new or reconstructed major affected source with initial startup after effective date for which an application for approval of construction or reconstruction is required	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.9(b)(5)	Notification that you are subject to this subpart for new or reconstructed affected source with initial startup after effective date and for which an application for approval of construction or reconstruction is not required	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§ 63.9(c)	Request for compliance extension	Yes	
§ 63.9(d)	Notification of special compliance requirements for new source	Yes	
§ 63.9(e)	Notification of performance test	Yes	
§ 63.9(f)	Notification of opacity and visible emissions observations	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.
§ 63.9(g)(1)	Additional notification requirements for sources using CMS	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.9(g)(2)	Notification of compliance with opacity emission standard	No	Subpart WWWW of Part 63 does not contain opacity emission standards.
§ 63.9(g)(3)	Notification that criterion to continue use of alternative to relative accuracy testing has been exceeded	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.9(h)(1) through (3)	Notification of compliance status	Yes	
§ 63.9(h)(4)	Reserved	No	
§ 63.9(h)(5) and (6)	Notification of compliance status	Yes	
§ 63.9(i)	Adjustment of submittal deadlines	Yes	
§ 63.9(j)	Change in information provided	Yes	
§ 63.10(a)	Applicability of recordkeeping and reporting	Yes	
§ 63.10(b)(1)	Records retention	Yes	
§ 63.10(b)(2)(i) through (v)	Records related to startup, shutdown, and malfunction	Yes	Only applies to facilities that use an add-on control device.
§ 63.10(b)(2)(vi) through (xi)	CMS records, data on performance tests, CMS performance evaluations, measurements necessary to determine conditions of performance tests, and performance evaluations	Yes	
§ 63.10(b)(2)(xii)	Record of waiver of recordkeeping and reporting	Yes	
§ 63.10(b)(2)(xiii)	Record for alternative to the relative accuracy test	Yes	
§ 63.10(b)(2)(xiv)	Records supporting initial notification and notification of compliance status	Yes	
§ 63.10(b)(3)	Records for applicability determinations	Yes	
§ 63.10(c)(1)	CMS records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.10(c)(2) through (4)	Reserved	No	
§ 63.10(c)(5) through (8)	CMS records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.10(c)(9)	Reserved	No	
§ 63.10(c)(10) through (15)	CMS records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§ 63.10(d)(1)	General reporting requirements	Yes	
§ 63.10(d)(2)	Report of performance test results	Yes	

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§ 63.10(d)(3)	Reporting results of opacity or visible emission observations	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.
§ 63.10(d)(4)	Progress reports as part of extension of compliance	Yes	
§ 63.10(d)(5)	Startup, shutdown, and malfunction reports	Yes	Only applies if you use an add-on control device.
§ 63.10(e)(1) through (3)	Additional reporting requirements for CMS	Yes	This section applies if you have an add-on control device and elect to use a CEM to demonstrate continuous compliance with an emission limit.
§ 63.10(e)(4)	Reporting COMS data	No	Subpart WWWW of Part 63 does not contain opacity standards.
§ 63.10(f)	Waiver for recordkeeping or reporting	Yes	
§ 63.11	Control device requirements	Yes	Only applies if you elect to use a flare as a control device.
§ 63.12	State authority and delegations	Yes	
§ 63.13	Addresses of State air pollution control agencies and EPA Regional Offices	Yes	
§ 63.14	Incorporations by reference	Yes	
§ 63.15	Availability of information and confidentiality	Yes	

Appendix A to Subpart WWWW of Part 63—Test Method for Determining Vapor Suppressant Effectiveness

1. Scope and Application

- 1.1 Applicability. If a facility is using vapor suppressants to reduce hazardous air pollutant (HAP) emissions, the organic HAP emission factor equations in Table 1 to this subpart require that the vapor suppressant effectiveness factor be determined. The vapor suppressant effectiveness factor is then used as one of the inputs into the appropriate organic HAP emission factor equation. The vapor suppressant effectiveness factor test is not intended to quantify overall volatile emissions from a resin, nor to be used as a stand-alone test for emissions determination. This test is designed to evaluate the performance of film forming vapor suppressant resin additives. The results of this test are used only in combination with the organic HAP emissions factor equations in Table 1 to this subpart to generate emission factors.
- 1.1.1 The open molding process consists of application of resin and reinforcements to the mold surface, followed by a manual rollout process to consolidate the laminate, and the curing stage where the laminate surface is not disturbed. Emission studies have shown that approximately 50 percent to 55 percent of the emissions occur while the resin is being applied to the mold. Vapor suppressants have little effect during this portion of the lamination process, but can have a significant effect during the curing stage. Therefore, if a suppressant is 100 percent effective, the overall emissions from the process would be reduced by 45 percent to 50 percent, representing the emissions generated during the curing stage. In actual practice, vapor suppressant effectiveness will be less than 100 percent and the test results determine the specific effectiveness in terms of the vapor suppressant effectiveness factor. This factor represents the effectiveness of a specific combination of suppressant additive and resin formulation.
- 1.1.2 A resin manufacturer may supply a molder with a vapor-suppressed resin, and employ this test to provide the molder with the vapor suppressant effectiveness factor for that combination of resin and vapor suppressant. The factor qualifies the effectiveness of the vapor suppressant when the resin is tested in the specific formulation supplied to the molder. The addition of fillers or other diluents by the molder may impact the effectiveness of the vapor

Page 53 of 69

TV No. T057-39236-00042

suppressant. The formulation, including resin/glass ratio and filler content, used in the test should be similar to the formulation to be used in production. The premise of this method is to compare laminate samples made with vapor suppressant additive and made without the additive. The difference in emissions between the two yields the vapor

1.1.3 The method uses a mass balance determination to establish the relative loss of the volatile component from unsaturated polyester or vinyl ester resins, with and without vapor suppressant additives. The effectiveness of a specific vapor suppressant and resin mixture is determined by comparing the relative volatile weight losses from vapor suppressed and non-suppressed resins. The volatile species are not separately analyzed. While the species contained in the volatile component are not determined, an extended listing of potential monomer that may be contained in unsaturated polyester or vinyl ester resins is provided in Table 1.1. However, most polyester and vinyl ester resin formulations presently used by the composites industry only contain styrene monomer.

Table 1.1—List of Monomers Potentially Present in Unsaturated Polyester/Vinyl Ester Resins

Monomer	CAS No.
Styrene	100-42-5.
Vinyl toluene	25013-15-4.
Methyl methacrylate	80-62-6.
Alpha methyl styrene	98-83-9.
Para methyl styrene	Vinyl toluene isomer.
Chlorostyrene	1331-28-8.
Diallyl phthalate	131-17-9.
Other volatile monomers	Various.

2. Summary of Method

- 2.1 Differences in specific resin and suppressant additive chemistry affect the performance of a vapor suppressant. The purpose of this method is to quantify the effectiveness of a specific combination of vapor suppressant and unsaturated polyester or vinyl ester resin as they are to be used in production. This comparative test quantifies the loss of volatiles from a fiberglass reinforced laminate during the roll-out and curing emission phases, for resins formulated with and without a suppressant additive. A criterion for this method is the testing of a non-vapor suppressed resin system and testing the same resin with a vapor suppressant. The two resins are as identical as possible with the exception of the addition of the suppressant to one. The exact formulation used for the test will be determined by the in-use production requirements. Each formulation of resin, glass, fillers, and additives is developed to meet particular customer and or performance specifications.
- 2.2 The result of this test is used as an input factor in the organic HAP emissions factor equations in Table 1 to this subpart, which allows these equations to predict emissions from a specific combination of resin and suppressant. This test does not provide an emission rate for the entire lamination process.

3. Definitions and Acronyms

3.1 Definitions

suppressant effectiveness factor.

- 3.1.1 *Vapor suppressant.* An additive that inhibits the evaporation of volatile components in unsaturated polyester or vinyl ester resins.
- 3.1.2 Unsaturated polyester resin. A thermosetting resin commonly used in composites molding.
- 3.1.3 *Unsaturated vinyl ester resin.* A thermosetting resin used in composites molding for corrosion resistant and high performance applications.
- 3.1.4 Laminate. A combination of fiber reinforcement and a thermoset resin.

Page 54 of 69

TV No. T057-39236-00042

- 3.1.5 Chopped strand mat. Glass fiber reinforcement with random fiber orientation.
- 3.1.6 Initiator. A curing agent added to an unsaturated polyester or vinyl ester resin.
- 3.1.7 Resin application roller. A tool used to saturate and compact a wet laminate.
- 3.1.8 *Gel time.* The time from the addition of initiator to a resin to the state of resin gelation.
- 3.1.9 *Filled resin system.* A resin, which includes the addition of inert organic or inorganic materials to modify the resin properties, extend the volume and to lower the cost. Fillers include, but are not limited to; mineral particulates; microspheres; or organic particulates. This test is not intended to be used to determine the vapor suppressant effectiveness of a filler.
- 3.1.10 *Material safety data sheet.* Data supplied by the manufacturer of a chemical product, listing hazardous chemical components, safety precautions, and required personal protection equipment for a specific product.
- 3.1.11 *Tare(ed).* Reset a balance to zero after a container or object is placed on the balance; that is to subtract the weight of a container or object from the balance reading so as to weigh only the material placed in the container or on the object.
- 3.1.12 Percent glass. The specified glass fiber weight content in a laminate. It is usually determined by engineering requirements for the laminate.
- 3.2 Acronyms:
- 3.2.1 VS —vapor suppressed or vapor suppressant.
- 3.2.2 NVS —non-vapor suppressed.
- 3.2.3 VSE —vapor suppressant effectiveness.
- 3.2.4 VSE Factor —vapor suppressant effectiveness, factor used in the equations in Table 1 to this subpart.
- 3.2.5 *CSM*—chopped strand mat.
- 3.2.6 *MSDS* —material safety data sheet.

4. Interferences

There are no identified interferences which affect the results of this test.

5. Safety

Standard laboratory safety procedures should be used when conducting this test. Refer to specific MSDS for handling precautions.

6. Equipment and Supplies

NOTE: Mention of trade names or specific products or suppliers does not constitute an endorsement by the Environmental Protection Agency.

- 6.1 Required Equipment.
- 6.1.1 Balance enclosure.1

Page 55 of 69 TV No. T057-39236-00042

- 6.1.2 Two (2) laboratory balances—accurate to ±0.01g.2
- 6.1.3 Stop watch or balance data recording output to data logger with accuracy ±1 second.3
- 6.1.4 Thermometer—accurate to ±2.0 °F(±1.0 °C).4
- 6.1.5 A lipped pan large enough to hold the cut glass without coming into contact with the vertical sides, e.g. a pizza pan.⁵
- 6.1.6 Mylar film sufficient to cover the bottom of the pan.6
- 6.1.7 Tape to keep the Mylar from shifting in the bottom of the pan.⁷
- 6.1.8 Plastic tri-corner beakers of equivalent—250 ml to 400 ml capacity.8
- 6.1.9 Eye dropper or pipette.9
- 6.1.10 Disposable resin application roller, $\frac{3}{16}$ "- $\frac{3}{4}$ " diameter × 3"-6" roller length. 10
- 6.1.11 Hygrometer or psychrometer ¹¹ accurate to ±5 percent
- 6.1.12 Insulating board, (Teflon, cardboard, foam board etc.) to prevent the balance from becoming a heat sink. 12
- 6.2 Optional Equipment.
- 6.2.1 Laboratory balance—accurate to ±.01g with digital output, such as an RS-232 bi-directional interface ¹³ for use with automatic data recording devices.
- 6.2.2 Computer with recording software configured to link to balance digital output. Must be programmed to record data at the minimum intervals required for manual data acquisition.
- 6.3 Supplies.
- 6.3.1 Chopped strand mat—1.5 oz/ft.2 14

7. Reagents and Standards

- 7.1 *Initiator.* The initiator type, brand, and concentration will be specified by resin manufacturer, or as required by production operation.
- 7.2 Polyester or vinyl ester resin.
- 7.3 Vapor suppressant additive.
- 8. Sample Collection, Preservation, and Storage

This test method involves the immediate recording of data during the roll out and curing phases of the lamination process during each test run. Samples are neither collected, preserved, nor stored.

9. Quality Control

Careful attention to the prescribed test procedure, routing equipment calibration, and replicate testing are the quality control activities for this test method. Refer to the procedures in section 11. A minimum of six test runs of a resin

Page 56 of 69

TV No. T057-39236-00042

system without a suppressant and six test runs of the same resin with a suppressant shall be performed for each resin and suppressant test combination.

10. Calibration and Standardization

- 10.1 The laboratory balances, stopwatch, hygrometer and thermometer shall be maintained in a state of calibration prior to testing and thereafter on a scheduled basis as determined by the testing laboratory. This shall be accomplished by using certified calibration standards.
- 10.2 Calibration records shall be maintained for a period of 3 years.

11. Test Procedure

- 11.1 Test Set-up.
- 11.1.1 The laboratory balance is located in an enclosure to prevent fluctuations in balance readings due to localized air movement. The front of enclosure is open to permit work activity, but positioned so that local airflow will not effect balance readings. The ambient temperature is determined by suspending the thermometer at a point inside the enclosure.
- 11.1.2 The bottom of the aluminum pan is covered with the Mylar film. The film is held in position with tape or by friction between the pan and the film.
- 11.1.3 The resin and pan are brought to room temperature. This test temperature must be between 70 °F and 80 °F. The testing temperature cannot vary more than ±2 °F during the measurement of test runs. Temperature shall be recorded at the same time weight is recorded on suppressed and non-suppressed test data sheets, shown in Table 17.1.
- 11.1.4 The relative humidity may not change more than ±15 percent during the test runs. This is determined by recording the relative humidity in the vicinity of the test chamber at the beginning and end of an individual test run. This data is recorded on the test data sheets shown in Table 17.1.
- 11.1.5 Two plies of nominal 1.5 oz/ft 2 chopped strand mat (CSM) are cut into a square or rectangle with the minimum surface area of 60 square inches (*i.e.* a square with a side dimension of 7.75 inches).
- 11.1.6 The appropriate resin application roller is readily available.
- 11.2 Resin Gel Time/Initiator Percentage
- 11.2.1 Previous testing has indicated that resin gel time influences the emissions from composite production. The testing indicated that longer the gel times led to higher emissions. There are a number of factors that influence gel time including initiator type, initiator brand, initiator level, temperature and resin additives. Under actual usage conditions a molder will adjust the initiator to meet a gel time requirement. In this test procedure, the vapor suppressed and non-vapor suppressed resin systems will be adjusted to the same gel time by selecting the appropriate initiator level for each.
- 11.2.2 All test runs within a test will be processed in a manner that produces the same resin gel time ±2 minutes. To facilitate the resin mixing procedure, master batches of resin and resin plus vapor suppressant of resin are prepared. These resin master batches will have all of the required ingredients except initiator; this includes filler for filled systems. The gel times for the tests are conducted using the master batch and adjustments to meet gel time requirements shall be made to the master batch before emission testing is conducted. Test temperatures must be maintained within the required range, during gel time testing. Further gel time testing is not required after the non-vapor suppressed and vapor suppressed master batches are established with gel times within ±2 minutes. A sufficient quantity of each resin should be prepared to allow for additional test specimens in the event one or more test fails to meet the data acceptance criteria discussed in Section 11.5 and shown in Table 17.2.

Page 57 of 69

TV No. T057-39236-00042

11.2.3 The specific brand of initiator and the nominal percentage level recommended by the resin manufacturer will be indicated on the resin certificate of analysis ¹⁵; or, if a unique gel time is required in a production laminate, initiator brand and percentage will be determined by that specific requirement.

11.2.4 Examples:

- 11.2.4.1 The resin for a test run is specified as having a 15-minute cup gel time at 77 °F using Brand X initiator at 1.5 percent by weight. The non-suppressed control resin has a 15-minute gel time. The suppressed resin has a gel time of 17-minutes. An initiator level of 1.5 percent would be selected for the both the non-suppressed and the suppressed test samples.
- 11.2.4.2 Based on a specific production requirement, a resin is processed in production using 2.25 percent of Brand Y initiator, which produces a 20-minute gel time. This initiator at level of 2.25 percent produces a 20 minute gel time for the non-suppressed control resin, but yields a 25-minute gel time for the suppressed resin sample. The suppressed resin is retested at 2.50 percent initiator and produces a 21-minute gel time. The initiator levels of 2.25 percent and 2.50 percent respectively would yield gel times within ±2 minutes.
- 11.3 Test Run Procedure for Unfilled Resin (see the data sheet shown in Table 17.1).
- 11.3.1 The insulating board is placed on the balance.
- 11.3.2 The aluminum pan with attached Mylar film is placed on the balance, and the balance is tared (weight reading set to zero with the plate on the balance.)
- 11.3.3 Place two plies of 1.5 oz. CSM on the balance and record the weight (glass weight).
- 11.3.4 The resin beaker and stirring rod are put on the second balance and tared.
- 11.3.5 The required resin weight and initiator weight are calculated (refer to calculation formulas in 12.2).
- 11.3.6 The disposable resin application roller is placed on the edge of the plate.
- 11.3.7 The balance is tared, with the aluminum pan, Mylar film, glass mat, and resin application roller on the balance pan.
- 11.3.8 Resin is weighed into a beaker, as calculated, using the second balance. The mixing stick should be tared with the beaker weight.
- 11.3.9 Initiator is weighed into the resin, as calculated, using an eyedropper or a pipette, and the combination is mixed.
- 11.3.10 Initiated resin is poured on chopped strand mat in a pe-determined pattern (see Figure 11.6).
- 11.3.11 A stopwatch is started from zero.
- 11.3.12 The initial laminate weight is recorded.
- 11.3.13 The plate is removed from balance to enable roll-out of the laminate.
- 11.3.14 The wet laminate is rolled with the resin application roller to completely distribute the resin, saturate the chopped strand mat, and eliminate air voids. Roll-out time should be in the range of 2 to 3^{16} minutes and vary less than ± 10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.
- 11.3.15 Record the rollout end time (time from start to completion of rollout).

Attachment B TV No. T057-39236-00042

Page 58 of 69

11.3.16 Place the resin application roller on the edge of the plate when rollout is completed.

- 11.3.17 Place the plate back on the balance pan. Immediately record the weight.
- 11.3.18 For the first test in a series of six tests, weight is recorded every 5-minute interval (suppressed and non-suppressed). The end of the test occurs when three consecutive equal weights are recorded or a weight gain is observed (the last weight before the increased weight is the end of test weight). For the remaining five tests in the series, after the initial weights are taken, the next weight is recorded 30 minutes before the end of the test, as suggested by the results from the first test. It is likely that the time to reach the end point of a suppressed resin test will be shorter than the time required to complete a non-suppressed test. Therefore, the time to start taking data manually may be different for suppressed and non-suppressed resins.
- 11.4 Test Run Procedures for Filled Resin Systems ¹⁷ Note that the procedure for filled systems differs from the procedure for unfilled systems. With filled systems, resin is applied to one ply of the CSM and the second ply is placed on top of the resin.
- 11.4.1 The insulating board is placed on the balance.
- 11.4.2 The aluminum pan with attached Mylar film is placed on the balance, and the balance is tared (weight reading set to zero with the plate on the balance.)
- 11.4.3 Place two plies of 1.5 oz. CSM on the balance and record the weight (glass weight).
- 11.4.4 Remove the top ply of fiberglass and record its weight (weight of 1st layer of glass).
- 11.4.5 The required resin weight and initiator weight are calculated (refer to calculation formulas in 12.2). Calculate the weight of filled resin and initiator based on the 2 layers of fiberglass.
- 11.4.6 The resin beaker and stirring rod are put on the second balance and tared.
- 11.4.7 A disposable resin application roller is placed on the edge of the plate.
- 11.4.8 The balance is tared, with the aluminum pan, Mylar film, glass mat, and resin application roller on the balance pan.
- 11.4.9 Resin is weighed into the beaker, as calculated, using the second balance. The mixing stick should be tared with the beaker weight.
- 11.4.10 Initiator is weighed into the resin, as calculated, using an eyedropper or a pipette, and the combination is mixed.
- 11.4.11 Initiated resin is poured on the single ply of CSM in a pre-determined pattern. Refer to Figure 11.6.
- 11.4.12 A stopwatch is started from zero.
- 11.4.13 Record the weight of the resin ans single ply of CSM (L_1). The initial laminate weight equals L_1 plus the weight of second glass layer.
- 11.4.14 Replace the second layer of fiberglass.
- 11.4.15 Remove the plate from the balance to allow roll-out of the laminate.
- 11.4.16 Roll the wet laminate with the resin application roller to completely distribute the resin, saturate the chopped strand mat, and eliminate air voids. Roll-out time should be in the range of 2 to 3¹⁶ minutes and vary less than ±10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.

Page 59 of 69

TV No. T057-39236-00042

- 11.4.17 Record the roll-out end time (time from start to completion of rollout).
- 11.4.18 Place the resin application roller on the edge of the plate when rollout is completed.
- 11.4.19 Place the plate back on the balance pan. The initial weight is recorded immediately.
- 11.4.20 For the first test run in a series of six, weight is recorded at every 5-minute interval (suppressed and non-suppressed). The end of the test occurs when three consecutive equal weights are recorded or a weight gain is observed (the last weight before the increased weight is the end of test weight). For the remaining five tests in the series, after the initial weights are taken, the next weight is recorded 30 minutes before the end of the test, as suggested by the results from the first test. It is likely that the time to reach the end point of a suppressed resin test will be shorter than the time required to complete a non-suppressed test. Therefore, the time to start taking data manually may be different for suppressed and non-suppressed resins.
- 11.5 Data Acceptance Criteria:
- 11.5.1 A test set is designed as twelve individual test runs using the same resin, initiator, and gel time, six of the test runs use the resin non-vapor suppressed and the other six use it vapor suppressed.
- 11.5.2 If a test run falls outside any of the time, temperature, weight or humidity variation requirements, it must be discarded and run again.
- 11.5.3 The laminate roll out time for each individual test run must vary less than ±10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.
- 11.5.4 Test temperature for each test run must be maintained within ±2 °F and the average must be between 70° and 80 °F. Refer to 11.1.3.
- 11.5.5 The difference in the amount of resin for each run must be within ±10 percent of the average weight for the complete set of six suppressed and six non-suppressed runs.
- 11.5.6 The relative humidity from each test run must be within ±15 percent of the average humidity for the complete set of six suppressed and six non-suppressed tests. Refer to 11.1.4
- 11.5.7 The glass content for each test set must be within ±10 percent of the average resin-to-/glass ratio for the complete set of six suppressed and six non-suppressed runs. Refer to 12.2).
- 11.5.8 The filler content for each test of a test set must be within ±5 percent of the average filler content for the complete set of six suppressed and six non-suppressed runs. Refer to 12.2.
- 11.6 Resin Application Pour Pattern:
- 11.6.1 To facilitate the distribution of resin across the chopped strand mat, and to provide consistency from test to test, a uniform pour pattern should be used. A typical pour pattern is shown below:

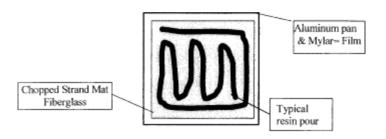


Figure 11.6 Resin Distribution Diagram

11.6.2 The resin is to be evenly distributed across the entire surface of the chopped strand mat using the resin application roller to achieve a wet look across the surface of the laminate. Pushing excess resin off the reinforcement and onto the Mylar sheet should be avoided. No resin is to be pushed more than $\frac{1}{2}$ inch beyond the edge of the glass mat. If excess resin is pushed further from the glass mat, it will void the test run. As part of this process, typical visible air voids are to be eliminated by the rollout process. If the pour pattern is different from the above, it must be recorded and attached to test data sheet 17.1.

12. Data Analysis and Calculations

12.1 Data Analysis:

This test method requires a simple mass balance calculation, no special data analysis is necessary.

- 12.2 Calculations:
- 12.2.1 The target glass content (percent) for unfilled resin systems is determined from the specific production parameters being evaluated. In absence of any specific production requirements the target may be set at the tester's discretion.
- 12.2.2 Glass content determination (expressed as a per cent):

% Glass = Glass wt(g)/(Glass wt(g) + Resin weight (g))

12.2.3 Weight of resin required:

Resin weight required = (Glass wt (g)/% glass)—Glass wt (g)

12.2.4 Filled resin formulation determination for filled resin systems (e.g. >30 percent filler by weight for a particulate filler, or >1 percent by weight for a lightweight filler, such as hollow microspheres):

% Resin content = resin

weight(g)/(resin weight(g) + glass

weight(g) + filler weight(g))

% Glass content = glass

weight(g)/(resin weight(g) + glass

Page 61 of 69 TV No. T057-39236-00042

weight(g) + filler weight(g))

Filler content = filler

weight(g)/(resin weight(g) + glass

weight(g) + filler weight(g))

12.2.5 Initiator weight determination:

Initiator weight (g) = Resin weight(g) x Initiator %

12.2.6 Emission weight loss determination:

Emissions weight loss (g) = Initial resin weight (g)-Final resin weight (g)

12.2.7 % Emission weight loss:

% Emission Weight Loss = (Emission weight loss (g) Initial resin weight (g) x 100

12.2.8 Average % Emission Weight Loss (assuming six test runs):

Average % Emission Weight Loss =
$$\sum_{i}^{N=6}$$
 (% Emission Weight Loss_i)/6

12.2.9 VSE Factor calculation:

VSE Factor = 1 -(Average % VS Emission Weight Loss/Average NVS Emission Weight Loss)

Table 12.1—Example Calculation

Test #	% VS weight loss	% NVS weight loss
1	6.87	10.86
2	6.76	11.23
3	5.80	12.02
4	5.34	11.70
5	6.11	11.91
6	6.61	10.63
Average Weight Loss	6.25	11.39
VSE Factor		0.4

VSE Factor = 0.45

VSE Factor is used as input into the appropriate equation in Table 1 to this subpart.

Example from Table 1 to this subpart:

Manual Resin Application, 35 percent HAP resin, VSE Factor of 0.45

Page 62 of 69

TV No. T057-39236-00042

HAP Emissions with vapor suppresants = ((0.286 × %HAP)-0.0529) × 2000 × (1-(0.5 × VSE factor))

HAP Emissions with vapor suppresants = $((0.286 \times .35) - 0.0529) \times 2000 \times (1 - (0.5 \times .45))$

HAP Emissions with vapor suppresants = 73 pounds of HAP emissions per ton of resin.

13. Method Performance

13.1 Bias:

The bias of this test method has not been determined.

13.2 Precision Testing

- 13.2.1 Subsequent to the initial development of this test protocol by the Composites Fabricators Association, a series of tests were conducted in three different laboratory facilities. The purpose of this round robin testing was to verify the precision of the test method in various laboratories. Each laboratory received a sample of an orthophthalic polyester resin from the same production batch, containing 48 per cent styrene by weight. Each testing site was also provided with the same vapor suppressant additive. The suppressant manufacturer specified the percentage level of suppressant additive. The resin manufacturer specified the type and level of initiator required to produce a 20 minute gel time. The target glass content was 30 percent by weight.
- 13.2.2 Each laboratory independently conducted the VSE test according to this method. A summary of the results is included in Table 13.1.

Table 13.1—Round Robin Testing Results

	Test Lab 1		Test Lab 2		Test Lab 3	
	NVS	VS	NVS	S	NVS	VS
Average percent WT Loss	4.24	1.15	4.69	1.84	5.73	1.61
Standard Deviation	0.095	0.060	0.002	0.002	0.020	0.003
VSE Factor		0.730		0.607		0.720

13.3 Comparison to EPA Reference Methods This test has no corresponding EPA reference method.

14. Pollution Prevention

The sample size used in this method produces a negligible emission of HAP, and has an insignificant impact upon the atmosphere.

15. Waste Management

The spent and waste materials generated during this test are disposed according to required facility procedures, and waste management recommendations on the corresponding material safety data sheets.

16. References and footnotes

16.1 Footnotes:

¹ Balance Enclosure—The purpose of the balance enclosure is to prevent localized airflow from adversely affecting the laboratory balance. The enclosure may be a simple three-sided box with a top and an open face. The configuration of the enclosure is secondary to the purpose of providing a stable and steady balance reading, free from the effects of airflow, for accurate measurements. The enclosure can be fabricated locally. A typical enclosure is shown in Figure 17.1.

Page 63 of 69

TV No. T057-39236-00042

- ² Laboratory Balance—Ohaus Precision Standard Series P/N TS400D or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.
- ³ Stop Watch—Local supply.
- ⁴ Thermometer—Mercury thermometer—ASTM No. 21C or equivalent; Digital thermometer—P/N TH-33033 or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.
- ⁵ Aluminum Pan—Local supply.
- ⁶ Mylar—Local supply.
- ⁷ Double Sided Tape—3M Double Stick Tape or equivalent, local supply.
- ⁸ Laboratory Beakers—250 to 400ml capacity—Local laboratory supply.
- ⁹ Eye Dropper or Pipette—Local laboratory supply.
- ¹⁰ Disposable Resin Application Roller Source—Wire Handle Roller P/N 205-050-300 or Plastic Handle Roller P/N 215-050-300 or equivalent; ES Manufacturing Inc., 2500 26st Ave. North, St. Petersburg, FL 33713, *www.esmfg.com*, or other source. Refer to Figure 17.3.
- Hygrometer or Psychrometer—Model# THWD-1, or equivalent—Part # 975765 by Amprobe Instrument, 630 Merrick Road, P.O. Box 329, Lynbrook, NY 11563, 516-593-5600
- ¹² Insulating Board (Teflon, cardboard, foam board etc.)—Local supply.
- Laboratory Balance With Digital Output—Ohaus Precision Standard Series P/N TS120S or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.
- 14 Chopped Strand Mat—1.5 oz/ft ² Sources: Owens Corning Fiberglas—Fiberglas M-723; PPG Industries—ABM HTX; Vetrotex America—M-127 or equivalent.
- ¹⁵ Certificate of Analysis: Resin gel time, as recorded on the resin certificate of analysis, is measured using a laboratory standard gel time procedure. This procedure typically uses a 100 gram cup sample at 77 °F (25 °C), a specific type of initiator and a specified percentage.
- ¹⁶ Roll-out times may vary with resin viscosity or resin additive. The important aspect of this step is to produce the same roll-out time for both the suppressed and non-suppressed samples.
- ¹⁷ While this test can be used with filled resin systems, the test is not designed to determine the effect of the filler on emissions, but rather to measure the effect of the suppressant additive in the resin system. When evaluating a filled system both the non-vapor suppressed and vapor suppressed samples should be formulated with the same type and level of filler.
- 16.2 References
- 1. Phase 1—Baseline Study Hand Lay-up, CFA, 1996
- 2. CFA Vapor Suppressant Effectiveness Test Development, 4/3/98, correspondence with Dr. Madeleine Strum, EPA, OAQPS
- 3. CFA Vapor Suppressant Effectiveness Screening Tests. 4/4/98
- 4. Styrene Suppressant Systems Study, Reichhold Chemical, 11/30/98

Page 64 of 69 TV No. T057-39236-00042

- 5. Evaluation of the CFA's New Proposed Vapor Suppressant Effectiveness Test, Technical Service Request #: ED-01-98, BYK Chemie, 6/3/98
- 6. Second Evaluation of the CFA's New Proposed Vapor Suppressant Effectiveness Test, Technical Service Request #: ED-02-98, BYK Chemie, 1/26/99

17. Data Sheets and Figures

17.1 This data sheet, or a similar data sheet, is used to record the test data for filled, unfilled, suppressed and non-suppressed tests. If additional time is required, the data sheet may be extended.

Table 17.1 Test Data Sheet

<u>Test Number</u>		Test Type			
	VS (_	NVS ()			
Resin		Filled ()	Unfilled ()	
Initiator			Initiator,		
Vapor Suppressant			VS, %		
Weight of 2 layers of glass, g	Weight of 1st glass layer, g		Weight of 2 nd glass layer, g		
Initial Resin Weight, (g)		Time (Min.)	Weight g	Temp °F	
Glass content, (%)		55			
Initial Temperature °F:		60			
Initial Humidity %		65			
Resin Initiator Level,%		70			
Resin gel time, (min.)		75			
Resin filler content, %		80			
Roll out time, (min.)		85			
Time, Weight, (min.) g	Temp,	90			

Initial		95	
		100	
0		105	
5		110	
10		115	
15		120	
20		125	
25		130	
30		135	
35		140	
40		145	
45		150	
50		155	
Final Time, min.	Final Weight, g.	Final Temp, °F	Final Humidity, %

17.2 Data Acceptance Criteria Worksheet:

The following worksheet is used to determine the quality of collected data (*i.e.* insure the data collected all meets acceptance criteria)

Table 17.2—Data Acceptance Criteria Worksheet

Test No.	Temperature			Laminate roll	HIGHHIGHT 10		Resin weight,	Glass content,	Resin	Meets criteria
	Min	Max	Delta	out time, min	Initial	Final	(g)	%	distribution	Y/N
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
Average										
Criteria	±2 °F	±10% of Average	±15 of Average	±15 of Average	±10% of Avg.	±10% of Avg.	< 1/2 inch off mat	All Y		

Page 66 of 69 TV No. T057-39236-00042

17.3 VSE Factor Calculation

Table 17.3—Calculations Worksheet

Vapor suppres	Vapor suppressed		
Test #	Test # % Weight loss		% Weight loss
Average Weight Loss			
VSE Factor			

VSE Factor = 1—(% Average Weight Loss_{VS}/ % Average Weight Loss_{NVS})

17.4 Figures

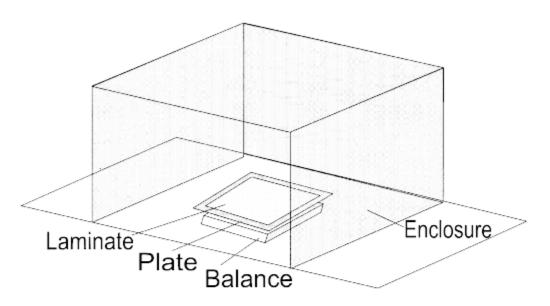


Figure 17.1. Typical Balance Enclosure

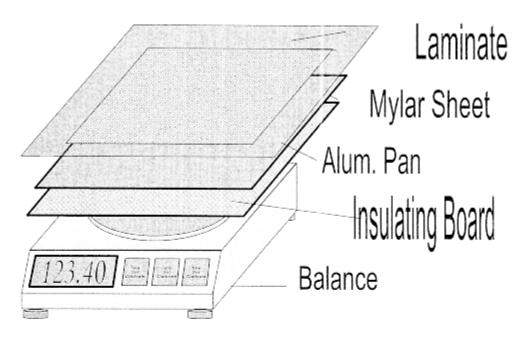
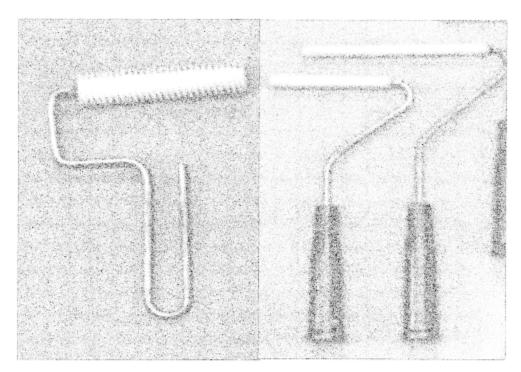



Figure 17.2. Scale, Plate, Insulating Board, Mylar, Laminate Order

FRP Rollers

Figure 17.3. Typical FRF Rollers

Indiana Department of Environmental Management

Office of Air Quality

Technical Support Document (TSD) for a Part 70 Operating Permit Renewal

Source Description and Location

Source Name: Industrial Dielectrics, Inc. dba IDI Composites

International

Source Location: 407 South 7th Street, Noblesville, IN 46060

County: Hamilton

SIC Code: 3087 (Custom Compounding of Purchased Plastic

Resins)

Permit Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

On November 1, 2017, Industrial Dielectrics, Inc. dba IDI Composites International submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Industrial Dielectrics, Inc. dba IDI Composites International relating to the operation of a stationary source for custom compounding of purchased plastic resins. Industrial Dielectrics, Inc. dba IDI Composites International was issued its second Part 70 Operating Permit Renewal (057-31912-00042) on August 5, 2013.

Permitted Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:

Emissions units were revised for clarify in this renewal, such as grouping emissions units involved in specific production.

(1) SMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the SMC production are considered affected units.

- (a) One (1) sheet molding compound (SMC) mixer, identified as SMC Drum Mixer, constructed prior to 1980, with a maximum throughput of 1,200 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to stack S2.
- (b) One (1) 48" sheet molding compound (SMC) line, identified as SMC Line 1, originally constructed prior to 1980 and modified in 2012, with maximum throughput of 7,252 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 48" SMC machine.

The Large Mixer and glass chopper is controlled by a baghouse, identified as SMC baghouse B2, exhausting to stack S2.

- (c) One (1) 39" sheet molding compound (SMC) line, identified as SMC Line 2, constructed in 2002, with maximum throughput of 5,628 pounds per hour, consisting of the following:
 - (1) one (1) Large Mixer,
 - (2) one (1) Small pigment dissolver/mixer,
 - (3) one (1) Small thickener dissolver/mixer, and
 - (4) one (1) 39" SMC machine.

The Large Mixer and glass chopper are controlled by a baghouse, identified as SMC Baghouse B2, and exhausting to stack S2.

- (d) One (1) 36" sample sheeting molding compound (SMC) line, identified as SMC Line 3, consisting of the following:
 - (1) One (1) mixer, identified as SMC Drum Mixer #2, constructed in 2016, located in the Technical Center, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center baghouse B4, for particulate control, and exhausting to stack S4.
 - (2) One (1) 36" SMC Machine, constructed in 2016, with a maximum throughput of 2,315 pounds per hour, using a baghouse, identified as 3i Tech Center Baghouse B4, for particulate control, and exhausting to stack S4.
- (e) One (1) independent SMC mixer, typically located in the Technical Center, identified as Mixer #26, approved in 2016 for construction, with a maximum throughput of 50 pounds per hour, using a baghouse, identified as 3i Technology Center baghouse B4, for particulate control, and exhausting to stack S4.
- (f) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 2,400 pounds per hour, using a baghouse, identified as SMC Baghouse B2, for particulate control, and exhausting to Stack S2.

(2) BMC Production:

Under 40 CFR 63, NESHAP, Subpart WWWW, these units used in the BMC production are considered affected units.

- (a) Ten (10) bulk molding compound (BMC) mixers, consisting of the following:
 - (1) Five (5) bulk molding compound (BMC) mixers, identified as BMC Mixer #1 through BMC Mixer #5, constructed after 1980, each with a maximum throughput of 1,200 pounds per hour, using a common baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
 - (2) One (1) bulk molding compound (BMC) mixer, identified as BMC Mixer #6, constructed in 2008, with a maximum throughput of 2,200 lb/hr, using

- a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
- (3) Four (4) bulk molding compound (BMC) mixers, identified as Rosite mixer L1 through Rosite mixer L4, constructed in 2005, each with a maximum capacity of 1,000 pounds per hour, using a common baghouse, identified as SMC baghouse B2, for particulate control, and exhausting to Stack S2.
- (b) One (1) Rosite resin blending mixer, constructed in 2005, using no control, and exhausting inside the building.

This mixer is used to blend resins for Rosite Mixer L1 through Rosite mixer L4.

- (c) One (1) filler cut scale, for weighing filler powders used in each mixer, with a maximum throughput of 492 pounds per hour, using a baghouse, identified as BMC Baghouse B1, for particulate control, and exhausting to stack S1.
- (d) One (1) packaging operation, no control, consisting of the following:
 - (1) two (2) compound feeders,
 - (2) six (6) extruders used to package BMC material for shipping, and
 - (3) four (4) bulk extruders.

Emission Units and Pollution Control Equipment Removed From the Source

- (a) One (1) laboratory BMC mixer, identified as BMC Mixer #15, with a maximum throughput of 100 pounds per hour, using a baghouse, identified as Lab Baghouse B1, for particulate control, and exhausting to stack S3.
- (b) One (1) compression molding press, identified as #5, approved in 2016 for construction, with a maximum through put of fifty (50) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
 - Under 40 CFR 63, Subpart WWWW, this is an affected unit.
- (c) One (1) saw, identified as SA₂, for plastic sheet production, with a maximum capacity of 20 pounds per hour, with no emission controls and no outside exhaust.
- (d) One (1) electric oven, identified as O3, approved for construction in 2013, for treatment of unusable raw materials prior to disposal, with a maximum capacity of 1,600 pounds per hour, with no emission controls and exhausting to Stack E6.
- (e) One (1) SMC extruder, located in the FG Warehouse, identified as SMC Extruder #3, constructed in 2016, using no control, and exhausting to stack S3.
- (f) One (1) mixer, identified as Mixer #23, with a maximum capacity of 50 pounds per hour, using no control, and exhausting inside the building.
- (g) Two (2) laboratory bulk molding compound (BMC) mixers;
 - (1) One (1) laboratory bulk molding compound (BMC) mixer, identified as Rosite Mixer #16, constructed in 2005, with a maximum throughput of 10 pounds per hour, using no control.
 - One (1) laboratory BMC mixer, identified as BMC Mixer #17, with a maximum throughput of 150 pounds per hour, using a baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.

(h) Two (2) small laboratory extruders, with no pollution control equipment and exhausting inside the building.

Insignificant Activities

The source also consists of the following insignificant activities:

(1) Laboratory mixers:

Under 40 CFR 63, NESHAP, Subpart WWWW, these laboratory mixers are affected units.

- (a) Two (2) SMC laboratory mixers, consisting of the following:
 - (1) One (1) mixer, identified as Mixer #24, with a maximum capacity of 50 pounds per hour, using baghouse B3 for particulate control, and exhausting to stack S3.
 - (2) One (1) mixer, identified as Mixer #25, with a maximum capacity of 15 pounds per hour, using no control, and exhausting inside the building.
- (b) Three (3) laboratory bulk molding compound (BMC) mixers;
 - (1) One (1) BMC mixer, identified as BMC Mixer #18, with a maximum throughput of 250 pounds per hour, using a baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
 - (2) Two (2) BMC mixers, identified as BMC Mixer #19 and BMC Mixer #20, each with a maximum throughput of 20 pounds per hour, using a common baghouse, identified as Lab Baghouse B3, for particulate control, and exhausting to stack S3.
- (2) One (1) PolyM Dispersion Mixer, used to set up scrap SMC and BMC material through polymerization, using no control and exhausting inside the building.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this mixer is an affected unit.
- (3) QA/QC process involving laboratory testing and six (6) sample molding presses, using no control, and exhausting inside the building.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this is an affected unit.
- (4) One (1) Vazo Blender, constructed in 2005, with a maximum throughput of 180 batches of material per year, with each batch composed of 758 pounds of raw materials, using a baghouse, identified as Vazo Baghouse B5, for particulate control, and exhausting to Stack S5.
 - Under 40 CFR 63, NESHAP, Subpart WWWW, this blender is considered an affected unit.
- (5) Four (4) compression molding presses:
 - (a) One (1) compression molding press, identified as #1, approved in 2015 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.

- (b) One (1) compression molding press, identified as Press #2, approved in 2015 for construction, with a maximum throughput of twenty-five(25) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
- (c) One (1) compression molding press, identified as Press #3, approved in 2016 for construction, with a maximum throughput of one hundred (100) pounds of BMC or SMC per hour, using no control and exhausting to the indoors.
- (d) One (1) compression molding press, identified as Press #4, approved in 2016 for construction, with a maximum throughput of one hundred (100) of BMC or SMC per hour, using no control and exhausting to the indoors.

Under 40 CFR 63, NESHAP, Subpart WWWW, these presses are considered affected units.

- (6) One (1) Conductex weigh out room, approved in 2018 for construction, with a maximum throughput of 300 lbs of Conductex per hour, using a baghouse, identified as B6, for particulate control, and exhausting to stack S6.
- (7) Cleaning solvent identified as S-0280 Super Flush having a vapor pressure equal to or less than 0.7kPa;5mmHg; or 0.1 psi measured at 20°C (68°F) and used as follows:
 - (a) Two (2) SMC Cleaning Room soak/cleaning tanks, and
 - (b) One (1) BMC soak/cleaning tank, and
 - (c) One (1) Pigment Area soak/cleaning tank.
- (8) A laboratory as defined in 326 IAC 2-7-1(21)(G), which includes the following:
 - (a) Two (2) ovens, two (2) muffle furnaces, and one (1) Bunsen burner
- (9) Ten (10) storage tanks:
 - (a) Eight (8) above ground polyester resin storage tanks, identified as T_1 through T_6 and T_9 and T_{11} . Tanks T_1 through T_6 have a maximum capacity of 7,200 gallons, and tanks T_9 and T_{11} each have a capacity of 5,400 gallons. Each above ground tank is equipped with one vent and each has the potential to emit less than 1 ton VOC/year.
 - (b) Two (2) above ground styrene storage tanks, identified as T₈ and T₁₀, each with a capacity of 5,400 gallons. Each above ground tank is equipped with one vent and each has the potential to emit less than 1 ton VOC per year.
- (10) Natural gas-fired combustion sources with a total maximum heat input equal to or less than ten million (10,000,000) Btu per hour.
- One (1) saw, identified as SA₁, for plastic sheet production, with a maximum capacity of 20 pounds per hour, with no emission controls and no outside exhaust.
- One (1) stationary emergency generator burning diesel fuel, with a maximum output of 10 KW, manufactured in 2012.

Under 40 CFR 60, Subpart IIII, this is an affected unit.

Industrial Dielectrics, Inc. dba IDI Composites Noblesville, Indiana

Permit Reviewer: Jeries Smirat

- (13) Stationary fire pumps.
- (14) The following equipment related to manufacturing activities not resulting in the emission of HAPs: cutting torches, soldering equipment, welding equipment.
- (15) Replacement or repair of electrostatic precipitators, bags in baghouses and filters in other air filtration equipment.
- (16) Paved and unpaved roads and parking lots with public access.
- (17) Blowdown for any of the following: sight glass; boiler; compressors; pumps; and cooling tower.

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. T057-31912-00042 on August 5, 2013. The source has since received the following approvals:

Permit Type	Permit Number	Issuance Date
Administrative Amendment	057-35499-00042	March 19, 2015
Significant Source Modification	057-36422-00042	March 1, 2016
Significant Permit Modification	057-36476-00042	March 23, 2016

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this document for detailed emission calculations.

County Attainment Status

The source is located in Hamilton County.

Pollutant	Designation				
SO ₂	Better than national standards.				
CO	Unclassifiable or attainment effective November 15, 1990.				
O ₃	Unclassifiable or attainment effective July 20, 2012, for the 2008 8-hour ozone standard.1				
PM _{2.5}	Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM2.5 standard.				
PM _{2.5}	Unclassifiable or attainment effective December 13, 2009, for the 2006 24-hour PM2.5				
	standard.				
PM ₁₀	Unclassifiable effective November 15, 1990.				
NO ₂	Unclassifiable or attainment effective January 29, 2012, for the 2010 NO2 standard.				
Pb	Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.				
1Unclassit	1Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard, which was				
revoked e	ffective June 15, 2005.				

(a) Ozone Standards

Volatile organic compounds (VOC) and Nitrogen Oxides (NO_x) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NO_x emissions are considered when

evaluating the rule applicability relating to ozone. Hamilton County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NO_x emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) $PM_{2.5}$

Hamilton County has been classified as attainment for PM_{2.5}. Therefore, direct PM_{2.5}, SO₂, and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants

Hamilton County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of *Utility Air Regulatory Group v. EPA*, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court's decision. U.S. EPA's guidance states that U.S. EPA will no longer require PSD or Title V permits for sources "previously classified as 'Major' based solely on greenhouse gas emissions."

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Unrestricted Potential Emissions

This table reflects the unrestricted potential emissions of the source.

		Unrestricted Potential Emissions (tons/year)							
Process/ Emission Unit	PM	PM ₁₀ *	PM _{2.5} **	SO ₂	NOx	VOC	СО	Total HAPs	Worst Single HAP
Total PTE of Entire Source	718.08	717.80	717.73	1.00	19.12	88.75	6.80	70.06	69.97 (Styrene)
Title V Major Source Thresholds	NA	100	100	100	100	100	100	25	10
PSD Major Source Thresholds	250	250	250	250	250	250	250	NA	NA

^{*}Under the Part 70 Permit program (40 CFR 70), PM10 and PM2.5, not particulate matter (PM), are each considered as a regulated air pollutant".

^{**}PM_{2.5} listed is direct PM_{2.5}.

Page 8 of 19 TSD for TV Renewal T057-39236-00042

Industrial Dielectrics, Inc. dba IDI Composites Noblesville, Indiana Permit Reviewer: Jeries Smirat

- (a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of PM, PM10, and PM2.5 are equal to or greater than one hundred (100) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.
- (b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.

Part 70 Permit Conditions

This source is subject to the requirements of 326 IAC 2-7, because the source met the following:

- (a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.
- (b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

	Pote	Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)							
Process/ Emission Unit	PM	PM ₁₀ *	PM _{2.5} **	SO ₂	NOx	VOC	СО	Total HAPs	Worst Single HAP
Total PTE of Entire Source	231.03	230.74	230.74	1.00	19.12	88.75	6.80	70.06	69.97 (Styrene)
Title V Major Source Thresholds	NA	100	100	100	100	100	100	25	10
PSD Major Source Thresholds	250	250	250	250	250	250	250	NA	NA

negl. = negligible

- (a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).
- (b) This existing source is a major source of HAPs, as defined in 40 CFR 63.2, because HAP emissions are equal to or greater than ten (10) tons per year for a single HAP and equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

^{*} Under the Part 70 Permit program (40 CFR 70), PM10 and PM2.5, not particulate matter (PM), are each considered as a "regulated air pollutant".

^{**}PM_{2.5} listed is direct PM_{2.5}.

^{***} Limited PTE to render 326 IAC 2-2 not applicable.

Federal Rule Applicability

Compliance Assurance Monitoring (CAM):

- (a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:
 - (1) has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;
 - is subject to an emission limitation or standard for that pollutant (or a surrogate thereof);and
 - (3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.
- (b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.
- (c) Pursuant to 40 CFR 64.2(b)(1)(iii), Acid Rain requirements pursuant to Sections 404, 405, 406, 407(a), 407(b), or 410 of the Clean Air Act are exempt emission limitations or standards. Therefore, CAM was not evaluated for emission limitations or standards for SO₂ and NO_X under the Acid Rain Program.
- (d) Pursuant to 40 CFR 64.3(d), if a continuous emission monitoring system (CEMS) is required pursuant to other federal or state authority, the owner or operator shall use the CEMS to satisfy the requirements of CAM according to the criteria contained in 40 CFR 64.3(d).

The following table is used to identify the applicability of CAM to each existing emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)
SMC Drum Mixer/PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N 1	-
SMC Drum Mixer/PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
SMC Drum Mixer/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
48" SMC Line Large Mixer/ PM	B2	326 IAC 6-3 326 IAC 2-2	>100	<100	Y	N
48" SMC Line Large Mixer/ PM10	B2	326 IAC 2-2	>100	<100	Y	N
48" SMC Line Large Mixer/ PM2.5	B2	326 IAC 2-2	>100	<100	Y	N
-						
39" SMC Line Large Mixer/ PM	B2	326 IAC 6-3 326 IAC 2-2	>100	<100	Y	N
39" SMC Line Large Mixer/ PM10	B2	326 IAC 2-2	>100	<100	Y	Ν
39" SMC Line Large Mixer/ PM2.5	B2	326 IAC 2-2	>100	<100	Y	Ν
-						
36" SMC Line Large Mixer/ PM	B4	326 IAC 6-3 326 IAC 2-2	<100	-	N 1	
36" SMC Line Large Mixer/ PM10	B4	326 IAC 2-2	<100	-	N ¹	-
36" SMC Line Large Mixer/ PM2.5	B4	326 IAC 2-2	<100	-	N ¹	-

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)
SMC Drum Mixer #2/ PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
SMC Drum Mixer #2/ PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
SMC Drum Mixer #2/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
SMC Mixer #26/ PM	B4	326 IAC 6-3	<100		N ¹	
		326 IAC 2-2		-		-
SMC Mixer #26/ PM2.5	B4	326 IAC 2-2	<100	-	N 1	-
SMC Mixer #26/ PM10	B4	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #1/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N 1	-
BMC Mixer #1/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #1/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #2/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #2/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #2/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #3/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #3/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #3/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #4/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #4/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #4/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #5/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #5/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #5/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #6/ PM	B1	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #6/ PM2.5	B1	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #6/ PM10	B1	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L1/ PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L1/ PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L1/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L2/ PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L2/ PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L2/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L3/ PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N 1	-
Rosite Mixer L3/ PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L3/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L4/ PM	B2	326 IAC 6-3 326 IAC 2-2	<100	-	N ¹	-

Industrial Dielectrics, Inc. dba IDI Composites Noblesville, Indiana

Permit Reviewer: Jeries Smirat

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)
Rosite Mixer L4/ PM2.5	B2	326 IAC 2-2	<100	-	N ¹	-
Rosite Mixer L4/ PM10	B2	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #18/ PM	В3	326 IAC 6-3 326 IAC 2-2	<100	1	N 1	
BMC Mixer #18/ PM2.5	В3	326 IAC 2-2	<100	-	N ¹	-
BMC Mixer #18/ PM10	В3	326 IAC 2-2	<100	-	N ¹	-
Mixer #19/ PM	В3	N	-	-	N ¹	-
Mixer #19/ PM2.5	В3	N	-	-	N ²	-
Mixer #19/ PM10	В3	N	-	-	N ²	-
Mixer #20/PM	В3	N	-	-	N ²	-
Mixer #20/PM2.5	B3	N	-	-	N ²	-
Mixer #20/PM10	B3	N	-	-	N ²	-
Vazo Blender/ PM	B5	N	-	-	N ²	
Vazo Blender/ PM2.5	B5	N	-	-	N ²	
Vazo Blender/ 10	B5	N	-	-	N ²	
Conductex Weigh Out Room/PM	B6	N	-	-	N ²	-
Conductex Weigh Out Room/PM2.5	B6	N	-	-	N ²	-
Conductex Weigh Out Room/PM10	B6	N	-	-	N ²	-

Uncontrolled PTE (tpy) and controlled PTE (tpy) are evaluated against the Major Source Threshold for each pollutant. Major Source Threshold for criteria pollutants (PM10, PM2.5, SO2, NOX, VOC and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy.

Under the Part 70 Permit program (40 CFR 70), PM is not a regulated pollutant.

- PM* For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.
- N ¹ CAM does not apply for PM because the uncontrolled PTE of PM is less than the major source threshold.
- N² The control device is not required to comply with the applicable emission limitation or standard. Therefore, based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable.

Controls: B = Baghouse, C = Cyclone, DC = Dust Collection System, RTO = Regenerative or Recuperative Thermal Oxidizer, WS = Wet Scrubber, ESP = Electrostatic Preciptator

Emission units without air pollution controls are not subject to CAM. Therefore, they are not listed.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are applicable to 39" SMC Line 2 Mixer and 48" SMC Line 1 Mixer for PM, PM2.5, and PM10. A CAM plan was submitted as part of a previous permit application and the Compliance Determination and Monitoring Requirements section includes a detailed description of the CAM requirements.

New Source Performance Standards (NSPS)

(a) The stationary emergency generator is still subject to the New Source Performance Standard for Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (40 CFR, Subpart IIII), which is incorporated by reference as 326 IAC 12. The emergency generator is a compression ignition internal combustion engine, burning diesel fuel, with a maximum output of 10 KW, and used as back-up power for the resin tank room exhaust.

The emergency generator is subject to the following applicable portions of Subpart IIII:

- (1) 40 CFR 60.4200(2)(i)
- (2) 40 CFR 60.4205(b)
- (3) 40 CFR 60.4206

Permit Reviewer: Jeries Smirat

- (4) 40 CFR 60.4207(b)
- (5) 40 CFR 60.4209
- (6) 40 CFR 60.4211(a),(c),(f),(g)(1)
- (7) 40 CFR 60.4212
- (8) 40 CFR 60.4214(b)(c)
- (9) 40 CFR 60.4218
- (10) 40 CFR 60.4219
- (11) Table 2 to 40 CFR 60 Subpart IIII (the applicable portions)
- (12) Table 8 to 40 CFR 60 Subpart IIII (the applicable portions)

National Emission Standards for Hazardous Air Pollutants (NESHAPs)

(a) The source is subject to the National Emission Standards for Hazardous Air Pollutants for Reinforced Plastic Composites Production (40 CFR 63, Subpart WWWW, which is incorporated by reference as 326 IAC 20-56. These emission units produce sheet molding compound at an existing reinforced plastic composites production facility that is a major source of HAP emissions. The units subject to this rule include the units used in the SMC and BMC productions.

This source is subject to the following applicable portions of Subpart WWWW:

- (1) 40 CFR 63.5780
- (2) 40 CFR 63.5785(a)
- (3) 40 CFR 63.5790(a)(b)
- (4) 40 CFR 63.5795(b)
- (5) 40 CFR 63.5796
- (6) 40 CFR 63.5797
- (7) 40 CFR 63.5798
- (8) 40 CFR 63.5799
- (9) 40 CFR 63.5800
- (10) 40 CFR 63.5805(a)
- (11) 40 CFR 63.5830(b)
- (12) 40 CFR 63.5835(a) and (c)
- (13) 40 CFR 63.5840
- (14) 40 CFR 63.5860(a)
- (15) 40 CFR 63.5895(b) and (e)
- (16) 40 CFR 63.5900(a)(4),(b), and (e)
- (17) 40 CFR 63.5905
- (18) 40 CFR 63.5910(a),(b),(c),(d),(g) and (h)
- (19) 40 CFR 63.5915(a) and (d)
- (20) 40 CFR 63.5920
- (21) 40 CFR 63.5925
- (22) 40 CFR 63.5930
- (23) 40 CFR 63.5935
- (24) Table 1 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (25) Table 3 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (26) Table 4 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (27) Table 5 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (28) Table 7 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (29) Table 8 to 40 CFR 63 Subpart WWWW (the applicable portions)
- Table 9 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (31) Table 13 to 40 CFR 63 Subpart WWWW (the applicable portions)
- (32) Table 14 to 40 CFR 63 Subpart WWWW (the applicable portions)

The provisions of 40 CFR 63 Subpart A – General Provisions, which are incorporated as 326 IAC 20-1-1, apply to the facility described in this section except when otherwise specified in 40 CFR 63 Subpart WWWW.

State Rule Applicability - Entire Source

326 IAC 1-6-3 (Preventive Maintenance Plan)

The source is subject to 326 IAC 1-6-3.

326 IAC 2-2 PSD

The PM, PM10 and PM2.5 source wide uncontrolled PTE of the source is greater than 250 tons/year. In order to render 326 IAC 2-2 not applicable, the PM, PM10 and PM2.5 limits after controls are as follows:

Emission Unit	Control	PM limit (pounds per hour)	PM10 limit (pounds per hour)	PM2.5 limit (pounds per hour)
SMC Drum Mixer	SMC Baghouse B2	2.91	2.91	2.91
48" SMC Line 1	SMC Baghouse B2	9.71	9.71	9.71
39" SMC Line 2	SMC Baghouse B2	8.21	8.21	8.21
36" SMC Line 3	3i Tech Center baghouse B4	7.20	7.20	7.20
SMC Mixer #26	3i Tech Center baghouse B4	0.35	0.35	0.35
BMC Mixer #1	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #2	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #3	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #4	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #5	BMC Baghouse B1	2.91	2.91	2.91
BMC Mixer #6	BMC Baghouse B1	4.37	4.37	4.37
Rosite Mixer L1	SMC baghouse B2	2.58	2.58	2.58
Rosite Mixer L2	SMC baghouse B2	2.58	2.58	2.58
Rosite Mixer L3	SMC baghouse B2	2.58	2.58	2.58
Rosite Mixer L4	SMC baghouse B2	2.58	2.58	2.58
BMC Mixer #18	Lab Baghouse B3	1.02	1.02	1.02

326 IAC 2-6 (Emission Reporting)

This source, not located in Lake, Porter, or LaPorte County, is subject to 326 IAC 2-6 (Emission Reporting) because it is required to have an operating permit pursuant to 326 IAC 2-7 (Part 70). The potential to emit of VOC and PM10 is less than 250 tons per year; and the potential to emit of CO, NOx, and SO2 is less than 2,500 tons per year. Therefore, pursuant to 326 IAC 2-6-3(a)(2), triennial reporting is required. An emission statement shall be submitted in accordance with the compliance schedule in 326 IAC 2-6-3 and every three (3) years thereafter. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

326 IAC 2-7-6(5) (Annual Compliance Certification)

The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certification that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)

This source is subject to the opacity limitations specified in 326 IAC 5-1-2(2)

326 IAC 6.5 PM Limitations Except Lake County

This source is not subject to 326 IAC 6.5 because it is not located in one of the following counties: Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo or Wayne.

326 IAC 6.8 PM Limitations for Lake County

This source is not subject to 326 IAC 6.5 because it is not located in Lake County.

State Rule Applicability - Individual Facilities

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))

The operation of the 39" SMC Line Large Mixer, 48" SMC Line Large Mixer, and New 36" SMC Line will emit greater than 10 tons per year of a single HAP. This rule does not apply to a major source of HAPs specifically regulated by Section 112(d) of the Clean Air Act. Since the facilities at this source are regulated by Section 112(d) (40 CFR 63, Subpart WWWW), the requirements of 326 IAC 2-4.1-1 (New Source Toxics Control) do not apply to this source.

SMC Production

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

(a) Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the SMC production units, identified as SMC Line 1, SMC Line 2, SMC Line 3, and SMC Drum Mixer, since SMC production is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and the SMC production units are not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the allowable particulate matter shall not exceed the following pound per hour limits listed in the table below:

Process / Emission Unit	P (ton/hr)	E (lb/hr)
SMC Drum Mixer/ Baghouse B2	0.6	2.91
48" SMC Line 1/ Baghouse B2	3.62	9.71
39" SMC Line 2/ Baghouse B2	2.81	8.21
36" SMC Line 3 / Baghouse B4	1.15	4.52

The pounds per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 4.10 P^{0.67}$

Where:

E = rate of emission in pounds per hour; and

P = process weight rate in tons per hour

The baghouse, SMC Baghouse B2, shall be in operation at all times the SMC Drum Mixer is in operation, in order to comply with this limit.

The uncontrolled particulate emissions for SMC Line 1 is 44.74 lbs/hour, and cannot comply with the limit of 9.71 lbs per hour without the use of control. The baghouse, SMC Baghouse B2, shall be in operation at all times SMC Line 1 is in operation, in order to comply with this limit.

The baghouse, SMC Baghouse B2, shall be in operation at all times SMC Line 2 is in operation, in order to comply with this limit.

The baghouse, SMC Baghouse B4, shall be in operation at all times SMC Line 3 is in operation, in order to comply with this limit.

(b) Pursuant to 326 IAC 6-3-1 (Applicability), the particulate emissions from the SMC Mixer #26, is exempt from the requirements of 326 IAC 6-3-2, because potential particulate emissions are less than five hundred fifty-one thousands (0.551) pound per hour.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The SMC production units, identified as SMC Line 1, SMC Line 2, SMC Line 3, SMC Drum Mixer, and SMC Mixer #26, are not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from the SMC production units are less than twenty-five (25) tons per year.

BMC Production

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the BMC production units, identified as BMC Mixer #1 through Mixer #6, since BMC production is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and the BMC production units are not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the allowable particulate matter shall not exceed the following pound per hour limits listed in the table below:

Process / Emission Unit	P (ton/hr)	E (lb/hr)
BMC Mixer #1/ Baghouse B1	0.6	2.91
BMC Mixer #2/ Baghouse B1	0.6	2.91
BMC Mixer #3/ Baghouse B1	0.6	2.91
BMC Mixer #4/ Baghouse B1	0.6	2.91
BMC Mixer #5/ Baghouse B1	0.6	2.91
BMC Mixer #6/ Baghouse B1	1.1	4.37

The pounds per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 4.10 P^{0.67}$

Where:

E = rate of emission in pounds per hour; and

P = process weight rate in tons per hour

The baghouse, BMC Baghouse B1, shall be in operation at all times the BMC Mixers #1 through #5 are in operation, in order to comply with this limit.

The baghouse, BMC Baghouse B1, shall be in operation at all times SMC Line 1 is in operation, in order to comply with this limit.

Rosite BMC Mixers

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the BMC production units, identified as Rosite Mixer L1 through L4, since BMC production is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and the BMC production units are not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the allowable particulate matter shall not exceed the following pound per hour limits listed in the table below:

Process / Emission Unit	P (ton/hr)	E (lb/hr)
Rosite Mixer L1/ Baghouse B2	0.5	2.58
Rosite Mixer L2/ Baghouse B2	0.5	2.58
Rosite Mixer L3/ Baghouse B2	0.5	2.58
Rosite Mixer L4/ Baghouse B2	0.5	2.58

The pounds per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 4.10 P^{0.67}$

Where:

E = rate of emission in pounds per hour; and

P = process weight rate in tons per hour

The baghouse, Baghouse B2, shall be in operation at all times the Rosite Mixer L1 through L4 are in operation, in order to comply with this limit.

SMC Laboratory

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1 (Applicability), the particulate emissions from the Vazo Blender and the SMC laboratory production units, identified as Mixer #24 and #25 are exempt from the requirements of 326 IAC 6-3-2, because potential particulate emissions for each are less than five hundred fifty-one thousands (0.551) pound per hour.

BMC Laboratory

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

(a) Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the BMC Lab unit, identified as Mixer #18 since BMC production is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and the BMC production units are not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the allowable particulate matter shall not exceed the following pound per hour limits listed in the table below:

Permit Reviewer: Jeries Smirat

Process / Emission Unit	P (ton/hr)	E (lb/hr)
BMC Mixer #18/ Baghouse B3	0.125	1.01

The pounds per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

 $E = 4.10 P^{0.67}$

Where:

E = rate of emission in pounds per hour; and

P = process weight rate in tons per hour

The baghouse, Baghouse B3, shall be in operation at all times the Mixer #18 is in operation, in order to comply with this limit.

(b) Pursuant to 326 IAC 6-3-1 (Applicability), the particulate emissions from the BMC laboratory production units, identified as PolyM Dispersion Mixer #19 and #20 are exempt from the requirements of 326 IAC 6-3-2, because potential particulate emissions are less than five hundred fifty-one thousands (0.551) pound per hour.

Emergency Generator

326 IAC 6-2 (Particulate Emission Limitations for Sources of Indirect Heating)

The emergency generator is not subject to 326 IAC 6-2 (Particulate Emission Limitations for Sources of Indirect Heating), because this unit is not indirect heating unit.

326 IAC 7-1.1-1 (Sulfur Dioxide Emission Limitations)

The emergency generator is not subject to 326 IAC 7-1.1-1 (Sulfur Dioxide Emission Limitations) because the potential to emit sulfur dioxide is less than twenty-five (25) tons per year and ten (10) pounds per hour. Therefore, the requirements of 326 IAC 7-1.1-1 are not included for the emergency generator.

326 IAC 8-1-6 (New Facilities; General Reduction Requirements)

The emergency generator is not subject to 326 IAC 8-1-6 (New Facilities; General Reduction Requirements), because the potential to emit VOC is less than twenty-five (25) tons per year. Therefore, the requirements of 326 IAC 8-1-6 are not included for emergency generator.

326 IAC 10-1-1 (Nitrogen Oxides Control)

The emergency generator is not subject to 326 IAC 10-1-1 (Nitrogen Oxides Control) because the source is not located in Clark or Floyd counties. Therefore, the requirements of 326 IAC 10-1-1 are not included for the emergency generator.

Compression Molding

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1 (Applicability), the particulate emissions from the compression molding presses, identified as Press #1,#2, #3, and #4 are exempt from the requirements of 326 IAC 6-3-2, because potential particulate emissions are less than five hundred fifty-one thousands (0.551) pound per hour.

Solvent Cleaning

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The solvent cleaning operation is not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from the solvent cleaning operation are less than twenty-five (25) tons per year.

Conductex Weigh-Out

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1 (Applicability), the particulate emissions from the conductex weigh-out operation is exempt from the requirements of 326 IAC 6-3-2, because potential particulate emissions are less than five hundred fifty-one thousands (0.551) pound per hour

Storage Tanks

326 IAC 8-1-6 (New Facilities; General Reduction Requirements)

The storage tanks, identified as identified as T_1 through T_6 and T_8 through T_{11} , are not subject to 326 IAC 8-1-6 (New Facilities; General Reduction Requirements), because the potential to emit VOC are each less than twenty-five (25) tons per year. Therefore, the requirements of 326 IAC 8-1-6 are not included for the storage tanks.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source's failure to take the appropriate corrective actions within a specific time period.

The Compliance Monitoring Requirements applicable to this source are as follows:

Control	Parameter	Frequency	Range	Excursions and Exceedances
BMC Baghouse	Water Pressure Drop	Daily	0.2 to 6.0 inches	Response Steps
SMC Baghouse B2	Visible Emissions		Normal-Abnormal	
_	Water Pressure Drop	Daily	0.2 to 6.0 inches	Response Steps
•	Visible Emissions		Normal-Abnormal	
Lab Baghouse B3	Water Pressure Drop	Daily	0.2 to 6.0 inches	Response Steps
B1 SMC Baghouse B2 Lab Baghouse B3 3i Tech Center	Visible Emissions		Normal-Abnormal	
3i Tech Center	Water Pressure Drop	0.2 to		Response Steps
Baghouse B4	Visible Emissions	Daily	Normal-Abnormal	

These monitoring conditions are necessary because the baghouses, identified as B1, B2, B3, and B4 must operate properly to assure compliance with 326 IAC 6-3-2 and 326 IAC 2-2.

There are no existing testing requirements for this source.

Conclusion and Recommendation

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal be approved. This recommendation is based on the following facts and conditions:

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on November 1, 2017.

The operation of this stationary custom compounding of purchased plastic resins plant shall be subject to the conditions of the attached Part 70 Operating Permit Renewal No. T057-39236-00042.

IDEM Contact

- (a) Questions regarding this proposed permit can be directed to Jeries Smirat at the Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251 or by telephone at (317) 234-5374 or toll free at 1-800-451-6027 and ask for Jeries Smirat or (317) 234-5374.
- (b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/
- (c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at:

 http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

Appendix A:Emission Calculations Emission Calculations Summary

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

Potential to Emit (Uncontrolled)

				F	Potential Emiss	ions (ton/yr)			
Emission Source Description	PM	PM ₁₀	PM _{2.5}	SO ₂	NO _x	VOC	CO	Single HAP (Styrene)	Combined HAPs
BMC Production	158.47	158.47	158.47			7.21		7.21	7.21
SMC Production	444.42	444.42	444.42			54.40		54.40	54.40
BMC Production (Rosite)	105.65	105.65	105.65			4.80		4.80	4.80
BMC Lab	5.51	5.51	5.51			0.35		0.35	0.35
SMC Lab	2.18	2.18	2.18			0.28		0.28	0.28
Emergency Generator	1.04	1.04	0.97	0.97	14.83	1.21	3.19		0.01
Compression Molding Press #1						0.95		0.90	0.90
Compression Molding Press #2						0.95		0.90	0.90
Compression Molding Press #3						0.95		0.90	0.90
Compression Molding Press #4						0.24		0.23	0.23
Solvent Usage						7.16			
ConductX Weigh Out	0.73	0.20	0.20						
Natural Gas Combustion	0.08	0.33	0.33	0.03	4.29	0.24	3.61		0.081
Polyester Resin Storage Tanks	-	-	-	-	-	<10.0	-	-	-
Totals:	718.08	717.80	717.73	1.00	19.12	88.75	6.80	69.97	70.06

Sourcewide Limited Potential to Emit

Sourcewide Limited Poteni	iai to Liiit												
	Potential Emissions (ton/yr)												
Emission Source Description	PM	PM ₁₀	PM _{2.5}	SO ₂	NO _x	VOC	СО	Single HAP (Styrene)	Combined HAPs				
BMC Production	63.77	63.77	63.77			7.21		7.21	7.21				
SMC Production	112.56	112.56	112.56			54.40		54.40	54.40				
BMC Production (Rosite)	45.15	45.15	45.15			4.80		4.80	4.80				
BMC Lab	5.51	5.51	5.51			0.35		0.35	0.35				
SMC Lab	2.18	2.18	2.18			0.28		0.28	0.28				
Emergency Generator	1.04	1.04	1.04	0.97	14.83	1.21	3.19		0.01				
Compression Molding Press #1						0.95		0.90	0.90				
Compression Molding Press #2						0.95		0.90	0.90				
Compression Molding Press #3						0.95		0.90	0.90				
Compression Molding Press #4						0.24		0.23	0.23				
Solvent Usage						7.16							
ConductX Weigh Out	0.73	0.20	0.20										
Natural Gas Combustion	0.08	0.33	0.33	0.03	4.29	0.24	3.61		0.08				
Polyester Resin Storage Tanks	-	-	-	-	-	<10.0	-		-				
Totals:	231.03	230.74	230.74	1.00	19.12	88.75	6.80	69.97	70.06				

Note: Styrene and other HAP emissions not calculated as part of these emission calculations. Styrene is expected to make up a significant portion of the total VOCs.

Appendix A:Emission Calculations Compression Molding Presses

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042

Permit Reviewer: Jeries Smirat

Emission Unit Description	Maximum Process Throughput (lb/hr)	Material VOC Content (Wt %)	VOC Emission Factor	Potential VOC Emissions (lb/hr)	Potential VOC Emissions (ton/yr)	Material HAP Content (Wt %)	HAP Emission Factor	Potential HAP Emissions (lb/hr)	Potential HAP Emissions (ton/yr)
Compression Molding Press #1	100.0	14.50%	1.50%	0.22	0.95	13.70%	1.50%	0.21	0.90
Compression Molding Press #2	100.0	14.50%	1.50%	0.22	0.95	13.70%	1.50%	0.21	0.90
Compression Molding Press #3	100.0	14.50%	1.50%	0.22	0.95	13.70%	1.50%	0.21	0.90
Compression Molding Press #4	25.0	14.50%	1.50%	0.05	0.24	13.70%	1.50%	0.05	0.23
			Totals:	0.71	3.10			0.67	2.93

Notes:

Compression molding presses will be used to mold any SMC and BMC materials produced at the facility to support customer demand.

Maximum Process Throughput values are provided by facility to represent true maximum molding capacity.

Material VOC/HAP Content is based worst-case formulations for each press provided by facility. The proprietary formulations consist of resins, catalysts, additives, and fillers. The weighted average VOC/HAP content is determined based upon the volatile and HAP components of the formulation. MSDSs for each formulation component are used to assist in this determination. VOC/HAP Emission Factor is obtained from ACMA UEF-1-2011a: Estimating Emission Factors for Open Molding and Other Composite Processes. The 1.5% VOC/HAP emission factor is based upon the higher of the two SMC and BMC material VOC emission factors identified in this report.

Styrene is the only HAP identified in the formulations.

Methodology:

Potential VOC Emissions (lb/hr) = Maximum Process Throughput (lb/hr) x Material VOC Content (Wt %) x VOC Emission Factor %

Potential VOC Emissions (ton/yr) = Potential VOC Emissions (lb/hr) x (8760 hr/yr) x (1 ton/2000 lb)

Potential HAP Emissions (lb/hr) = Maximum Process Throughput (lb/hr) x Material HAP Content (Wt %) x HAP Emission Factor %

Potential HAP Emissions (ton/yr) = Potential HAP Emissions (lb/hr) x (8760 hr/yr) x (1 ton/2000 lb)

Appendix A:Emission Calculations VOC Emissions From Cold Cleaning Degreasers

Company Name: Industrial Dielectrics, Inc. dba IDI Composites Interna Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042

Permit Reviewer: Jeries Smirat

Cleaning Unit Location	Material	Density (lbs/gal)	Weight % VOC	Maximum Annual Usage (gal/yr)	PTE VOC (tons/yr)
SMC Cleaning Room	Super Flush	8.90	100.0%	660.00	2.94
SMC Cleaning Room	Super Flush	8.90	100.0%	660.00	2.94
BMC	Super Flush	8.90	100.0%	145.00	0.64
Pigment Area	Super Flush	8.90	100.0%	145.00	0.64
Total					7.16

Methodology

PTE VOC (tons/yr) = Density (lbs/gal) x Weight % VOC x Gallons of Solvent (gal/yr) x 1/2,000 (ton/lbs)

Appendix A:Emission Calculations Potential to Emit 48" SMC Line Large Mixer

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042

Permit Reviewer: Jeries Smirat

Estimating Emission Factors from Open Molding and Other Composite Processes (SMC)

 $E = 0.1457 A_t - 0.1454$ (Equation 1),

where:

E = VOC emission rate, lb/hr, when paste is on the line

 $A_t = Total wet area of SMC machine = A_{dl} + A_{du} + W^*(L_l + L_u)$

 A_{dl} = open area of the lower doctor box, ft^2

 A_{du} = open area of the upper doctor box, ft²

W = wet width of SMC, ft²

 L_{l} = Lower wet length, ft

L_u = Upper wet length, ft

Note: Equation 1 obtained from ACMA UEF-1-2010 document, pgs. 11-12

Primary Production SMC Machine (Existing 48" SMC machine) (SMC Line 1)

 A_{dl} = open area of the lower doctor box, ft^2

width	0.83	feet
length	3.67	feet
$A_{dl} =$	3.06	square feet

A_{du} = open area of the upper doctor box, ft²

width	0.83	feet
length	3.67	feet
$A_{du} =$	3.06	square fee

$$W = wet width of SMC, ft^2$$

L_I = Lower wet length, ft

 L_u = Upper wet length, ft

L_u = 1.42

 A_t = Total wet area of SMC machine = A_{dl} + A_{du} + $W^*(L_l+L_u)$

 $A_t = 26.58$

E = VOC emission rate, lb/hr, when paste is on the line

 $E = 0.1457 A_t - 0.1454$ (Equation 1),

3.73 lb/hr

16.33 ton/yr

Note: This equation represents VOC/HAP emissions from SMC Line (which includes SMC Machine, Large Mixer, Small Pigment Dissolver/Mixer, and Small Thickener Dissolver/Mixer), which are based upon the machine specifications for total wet area and open areas of the doctor boxes for the SMC material being processed.

Appendix A:Emission Calculations Potential to Emit 39" SMC Line Large Mixer

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

Estimating Emission Factors from Open Molding and Other Composite Processes (SMC)

 $E = 0.1457 A_t - 0.1454$ (Equation 1),

where:

E = VOC emission rate, lb/hr, when paste is on the line

 A_t = Total wet area of SMC machine = A_{dl} + A_{du} + $W^*(L_l+L_u)$

 A_{dl} = open area of the lower doctor box, ft^2

A_{du} = open area of the upper doctor box, ft²

 $W = wet width of SMC, ft^2$

L_I = Lower wet length, ft

L_u = Upper wet length, ft

Note: Equation 1 obtained from ACMA UEF-1-2010 document, pgs. 11-12

Secondary Production SMC Machine (Existing 39" SMC machine relocated from Lab) (SMC Line 2)

A_{dl} = open area of the lower doctor box, ft²

width 0.92 feet length 2.92 feet $A_{dl} = 2.67$ square feet

A_{du} = open area of the upper doctor box, ft²

width 0.92 feet length 2.92 feet

A_{du} = 2.67 square feet

W = wet width of SMC, ft²

W = 2.92

 L_{I} = Lower wet length, ft

L_I = 5.00

L_u = Upper wet length, ft

L_u= 1.67

 A_t = Total wet area of SMC machine = A_{dl} + A_{du} + $W^*(L_l$ + $L_u)$

A_t = 24.79

E = VOC emission rate, lb/hr, when paste is on the line

 $E = 0.1457 A_t - 0.1454$ (Equation 1), 3.47 lb/hr

15.18 ton/yr

Note: This equation represents VOC/HAP emissions from SMC Line (which includes SMC Machine, Large Mixer, Small Pigment Dissolver/Mixer, and Small Thickener Dissolver/Mixer), which are based upon the machine specifications for total wet area and open areas of the doctor boxes for the SMC material being processed.

Appendix A:Emission Calculations Potential to Emit 36" SMC Line Mixer

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

Estimating Emission Factors from Open Molding and Other Composite Processes (SMC)

sion Factors from Open Molding and Other Compositi	e Processes (SIVIC)	
E = 0.1457 A_t - 0.1454 (Equation 1),	0	
where:	0 0	
E = VOC emission rate, lb/hr, when paste is on the line A_t = Total wet area of SMC machine = A_{dl} + A_{du} + W*(L_l + L_u)	0	
A_{dl} = open area of the lower doctor box, ft ²		
A_{du} = open area of the upper doctor box, ft ²		
W = wet width of SMC, ft ²		
L _I = Lower wet length, ft		
L _u = Upper wet length, ft		
3i Technology Center 36" SMC Machine		(SMC Line 3)
A _{dl} = open area of the lower doctor box, ft ²	<u>Inches</u>	
width 2.67 feet	32	
length 1.00 feet	12	
A _{dl} = 2.67 square feet		
A _{du} = open area of the upper doctor box, ft ²		
width 2.67 feet	32	
length 1.00 feet	12	
A _{du} = 2.67 square feet		
$W = wet width of SMC, ft^2$		
W = 2.67	32	
L - Lower wet length ft		
L_1 = Lower wet length, ft $L_1 = \frac{6.33}{}$	76	
4 - 0.33	70	
L _u = Upper wet length, ft		
$L_{u} = 2.33$	28	
A_t = Total wet area of SMC machine = A_{dl} + A_{du} + W*(L_l + L_u)		
$A_{t} = 28.44$		
E = VOC emission rate, lb/hr, when paste is on the line		
$E = 0.1457 A_t - 0.1454$ (Equation 1),		
4.00 lb/hr		

4.00 lb/hr

17.52 ton/yr

Note: This equation represents VOC/HAP emissions from the new Lab SMC Machine (which does not have

Appendix A:Emission Calculations Criteria Pollutants - Internal Combustion Engines - Diesel Fuel

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

Sulfur Content (S) of Fuel (% by weight) 0.500

Reciprocating Internal Combustion Engines - Diesel Fuel Output Rating (<600 HP)

Emergency Generator Per EPA Memorandum (09/06/1995), potential emissions were calculated based on 500 hours of operation per year since the generators are used solely to provide backup power.

				Diesel Industrial Engines Emission Factors (lb/hp-hr)								
Emission Unit ID Capacity (KW/hr)	Capacity (HP)	hp-hr/yr	PM	PM-10	PM-2.5	SOx	NOx	VOC	CO			
			0.31	0.31	0.31	0.29	4.41	0.36	0.95			
	(,,			Potential Emissions (TPY)								
				PM	PM-10	PM-2.5	SOx	NOx	VOC	CO		
Emergency Generator	10.00	13.45	6,724	1.042	1.042	1.042	0.975	14.827	1.210	3.194		

Emission Unit ID		Pollutant			
Emergency Back up Generato	•				
	CO2	CH4	N2O	Summed Potential Emissions in tons/yr	3.87E+00
Emission Factor in lb/hp-hr	1.15E+00	4.63E-05	9.26E-06	CO2e Total in tons/yr	3.88
Potential Emission in tons/yr	3.87E+00	1.56E-04	3.11E-05		

Methodology

For HP > 600 PM-10 PM-2.5 CO2e SOx NOx VOC CO PM HP=Kw/hr*1.344825737 Total Potential Emissions 1.042 14.827 1.042 1.042 0.975 1.210 3.194 3.88

hp-hr/yr = hp * 500 hr/yr for emergency generators

hp-hr/yr = hp * 8760 hr/yr for regularly operating generators

Emission Factors are from AP 42, Chapter 3.3, Table 3.3-1, SCC #2-02-004-01

Emission (tons/yr) = (hp-hr/yr) x Emission Factor (lb/hp-hr)/2,000 lb/ton

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (21) + N2O Potential Emission ton/yr x N2O

Appendix A:Emission Calculations Weigh out of Conductex®

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

NOTE: Conductex® is only added if the customer asks it be added to the formula

As such, acutal usage will only be a fraction of the maximum calculated usage

Conductex® comes in 25-pound bags and is weighed out manually

Bag processing time: 5 minutes

Bag weight: 25 lbs Conductex® per bag

Bag processing rate: 12 bags per hour

Conductex® processing rate: 300 lbs Conductex® per hour

2,628,000 lbs Conductex® per year

1,314 tons Conductex® per year

Emission factor, PM: 1.118 lbs/ton Emission factor, PM10: 0.31 lbs/ton

Uncontrolled PM emissions: 1,469 lbs/year

0.73 tons/year

Uncontrolled PM10 emissions: 407 lbs/year

0.20 tons/year

NOTE: Emission factors are from AP-42, 5th Edition, Table 11.12-2 for concrete batching truck loading (highest emission factor with highest rating)

Appendix A: Emissions Calculations Potential to Emit VOC and Particulate- Mixers

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060 TV Renewal No.: 075.39236-00042 Permit Reviewer: Jeries Smirat

Emission Unit	Old Emission Unit ID #	Maximum Throughput (lb/hr)	Weight % VOC	Weight % Fillers	VOC/HAP Emission Factor	Potential VOC (lb/hr)	New Potential VOC Emissions (ton/yr)	PM Emission Factor	Potential PM Emissions (ton/yr)	Potential PM Emissions (lbs/hr)	Baghouse Contol Efficiency	Controlled PM Emissions (ton/yr)	Controlled PM Emissions (lb/hr)	Limited PM Emissions (lb/hr)	Limited PM Emissions (ton/yr)
SMC Production															
SMC Production SMC Drum Mixer	M3	1200.0	39.27%	61.70%	0.25%	1.18	5.16	1.00%	32.43	7.40	98.00%	0.65	0.15	2.91	12.75
SMC Line 1	M4	7252.0	39.27%	61.70%	0.25%	7.12	16.33	1.00%	195.98	44.74	98.00%	3.92	0.13	9.72	42.57
SMC Line 1	M28	5628.0	39.27%	61.70%	0.25%	5.53	15.18	1.00%	152.09	34.72	98.00%	3.04	0.69	8.20	35.92
SMC Line 2		2315.0	39.27%	61.70%	0.25%	2.27	17.52	1.00%	62.56	14.28	98.00%	1.25	0.69	4.52	19.81
SMC Line 3 SMC Mixer #26	-	50.0	39.27%	61.70%	0.25%	0.05	0.22	1.00%	1.35	0.31	98.00%	0.03	0.29	0.35	1.52
SMC Mixer #26		50.0	39.27%	61.70%	0.25% Subtotals:	16.14	54.40	1.00%	1.35 444.42	0.31	98.00%	8.89	0.01	0.35	112.56
BMC Production					Subtotais.	10.14	34.40		444.42			0.05			112.30
Mixer #1	M11	1200.0	10.97%	60.30%	0.25%	0.33	1.44	1.00%	31.69	7.24	98.00%	0.63	0.14	2.91	12.75
Mixer #2	M10	1200.0	10.97%	60.30%	0.25%	0.33	1.44	1.00%	31.69	7.24	98.00%	0.63	0.14	2.91	12.75
Mixer #3	M9	1200.0	10.97%	60.30%	0.25%	0.33	1.44	1.00%	31.69	7.24	98.00%	0.63	0.14	2.91	12.75
Mixer #4	M6	1200.0	10.97%	60.30%	0.25%	0.33	1.44	1.00%	31.69	7.24	98.00%	0.63	0.14	2.91	12.75
Mixer #5	M5	1200.0	10.97%	60.30%	0.25%	0.33	1.44	1.00%	31.69	7.24	98.00%	0.63	0.14	2.91	12.75
Mixer #6	M27	2200.0	10.97%	60.30%	0.25%	0.60	2.64	1.00%	58.11	13.27	98.00%	1.16	0.27	4.37	19.14
					Subtotals:	1.65	7.21		158.47			3.17			63.77
BMC Production (Rosite)															
L1	Mixer #11	1000.0	10.97%	60.30%	0.25%	0.27	1.20	1.00%	26.41	6.03	98.00%	0.53	0.12	2.58	11.29
L2	Mixer #12	1000.0	10.97%	60.30%	0.25%	0.27	1.20	1.00%	26.41	6.03	98.00%	0.53	0.12	2.58	11.29
L3	Mixer #13	1000.0	10.97%	60.30%	0.25%	0.27	1.20	1.00%	26.41	6.03	98.00%	0.53	0.12	2.58	11.29
L4	Mixer #14	1000.0	10.97%	60.30%	0.25%	0.27	1.20	1.00%	26.41	6.03	98.00%	0.53	0.12	2.58	11.29
					Subtotals:	1.10	4.80		105.65			2.11			45.15
Insignificant Activities															
BMC Lab															
Mixer #18	M15	250.0	10.97%	60.30%	0.25%	0.07	0.30	1.00%	6.60	1.51	98.00%	0.13	0.03	1.02	4.46
Mixer #19	M23	20.0	10.97%	60.30%	0.25%	0.01	0.02	1.00%	0.53	0.12	98.00%	0.01	0.00	0.12	0.53
Mixer #20	M24	20.0	10.97%	60.30%	0.25%	0.01	0.02	1.00%	0.53	0.12	98.00%	0.01	0.00	0.12	0.53
					Subtotals:	0.08	0.35		7.66			0.15			5.51
SMC Lab															
Mixer #24	M30	50.0	39.27%	61.70%	0.25%	0.05	0.22	1.00%	1.35	0.31	0.00%	1.35	0.31	0.31	1.35
Mixer #25	M31	15.0	39.27%	61.70%	0.25%	0.01	0.06	1.00%	0.41	0.09	0.00%	0.41	0.09	0.09	0.41
Vazo Blender		15.6	39.27%	61.70%	0.25%	0.02	0.07	1.00%	0.42	0.10	98.00%	0.01	0.10	0.10	0.42
					Subtotals:	0.06	0.28		2.18			1.77			2.18

67.04 718.37 16.09 229.17

Notes:

Weight % VOC based upon worst-case formulations for each mixer type provided by facility.
Weight % Fillers based upon worst-case formulations for each mixer type provided by facility.
Weight % Fillers based upon worst-case formulations for each mixer type provided by facility.
VOC/HAP Emission Factor obtained from Table 5-2 of Average FAP Emission Estimation Equations by Process, pg. 5-10
PM Emission Factor obtained from AP-42, Chapter 6-4, Table 6-4-1
VOC emissions from SMC mixers are not based upon individual mixers but rather on approved open SMC paste area calculations for the SMC machine (refer to separate emission calculation spreadsheets for the 39° and 48° SMC Lines).
Baghouse ID # provided by facility (note that some mixers will now need to be controlled to meet the state PM emission limits based upon increased process capacities).
Baghouse Control Efficiency based upon updated information provided by facility for all baghouses.
Compliance with PM emission limits for mixers is based upon the Process Weight Rate Rule in 326 IAC 6-3 (TRUE = baghouse required to comply), FALSE = baghouse not required to comply).
Existing flatsheet closed molding presses (2) not included in the emissions audit since they are not included in the existing permit and since they will be removed from the facility.

Methodology:

Potential VOC Emissions (lb/hr) = Throughput (lb/hr) x Weight % VOC x VOC/HAP Emission Factor %

Potential VOC Emissions (ton/yr) = Potential VOC Emissions (lb/hr) x (8760 hr/yr) x (1 ton/2000 lb)

Potential PM Emissions (ton/yr) = Throughput (lb/hr) x Weight % Fillers x PM Emission Factor % x (8760 hr/yr) x (1 ton/2000 lb)

Actual PM Emissions (ton/yr) = Potential PM Emissions (ton/yr) x (1-Baghouse Control Efficiency %)

Appendix A: Emissions Calculations Natural Gas Combustion Units

Company Name: Industrial Dielectrics, Inc. dba IDI Composites International

Address City IN Zip: 407 South 7th Street, Noblesville, Indiana 46060

TV Renewal No.: T057-39236-00042
Permit Reviewer: Jeries Smirat

Heat Input	Heat Input		Potential
Capacity	Capacity	HHV	Throughput
MMBtu/hr	MMBtu/hr	MMBtu	MMCF/yr
10.000			85.9
10.00	0	1020	85.9

		Pollutant						
	PM*	PM10*	direct PM2.5*	SO2	NOx	VOC	CO	
Emission Factor in lb/MMCF	1.9	7.6	7.6	0.6	100	5.5	84	
					**see below			
Potential Emission in tons	0.08	0.33	0.33	0.03	4.29	0.24	3.61	

^{*}PM emission factor is filterable PM only. PM10 emission factor is filterable and condensable PM10 combined.

PM2.5 emission factor is filterable and condensable PM2.5 combined.

Methodology

All emission factors are based on normal firing.

MMBtu = 1,000,000 Btu

MMCF = 1,000,000 Cubic Feet of Gas

Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

HAPS Calculations

		HAPs - Organics					
Emission Factor in lb/MMc	Benzene 2.1E-03	Dichlorobenzene 1.2E-03	Formaldehyde 7.5E-02	Hexane 1.8E+00	Toluene 3.4E-03	Total - Organics	
Potential Emission in tons	9.018E-05	5.153E-05	0.00	0.08	1.460E-04	0.08	

_		HAPs - Metals							
Emission Factor in lb/MMc	Lead 5.0E-04	Cadmium 1.1E-03	Chromium 1.4E-03	Manganese 3.8E-04	Nickel 2.1E-03	Total - Metals			
Potential Emission in tons	2.147E-05	4.724E-05	6.012E-05	1.632E-05	9.018E-05	2.353E-04			
				•	Total HAPs	0.08			
Methodology is the same as above.					Worst HAP	0.08			

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

^{**}Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Governor

Bruno L. Pigott

Commissioner

December 21, 2018

Mr. Rich Snyder Industrial Dielectrics, Inc. dba IDI Composites International PO Box 357 Noblesville, IN 46061-0357

Re: Public Notice

Industrial Dielectrics, Inc.

Dba IDI Composites International

Permit Level: Title V Operating Permit Renewal

Permit Number: 057-39236-00042

Dear Mr. Snyder:

Enclosed is a copy of your draft Title V Operating Permit Renewal, Technical Support Document, emission calculations, and the Public Notice which will be printed in your local newspaper.

The Office of Air Quality (OAQ) has prepared two versions of the Public Notice Document. The abbreviated version will be published in the newspaper, and the more detailed version will be made available on the IDEM's website and provided to interested parties. Both versions are included for your reference. The OAQ has requested that The Times in Noblesville, Indiana publish the abbreviated version of the public notice no later than December 22, 2018. You will not be responsible for collecting any comments, nor are you responsible for having the notice published in the newspaper.

OAQ has submitted the draft permit package to the Hamilton East Public Library, 1 Library Plaza in Noblesville, Indiana. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Jeries Smirat, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension (317) 234-5374 or dial (317) 234-5374.

Sincerely,

Vivian Haun

Vivian Haun Permits Branch Office of Air Quality

Enclosures
PN Applicant Cover Letter 1/9/2017

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Governor

Bruno L. Pigott

Commissioner

ATTENTION: PUBLIC NOTICES, LEGAL ADVERTISING

December 19, 2018

The Times 641 Westfield Road Noblesville, IN 46060

Enclosed, please find one Indiana Department of Environmental Management Notice of Public Comment for Industrial Dielectrics, Inc., dba IDI Composites International, Hamilton County, Indiana.

Since our agency must comply with requirements which call for a Notice of Public Comment, we request that you print this notice one time, no later than December 22, 2018.

Please send the invoice, notarized form, clippings showing the date of publication to Bo Liu, at the Indiana Department of Environmental Management, Accounting, Room N1340, 100 North Senate Avenue, Indianapolis, Indiana, 46204.

To ensure proper payment, please reference account # 100174737.

We are required by the Auditor's Office to request that you place the Federal ID Number on all claims. If you have any conflicts, questions, or problems with the publishing of this notice or if you do not receive complete public notice information for this notice, please call Vivian Haun at 800-451-6027 and ask for extension 317-233-6878 or dial 317-233-6878.

Sincerely,

Vivian Haun

Vivian Haun Permit Branch Office of Air Quality

Permit Level: Title V Operating Permit Renewal

Permit Number: 057-39236-00042

Enclosure PN Newspaper.dot 1/9/2017

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Governor

Bruno L. Pigott

Commissioner

December 21, 2018

To: Hamilton East Public Library

From: Jenny Acker, Branch Chief

Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air

Permit

Applicant Name: Industrial Dielectrics, Inc.

dba IDI Composites International

Permit Number: 057-39236-00042

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Request to publish the Notice of 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddie-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures PN Library 1/9/2017

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Governor

Bruno L. Pigott

Commissioner

Notice of Public Comment

December 21, 2018 Industrial Dielectrics, Inc. dba IDI Composites International 057-39236-00042

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has been placed in the Legal Advertising section of your local newspaper. The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana's Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure PN AAA Cover Letter 1/9/2017

Mail Code 61-53

IDEM Staff	VHAUN 12/21/20	018 057-39236-00042 DRAF		
	Industrial Dielecti	rics Inc dba IDI Composites International	AFFIX STAMP	
Name and		Indiana Department of Environmental	Type of Mail:	HERE IF
address of	ddress of Management			USED AS
Sender		Office of Air Quality – Permits Branch	CERTIFICATE OF	CERTIFICATE
		100 N. Senate	MAILING ONLY	OF MAILING
		Indianapolis, IN 46204	MIAIEM ONE	

Line	Article Number	Name, Address, Street and Post Office Address	Postage	Handing Charges	Act. Value (If Registered)	Insured Value	Due Send if COD	R.R. Fee	S.D. Fee	S.H. Fee	Rest. Del. Fee
											Remarks
1		Rich Snyder Industrial Dielectrics Inc dba IDI Composites International PO Box 357 No	blesville IN 4	160610357 (Sc	ource RM)						
2		Jay Merrell Industrial Dielectrics Inc dba IDI Composites International PO Box 357 Noblesville IN 460610357 (RO RM)									
3		Noblesville City Council and Mayors Office 16 S. 10th St. Noblesville IN 46060 (Loc	al Official)								
4		Hamilton County Health Department 18030 Foundation Dr. #A Noblesville IN 46060-	5405 (Heali	th Department)						
5		Hamilton County Board of Commissioners One Hamilton County Square, Suite 157 N	oblesville IN	46064 (Loca	l Official)						
6		Noblesville Public Library 1 Library Plaza Noblesville IN 46060 (Library)									
7		Environmental Field Services, Inc. 40 SR 32 W Westfield IN 46074 (Affected Party)									
8		Qaiser Baig Cornerstone Environmental, Health & Safety Inc 880 Lennox Ct. Zionsville IN 46077 (Consultant)									
9		Soil Stabilization, Inc. 15530 Stoney Creek Way Noblesville IN 46060 (Affected Party)									
10		Old National Bank PO BOX 718 Mail Stop ONP-007B Evansville IN 47705 (Affected Party)									
11		Scott Underwood The Herald Bulletin 1133 Jackson St Anderson IN 46016 (Affected In 1997)	Party)								
12											
13											
14											
15											

Total number of pieces Listed by Sender	Total number of Pieces Received at Post Office	Postmaster, Per (Name of Receiving employee)	The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is \$50,000 per piece subject to a limit of \$50,000 per occurrence. The maximum indemnity payable on Express mil merchandise insurance is \$500. The maximum indemnity payable is \$25,000 for registered mail, sent with optional postal insurance. See Pomestic Mail Manual Page \$913, and \$921 for limitations of coverage on
1 1			insurance. See Domestic Mail Manual R900, S913, and S921 for limitations of coverage on inured and COD mail. See International Mail Manual for limitations o coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.