NOTICE OF 30-DAY PERIOD
FOR PUBLIC COMMENT

Preliminary Findings Regarding a New Source Construction and
Federally Enforceable State Operating Permit (FESOP)

for Milestone Contractors, L.P. in Newton County
Permit No. F111-31236-05365

The Indiana Department of Environmental Management (IDEM) has received an application from Milestone Contractors, L.P., located at 235 U.S. Highway 24, Kentland, IN 47951 for a new source construction and FESOP. If approved by IDEM's Office of Air Quality (OAQ), this proposed permit would allow Milestone Contractors, L.P. to construct and operate a new portable drum hot-mix plant and cold mix asphalt production operation.

A copy of the permit application and IDEM's preliminary findings are available at:

Kentland-Jefferson Township Public Library
201 East Graham Street
Kentland, IN 47951

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

How can you participate in this process?

The date that this notice is published in a newspaper marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number No. F111-31236-05365 in all correspondence.
Comments should be sent to:

Ms. Renee Traivaranon
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for extension 4-5615
Or dial directly: (317) 234-5615
Fax: (317)-232-6749 attn: Ms. Renee Traivaranon
E-mail: Rtraivar@idem.in.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor or noise. For such issues, please contact your local officials.

For additional information about air permits and how you can participate, please see IDEM’s Guide for Citizen Participation and Permit Guide on the Internet at: www.idem.in.gov.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions please contact Ms. Renee Traivaranon of my staff at the above address.

[Signature]
Iryn Caliling, Section Chief
Permits Branch
Office of Air Quality

RT
New Source Construction and Federally Enforceable State Operating Permit
OFFICE OF AIR QUALITY

Milestone Contractors, L.P. Portable

(herein known as the Permittee) is hereby authorized to construct and operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-8 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

Indiana statutes from IC 13 and rules from 326 IAC, quoted in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a FESOP under 326 IAC 2-8.

Operation Permit No.: F 111-31236-05365
Issued by: Iryn Calilung, Section Chief Permits Branch Office of Air Quality
Issuance Date:
Expiration Date:
TABLE OF CONTENTS

A. SOURCE SUMMARY ... 6
 A.1 General Information [326 IAC 2-8-3(b)]
 A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]
 A.3 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]
 A.4 FESOP Applicability [326 IAC 2-8-2]

B. GENERAL CONDITIONS ... 8
 B.1 Definitions [326 IAC 2-8-1]
 B.2 Revocation of Permits [326 IAC 2-1.1-9(5)]
 B.3 Affidavit of Construction [326 IAC 2-5.1-3(h)][326 IAC 2-5.1-4][326 IAC 2-8]
 B.4 Permit Term [326 IAC 2-8-4(2)][326 IAC 2-1.1-9.5][IC 13-15-3-6(a)]
 B.5 Term of Conditions [326 IAC 2-1.1-9.5]
 B.6 Enforceability [326 IAC 2-8-6] [IC 13-17-12]
 B.7 Severability [326 IAC 2-8-4(4)]
 B.8 Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]
 B.9 Duty to Provide Information [326 IAC 2-8-4(5)(E)]
 B.10 Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]
 B.11 Annual Compliance Certification [326 IAC 2-8-5(a)(1)]
 B.12 Compliance Order Issuance [326 IAC 2-8-5(b)]
 B.13 Preventive Maintenance Plan [326 IAC 2-8-5(a)(4)]
 B.14 Emergency Provisions [326 IAC 2-8-12]
 B.15 Prior Permits Superseded [326 IAC 2-1.1-9.5]
 B.16 Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]
 B.17 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]
 B.18 Permit Renewal [326 IAC 2-8-3(h)]
 B.19 Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]
 B.20 Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]
 B.21 Source Modification Requirement [326 IAC 2-8-11.1]
 B.22 Inspection and Entry [326 IAC 2-8-4(1)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]
 B.23 Transfer of Ownership or Operational Control [326 IAC 2-8-10]
 B.24 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-8-4(6)][326 IAC 2-8-16][326 IAC 2-1.1-7]
 B.25 Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314][326 IAC 1-1-6]

C. SOURCE OPERATION CONDITIONS ... 18

Emission Limitations and Standards [326 IAC 2-8-4(1)]
 C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
 C.2 Overall Source Limit [326 IAC 2-8]
 C.3 Opacity [326 IAC 5-1]
 C.4 Open Burning [326 IAC 4-1][IC 13-17-9]
 C.5 Incineration [326 IAC 4-2][326 IAC 9-1-2]
 C.6 Fugitive Dust Emissions [326 IAC 6-4]
 C.7 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
 C.8 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-8-4(3)]
 C.9 Performance Testing [326 IAC 3-6]
Compliance Requirements [326 IAC 2-1.1-11]
 C.10 Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]
 C.11 Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]
 C.12 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-8-4(3)]
 [326 IAC 2-8-5(1)]

Corrective Actions and Response Steps [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]
 C.13 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
 C.14 Risk Management Plan [326 IAC 2-8-4] [40 CFR 68]
 C.15 Response to Excursions or Exceedances [326 IAC 2-8-4] [326 IAC 2-8-5]
 C.16 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4]
 [326 IAC 2-8-5]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]
 C.17 General Record Keeping Requirements [326 IAC 2-8-4(3)] [326 IAC 2-8-5]
 C.18 General Reporting Requirements [326 IAC 2-8-4(3)(C)] [326 IAC 2-1.1-11]

Portable Source Requirement
 C.19 Relocation of Portable Sources [326 IAC 2-14-4]

Stratospheric Ozone Protection
 C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

D.1. EMISSIONS UNIT OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-8-4(1)]
 D.1.1 PSD Minor Limit [326 IAC 2-2]
 D.1.2 FESOP Limits: PM10, PM2.5, SO2, NOx, VOC, and CO [326 IAC 2-8-4][326 IAC 2-2]
 [326 IAC 2-1.1-5][326 IAC 8-1-6]
 D.1.3 FESOP Limits: SO2, NOx, CO2e, and HAPs [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]
 D.1.4 Particulate Emission Limits [326 IAC 6.5-1-2]
 D.1.5 Sulfur Dioxide (SO2) [326 IAC 7-1.1-1] [326 IAC 7-2-1]
 D.1.6 Volatile Organic Liquid Storage Vessels [326 IAC 8-9]
 D.1.7 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

Compliance Determination Requirements
 D.1.8 Particulate Control
 D.1.9 Testing Requirements [326 IAC 2-8-5(a)(1), (4)] [326 IAC 2-1.1-11]
 D.1.10 Sulfur Dioxide (SO2) Emissions and Sulfur Content
 D.1.11 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine, and Lead Content
 D.1.12 Multiple Fuel and Slag Usage
 D.1.13 Shingle Asbestos Content

Compliance Monitoring Requirements [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]
 D.1.14 Visible Emissions Notations
 D.1.15 Parametric Monitoring
 D.1.16 Broken or Failed Bag Detection

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]
 D.1.17 Record Keeping Requirements
 D.1.18 Reporting Requirements
D.2. EMISSIONS UNIT OPERATION CONDITIONS: Cold-mix Asphalt Production & Storage........38

Emission Limitations and Standards [326 IAC 2-8-4(1)]
D.2.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]
D.2.2 Volatile Organic Compounds (VOC) [326 IAC 2-8-4] [326 IAC 2-2]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]
D.2.3 Record Keeping Requirements
D.2.4 Reporting Requirements

E.1. NSPS REQUIREMENTS - Hot-Mix Asphalt Plant ...41

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]
E.1.1 General Provisions Relating to the New Source Performance Standards (NSPS) for Hot-mix Asphalt Facilities (40 CFR 60, Subpart I), [326 IAC 12] [40 CFR Part 60, Subpart A]
E.1.2 NSPS Subpart I Requirements - Standards of Performance for Hot-mix Asphalt Facilities [40 CFR Part 60, Subpart I] [326 IAC 12-1]
E.1.3 Testing Requirements [40 CFR Part 60, Subpart I] [326 IAC 12-1] [326 IAC 2-8-5(a)(1),(4)] [326 IAC 2-1.1-11]

E.2. NSPS REQUIREMENTS - Recycled Asphalt Pavement (RAP) Crusher & Screener43

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]
E.2.1 General Provisions Relating to the New Source Performance Standards (NSPS) for Nonmetallic Mineral Processing Plants (40 CFR 60, Subpart OOO), [326 IAC 12] [40 CFR Part 60, Subpart A]
E.2.2 NSPS Subpart OOO Requirements - Standards of Performance for Nonmetallic Mineral Processing Plants [40 CFR Part 60, Subpart OOO] [326 IAC 12-1]
E.2.3 Testing Requirements [40 CFR Part 60, Subpart OOO] [326 IAC 12-1] [326 IAC 2-8-5(a)(1),(4)] [326 IAC 2-1.1-11]

E.3 NESHAPs Requirements - Genset Generator ...44
E.3.1 General Provisions Relating to NESHAP [40 CFR Part 63, Subpart A] [326 IAC 20-1]
E.3.2 NESHAP for Stationary Reciprocating Internal Combustion Engines [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]
E.3.3 Testing Requirements [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

E.4 NSPS and NESHAPs Requirements ..46
E.4.2 Record Keeping Requirements
E.4.3 Reporting Requirements

Certification Form ..48
Emergency Occurrence Form ...49
Quarterly Report Form ..51
Quarterly Deviation and Compliance Monitoring Report Form ...56
Affidavit of Construction ..58

Fugitive Particulate Emissions Control Plan ..Attachment A
NSPS Subpart I - Standards of Performance for Hot-mix Asphalt FacilitiesAttachment B
NSPS Subpart OOO- Standards of Performance for Nonmetallic Mineral Processing Plants..Attachment C
NESHAP Subpart ZZZZ - National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines ..Attachment D
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-8-3(b)]

The Permittee owns and operates a portable drum hot-mix asphalt plant and cold mix operation. Recycled asphalt pavement (RAP) is crushed on-site, and blast furnace, electric arc furnace steel mill slag, and/or asbestos-free recycled shingles are processed in the aggregate mix. This source does not grind any shingles on-site.

Initial Source Address:	235 U.S. Highway 24, Kentland, Indiana 47951
General Source Phone Number:	(317) 788-6885
SIC Code:	2951 (Asphalt Paving Mixtures and Blocks)
County Location:	Newton
Source Location Status:	Attainment for all criteria pollutants
Source Status:	Federally Enforceable State Operating Permit Program

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]

This portable source consists of the following emission units and pollution control devices:

(a) One (1) asphalt counterflow drum mix dryer, with maximum capable of 350 tons per hour of processing raw material including blast furnace slag, steel slag, and asbestos-free recycled asphalt shingles in the aggregate mix, approved for construction in 2012, identified as ES-1, and dryer burner with a maximum heat input of 130 million (MM) British thermal units (Btu) per hour, using natural gas as a primary fuel and waste oil and No. 2 distillate fuel oil as secondary fuels, and is controlled with a pulse jet baghouse CD-1 for particulate control, and exhausting at one (1) stack (ID No. EP-1). This asphalt plant uses blast furnace and steel slag, and recycle asbestos free shingles in its aggregate mix;

(b) One (1) 30,000-gallon liquid asphalt storage tank, identified as AST-1;

(c) One (1) 20,000-gallon liquid asphalt storage tank, identified as AST-2;

(d) Two (2) 10,000-gallon used oil storage tanks, identified as AST-3 and AST-4;

(e) One (1) cold feed system, with conveyors and screen, identified as CF-1, consisting of eight (8) aggregate feed bins, capacity 30 tons each;

(f) One (1) recycle feed system, with conveyors and screen, identified as RF-1, and consisting of three (3) recycle feed bins, capacity 20 tons each;

(g) One (1) 100-ton surge bin, identified as SB-1;
(h) Aggregate storage piles, including Blast furnace and/or electric arc steel slag storage piles and Supplier certified asbestos-free factory seconds and/or post consumer waste shingles storage piles.

Under 40 CFR 60, Subpart I, the above units [items (a)-(h)] are considered affected source.

(i) One (1) 173 horsepower, diesel fuel-fired portable crusher and screener for processing reclaimed asphalt pavement (RAP), identified as CS-1, approved for construction in 2012, with a maximum throughput capacity of 250 tons of RAP per hour.

Under 40 CFR 60, Subpart OOO, this above unit is considered an affected facility.

Under 40 CFR 1068.30, General Compliance Provisions for Highway, Stationary, and Nonroad Programs - Definitions, this unit is considered a nonroad engine.

(j) One (1) genset generator, manufactured in 2002, and identified as ES-2, with maximum heat input capacity of 1,971 horsepower (HP) per hour, using diesel fuel, and exhausting at one (1) stack (ID No. EP-2).

Under 40 CFR 63, Subpart ZZZZ, this unit is considered an affected facility.

(k) One (1) Cold-mix asphalt manufacturing operations and asphalt storage piles.

A.3 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]

This portable source also includes the following insignificant activities:

(a) Fuel-oil fired combustion sources with heat input equal to or less than two million (2,000,000) Btu per hour, and firing fuel containing less than five-tenths percent (0.5%) sulfur content by weight;

One (1) number 2 distillate fuel oil-fired hot oil heater, approved for construction in 2012, with maximum heat input capacity of 2.0 million (MM) British thermal units (Btu) per hour;

Under 40 CFR 60, Subpart I, the above unit is considered affected source.

(b) A petroleum fuel, other than gasoline, dispensing facility, having a storage tank capacity less than or equal to ten thousand five hundred (10,500) gallons, and dispensing three thousand five hundred (3,500) gallons per day or less;

(c) One (1) 1,000-gallon ultra low sulfur diesel fuel tank, identified as AST-5, with maximum annual throughput 175,000 gallons;

(d) One (1) oil pre heater, identified as HOH-1 (no combustion source) for closed loop hot oil piping system for heating;

(e) Paved and unpaved roads and parking lots with public access.

A.4 FESOP Applicability [326 IAC 2-8-2]

This portable source, otherwise required to have a Part 70 permit as described in 326 IAC 2-7-2(a), has applied to the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ) for a Federally Enforceable State Operating Permit (FESOP).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-8-1]
Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Revocation of Permits [326 IAC 2-1.1-9(5)]
Pursuant to 326 IAC 2-1.1-9(5)(Revocation of Permits), the Commissioner may revoke this permit if construction is not commenced within eighteen (18) months after receipt of this approval or if construction is suspended for a continuous period of one (1) year or more.

B.3 Affidavit of Construction [326 IAC 2-5.1-3(h)] [326 IAC 2-5.1-4][326 IAC 2-8]
This document shall also become the approval to operate pursuant to 326 IAC 2-5.1-4 and 326 IAC 2-8 when prior to the start of operation, the following requirements are met:

(a) The attached Affidavit of Construction shall be submitted to the Office of Air Quality (OAQ), verifying that the emission units were constructed as proposed in the application or the permit. The emission units covered in this permit may begin operating on the date the Affidavit of Construction is postmarked or hand delivered to IDEM if constructed as proposed.

(b) If actual construction of the emission units differs from the construction proposed in the application, the source may not begin operation until the permit has been revised pursuant to 326 IAC 2 and an Operation Permit Validation Letter is issued.

(c) The Permittee shall attach the Operation Permit Validation Letter received from the Office of Air Quality (OAQ) to this permit.

B.4 Permit Term [326 IAC 2-8-4(2)][326 IAC 2-1.1-9.5][IC 13-15-3-6(a)]
(a) This permit, F 111-31236-05365, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, until the renewal permit has been issued or denied.

B.5 Term of Conditions [326 IAC 2-1.1-9.5]
Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.6 Enforceability [326 IAC 2-8-6][IC 13-17-12]
Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.
B.7 Severability [326 IAC 2-8-4(4)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.8 Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.9 Duty to Provide Information [326 IAC 2-8-4(5)(E)]

(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.10 Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-8-5(a)(1) if:

(1) it contains a certification by an "authorized individual" as defined by 326 IAC 2-1.1-1(1), and

(2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) An "authorized individual" is defined at 326 IAC 2-1.1-1(1).

B.11 Annual Compliance Certification [326 IAC 2-8-5(a)(1)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. The initial certification shall cover the time period from the date of final permit issuance through December 31 of the same year. All subsequent certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ, on or before the date it is due.
(c) The annual compliance certification report shall include the following:

1. The appropriate identification of each term or condition of this permit that is the basis of the certification;
2. The compliance status;
3. Whether compliance was continuous or intermittent;
4. The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-8-4(3); and
5. Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

B.12 Compliance Order Issuance [326 IAC 2-8-5(b)]

IDEM, OAQ may issue a compliance order to this Permittee upon discovery that this permit is in nonconformance with an applicable requirement. The order may require immediate compliance or contain a schedule for expeditious compliance with the applicable requirement.

B.13 Preventive Maintenance Plan [326 IAC 1-6-3][326 IAC 2-8-4(9)]

(a) If required by specific condition(s) in Section D of this permit, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

The Permittee shall implement the PMPs.
(b) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1).

(c) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.14 Emergency Provisions [326 IAC 2-8-12]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation except as provided in 326 IAC 2-8-12.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a health-based or technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

1. An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;

2. The permitted facility was at the time being properly operated;

3. During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;

4. For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

 Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or
 Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
 Facsimile Number: 317-233-6865

5. For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

 Indiana Department of Environmental Management
 Compliance and Enforcement Branch, Office of Air Quality
 100 North Senate Avenue
 MC 61-53 IGCN 1003
 Indianapolis, Indiana 46204-2251

 within two (2) working days of the time when emission limitations were exceeded due to the emergency.
The notice fulfills the requirement of 326 IAC 2-8-4(3)(C)(ii) and must contain the following:

(A) A description of the emergency;

(B) Any steps taken to mitigate the emissions; and

(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-8-3(c)(6) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-8 and any other applicable rules.

(g) Operations may continue during an emergency only if the following conditions are met:

(1) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

(2) If an emergency situation causes a deviation from a health-based limit, the Permittee may not continue to operate the affected emissions facilities unless:

 (A) The Permittee immediately takes all reasonable steps to correct the emergency situation and to minimize emissions; and

 (B) Continued operation of the facilities is necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw material of substantial economic value.

Any operations shall continue no longer than the minimum time required to prevent the situations identified in (g)(2)(B) of this condition.
B.15 Prior Permits Superseded [326 IAC 2-1.1-9.5]

(a) All terms and conditions of permits established prior to F 111-31236-05365 and issued pursuant to permitting programs approved into the state implementation plan have been either:

1. incorporated as originally stated,
2. revised, or
3. deleted.

(b) All previous registrations and permits are superseded by this permit.

B.16 Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source’s existing permit, consistent with 326 IAC 2-8-3(h) and 326 IAC 2-8-9.

B.17 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Federally Enforceable State Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-8-4(5)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

1. That this permit contains a material mistake.
2. That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
3. That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-8-8(a)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-8-8(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-8-8(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-8-8(c)]

B.18 Permit Renewal [326 IAC 2-8-3(h)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-8-3. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(40). The renewal application does require a
certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-8 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-8-3(g), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.19 Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]

(a) Permit amendments and revisions are governed by the requirements of 326 IAC 2-8-10 or 326 IAC 2-8-11.1 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. 326 IAC 2-8-10(b)(3)]

B.20 Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-8-15(b) and (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;
(2) Any approval required by 326 IAC 2-8-11.1 has been obtained;

(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-8-15(b)(1) and (c). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-8-15(b)(1) and (c).

(b) Emission Trades [326 IAC 2-8-15(b)]

The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-8-15(b).

(c) Alternative Operating Scenarios [326 IAC 2-8-15(c)]

The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-8-4(7). No prior notification of IDEM, OAQ, or U.S. EPA is required.

(d) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.21 Source Modification Requirement [326 IAC 2-8-11.1]

A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.22 Inspection and Entry [326 IAC 2-8-5(a)(2)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as
such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a FESOP source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect, at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor, at reasonable times, substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.23 Transfer of Ownership or Operational Control [326 IAC 2-8-10]

(a) The Permittee must comply with the requirements of 326 IAC 2-8-10 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-8-10(b)(3)]

B.24 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-8-4(6)] [326 IAC 2-8-16][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ no later than thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Failure to pay may result in administrative enforcement action or revocation of this permit.
(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.25 Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314] [326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Entire Source

<table>
<thead>
<tr>
<th>Emission Limitations and Standards [326 IAC 2-8-4(1)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]</td>
</tr>
<tr>
<td>Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.</td>
</tr>
<tr>
<td>C.2 Overall Source Limit [326 IAC 2-8]</td>
</tr>
<tr>
<td>The purpose of this permit is to limit this source's potential to emit to less than major source levels for the purpose of Section 502(a) of the Clean Air Act.</td>
</tr>
<tr>
<td>(a) Pursuant to 326 IAC 2-8:</td>
</tr>
<tr>
<td>(1) The potential to emit any regulated pollutant, except particulate matter (PM), from the entire source shall be limited to less than one hundred (100) tons per twelve (12) consecutive month period.</td>
</tr>
<tr>
<td>(2) The potential to emit any individual hazardous air pollutant (HAP) from the entire source shall be limited to less than ten (10) tons per twelve (12) consecutive month period; and</td>
</tr>
<tr>
<td>(3) The potential to emit any combination of HAPs from the entire source shall be limited to less than twenty-five (25) tons per twelve (12) consecutive month period.</td>
</tr>
<tr>
<td>(4) The potential to emit greenhouse gases (GHGs) from the entire source shall be limited to less than one hundred thousand (100,000) tons of CO₂ equivalent emissions (CO₂e) per twelve (12) consecutive month period.</td>
</tr>
<tr>
<td>(b) Pursuant to 326 IAC 2-2 (PSD), potential to emit particulate matter (PM) from the entire source shall be limited to less than one hundred (100) tons per twelve (12) consecutive month period.</td>
</tr>
<tr>
<td>(c) This condition shall include all emission points at this source including those that are insignificant as defined in 326 IAC 2-7-1(21). The source shall be allowed to add insignificant activities not already listed in this permit, provided that the source’s potential to emit does not exceed the above specified limits.</td>
</tr>
<tr>
<td>(d) Section D of this permit contains independently enforceable provisions to satisfy this requirement.</td>
</tr>
<tr>
<td>C.3 Opacity [326 IAC 5-1]</td>
</tr>
<tr>
<td>Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:</td>
</tr>
<tr>
<td>(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.</td>
</tr>
</tbody>
</table>
(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.4 Open Burning [326 IAC 4-1] [IC 13-17-9]
The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.5 Incineration [326 IAC 4-2] [326 IAC 9-1-2]
The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.6 Fugitive Dust Emissions [326 IAC 6-4]
The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions).

C.7 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the attached plan as in Attachment A.

C.8 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

1. When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

2. If there is a change in the following:
 (A) Asbestos removal or demolition start date;
 (B) Removal or demolition contractor; or
 (C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).

(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).
All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos.

Testing Requirements [326 IAC 2-8-4(3)]

C.9 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted
by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.10 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]

C.11 Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or of initial start-up, whichever is later, to begin such monitoring. If due to circumstances beyond the Permittee’s control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance or the date of initial startup, whichever is later, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units or emission units added through a permit revision shall be implemented when operation begins.

C.12 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-8-4(3)][326 IAC 2-8-5(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]

C.13 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):
(a) The Permittee shall prepare written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) These ERPs shall be submitted for approval to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than 180 days from the date on which this source commences operation.

The ERP does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) If the ERP is disapproved by IDEM, OAQ, the Permittee shall have an additional thirty (30) days to resolve the differences and submit an approvable ERP.

(d) These ERPs shall state those actions that will be taken, when each episode level is declared, to reduce or eliminate emissions of the appropriate air pollutants.

(e) Said ERPs shall also identify the sources of air pollutants, the approximate amount of reduction of the pollutants, and a brief description of the manner in which the reduction will be achieved.

(f) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.14 Risk Management Plan [326 IAC 2-8-4] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.15 Response to Excursions or Exceedances [326 IAC 2-8-4] [326 IAC 2-8-5]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.
(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

C.16 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4][326 IAC 2-8-5]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ, no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

C.17 General Record Keeping Requirements [326 IAC 2-8-4(3)] [326 IAC 2-8-5]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following:

(AA) All calibration and maintenance records.

(BB) All original strip chart recordings for continuous monitoring instrumentation.

(CC) Copies of all reports required by the FESOP.

Records of required monitoring information include the following:

(AA) The date, place, as defined in this permit, and time of sampling or measurements.

(BB) The dates analyses were performed.

(CC) The company or entity that performed the analyses.

(DD) The analytical techniques or methods used.

(EE) The results of such analyses.

(FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the
remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.18 General Reporting Requirements [326 IAC 2-8-4(3)(C)] [326 IAC 2-1.1-11]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) The first report shall cover the period commencing on the date of issuance of this permit or the date of initial start-up, whichever is later, and ending on the last day of the reporting period. Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit, “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Portable Source Requirement

C.19 Relocation of Portable Sources [326 IAC 2-14-4]

(a) This permit is approved for operation in all areas of Indiana except in Lake and Porter Counties. This determination is based on the requirements of Prevention of Significant Deterioration in 326 IAC 2-2, and Emission Offset requirements in 326 IAC 2-3. Prior to locating in any severe nonattainment area, the Permittee must submit a request and obtain a permit modification.
(b) A request to relocate shall be submitted to IDEM, OAQ at least thirty (30) days prior to the intended date of relocation. This submittal shall include the following:

(1) A list of governmental officials entitled to receive notice of application to relocate. IC 13-15-3-1

(2) A list of adjacent landowners that the Permittee will send written notice to not more than ten (10) days after submission of the request to relocate. IC 13-15-8

(3) The new location address of the portable source.

(4) Whether or not this portable source will be relocated to another source.

(5) If relocating to another source:

 (A) Name, location address, and permit number of the source this portable source is relocating to.

 (B) Whether or not the sources will be considered as one source. See Non Rule Policy (NRP) Air-005 and Air-006.

(6) If the sources will be considered as one source, whether or not the source to be relocated to has received the necessary approvals from IDEM to allow the relocation.

The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) A “Relocation Site Approval” letter shall be obtained prior to relocating.

(d) A valid operation permit consists of this document and any subsequent “Relocation Site Approval” letter specifying the current location of the portable plant.

Stratospheric Ozone Protection

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) One (1) asphalt counterflow drum mix dryer, with maximum capable of 350 tons per hour of processing raw material including blast furnace slag, steel slag, and asbestos-free recycled asphalt shingles in the aggregate mix, approved for construction in 2012, identified as ES-1, and dryer burner with a maximum heat input of 130 million (MM) British thermal units (Btu) per hour, using natural gas as a primary fuel and waste oil and No. 2 distillate fuel oil as secondary fuels, and is controlled with a pulse jet baghouse CD-1 for particulate control, and exhausting at one (1) stack (ID No. EP-1). This asphalt plant uses blast furnace and steel slag, and recycle asbestos free shingles in its aggregate mix;

(b) One (1) 30,000-gallon liquid asphalt storage tank, identified as AST-1;

(c) One (1) 20,000-gallon liquid asphalt storage tank, identified as AST-2;

(d) Two (2) 10,000-gallon used oil storage tanks, identified as AST-3 and AST-4;

(e) One (1) cold feed system, with conveyors and screen, identified as CF-1, consisting of eight (8) aggregate feed bins, capacity 30 tons each;

(f) One (1) recycle feed system, with conveyors and screen, identified as RF-1, and consisting of three (3) recycle feed bins, capacity 20 tons each;

(g) One (1) 100-ton surge bin, identified as SB-1;

(h) Aggregate storage piles, including Blast furnace and/or electric arc steel slag storage piles and Supplier certified asbestos-free factory seconds and/or post consumer waste shingles storage piles.

Under 40 CFR 60, Subpart I, the above units [items (a)-(h)] are considered affected source.

(j) One (1) genset generator, manufactured in 2002, and identified as ES-2, with maximum heat input capacity of 1,971 Horsepower (HP) per hour, using diesel fuel, and exhausting at one (1) stack (ID No. EP-2).

Under 40 CFR 63, Subpart ZZZZ, this unit is considered an affected facility

The following is a list of Insignificant activities:

(f) Fuel-oil fired combustion sources with heat input equal to or less than two million (2,000,000) Btu per hour, and firing fuel containing less than five-tenths percent (0.5%) sulfur content by weight;

One (1) number 2 distillate fuel oil-fired hot oil heater, approved for construction in 2012, with maximum heat input capacity of 2.0 million (MM) British thermal units (Btu) per hour;

Under 40 CFR 60, Subpart I, the above unit is considered affected source.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)
Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.1.1 PSD Minor Limit [326 IAC 2-2]

In order to render 326 IAC 2-2 not applicable:

(a) The amount of asphalt processed shall not exceed 600,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) The PM emissions from the dryer/mixer shall not exceed 0.636 pounds per ton of asphalt processed.

Compliance with these limitations, combined with the limited potential to emit from other emission units at this source, shall limit the source-wide total potential to emit PM to less than 250 tons per 12 consecutive month period and shall render 326 IAC 2-2 (PSD) not applicable.

D.1.2 FESOP Limits: PM10, PM2.5, SO2, NOx, VOC, and CO [326 IAC 2-8-4][326 IAC 2-2] [326 IAC 2-1.1-5][326 IAC 8-1-6]

Pursuant to 326 IAC 2-8-4, the Permittee shall comply with the following:

(a) The amount of asphalt processed shall not exceed 600,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) The PM10 emissions from the dryer/mixer shall not exceed 0.262 pounds per ton of asphalt processed.

(c) The PM2.5 emissions from the dryer/mixer shall not exceed 0.281 pounds of PM2.5 per ton of asphalt produced.

(d) The SO2 emissions from the dryer/mixer shall not exceed 0.058 pounds per ton of asphalt processed.

(e) The NOx emissions from the dryer/mixer shall not exceed 0.055 pounds per ton of asphalt processed.

(f) The VOC emissions from the dryer/mixer shall not exceed 0.032 pounds per ton of asphalt processed.

(g) The CO emissions from the dryer/mixer shall not exceed 0.130 pounds per ton of asphalt processed.

Compliance with these limits, combined with the potential to emit PM10, PM2.5, SO2, NOx, VOC, and CO from all other emission units at this source, shall limit the source-wide total potential to emit PM10, PM2.5, SO2, NOx, VOC, and CO to less than 100 tons per 12 consecutive month period, each, and shall render 326 IAC 2-7 (Part 70 Permits), 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)), not applicable.

Additionally, compliance with the limit in condition D.1.2(f) shall limit the VOC emissions from the dryer/mixer to less than twenty-five (25) tons per twelve (12) consecutive month period and shall render 326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities) not applicable.

D.1.3 FESOP Limits: SO2, NOx, CO2e and HAPs [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]

Pursuant to 326 IAC 2-8-4, and in order to render 326 IAC 2-2 and 326 IAC 2-4.1 not applicable, the Permittee shall comply with the following:
(a) Fuel and Slag Specifications

(1) The sulfur content of the No. 2 distillate fuel oil combusted in the dryer burner shall not exceed 0.50% by weight.

(2) The sulfur content of the waste oil shall not exceed 0.75% by weight.

(3) The waste oil combusted in the dryer burner shall not contain more than 1.02% ash, 0.20% chlorine, and 0.010% lead.

(4) The HCl emissions shall not exceed 13.2 pounds of HCl per 1,000 gallons of waste oil burned.

(5) The sulfur content of the No. 2 distillate fuel oil combusted in the generator burner shall not exceed 0.50% by weight.

(6) The sulfur content of the Blast Furnace slag shall not exceed 1.50% by weight.

(7) The SO2 emissions from the dryer/mixer shall not exceed 0.740 pounds per ton of Blast Furnace slag processed in the aggregate mix.

(8) The sulfur content of the Steel slag shall not exceed 0.66% by weight.

(9) The SO2 emissions from the dryer/mixer shall not exceed 0.0014 pounds per ton of Steel slag processed in the aggregate mix.

(b) Single Fuel and Slag Usage Limitations:

(1) When combusting only one type of fuel per twelve (12) consecutive month period in the dryer/mixer burner, the usage of fuel and slag shall be limited as follows:

 (A) Natural gas usage in the dryer/mixer burner shall not exceed 518.1 million cubic feet (MMCF) per twelve (12) consecutive month period, with compliance determined at the end of each month.

 (B) No. 2 fuel oil usage in the dryer/mixer burner shall not exceed 1,552,067 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month;

 (C) Waste oil usage in the dryer/mixer burner shall not exceed 1,090,220 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month; and

 (E) The Blast Furnace slag usage shall not exceed 50,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) The usage of diesel fuel oil in the generator shall not exceed 201,372 gallons per consecutive twelve (12) month period, with compliance determined at the end of each month;

Note: The source is only permitted to burn the above-mentioned fuels in the associated emission units.
(c) **Multiple Fuel and Slag Usage Limitation:**

When combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner and generator, in conjunction with the use of slag in the aggregate mix, emissions from the dryer/mixer and generator shall be limited as follows:

1. **SO₂ emissions** from the dryer/mixer burner and generator, combined, shall not exceed 72.06 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

2. **NOₓ emissions** from the dryer/mixer burner and generator, combined, shall not exceed 96.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

3. **HCl emissions** from the dryer/mixer burner shall not exceed 7.20 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

4. **CO₂ equivalent emissions (CO₂e)** from the dryer/mixer shall not exceed 31,319.93 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) **Asphalt Shingle Usage Limitation**

Pursuant to 326 IAC 2-8-4 (FESOP), and in order to render the requirements of 326 IAC 2-2 (PSD) and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAPs)) not applicable, the Permittee shall not grind recycled asphalt shingles on-site and shall only use certified asbestos-free recycled shingles, post consumer waste and/or factory seconds, as an additive in its aggregate mix.

Compliance with these limits, combined with the potential to emit SO₂, NOₓ, and HAPs from all other emission units at this source, shall limit the source-wide total potential to emit of SO₂ and NOₓ to less than 100 tons per twelve (12) consecutive month period, each, greenhouse gases to less than 100,000 tons CO₂ equivalent (CO₂e) emissions per twelve (12) consecutive month period, any single HAP to less than ten (10) tons per twelve (12) consecutive month period, and total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-7 (Part 70 Permits), 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)), and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP) not applicable.

D.1.4 **Particulate Emission Limits [326 IAC 6.5-1-2]**

Pursuant to 326 IAC 6.5-1-2 (Particulate Matter Limitations Except Lake County), particulate matter (PM) emissions from the dryer/mixer shall not exceed 0.03 grain per dry standard cubic foot of exhaust air when the source is located in Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo, or Wayne Counties.

D.1.5 **Sulfur Dioxide (SO₂) [326 IAC 7-1.1-1] [326 IAC 7-2-1]**

(a) Pursuant to 326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations), the Permittee shall comply with the following:

1. The sulfur dioxide (SO₂) emissions from the dryer/mixer burner and generator burner, each, shall not exceed five tenths (0.5) pounds per MMBtu when using distillate oil.

2. The sulfur dioxide (SO₂) emissions from the dryer/mixer burner shall not exceed one and six tenths (1.6) pounds per MMBtu heat input when using residual oil.
Note: No. 2 fuel oil and diesel fuel oil are considered distillate oil, and waste oil is considered residual oil.

(b) Pursuant to 326 IAC 7-2-1, compliance shall be demonstrated on a calendar month average.

D.1.6 Volatile Organic Liquid Storage Vessels [326 IAC 8-9]
Pursuant to 326 IAC 8-9-6(b), the Permittee shall maintain a record and submit to IDEM, OAQ a report containing the following information for the storage tanks AST-1, AST-2, AST-3, AST-4, AST-5, and petroleum fuel tank (10,500 gallons), when the source is re-located to Clark or Floyd Counties:

(1) the tank identification number;
(2) the tank dimensions; and
(3) the tank capacity.

Pursuant to 326 IAC 8-9-6(a), these records shall be maintained for the life of the tank.

D.1.7 Preventive Maintenance Plan [326 IAC 2-8-4(9)]
A Preventive Maintenance Plan is required for these facilities and any corresponding control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements

D.1.8 Particulate Control

(a) In order to comply with Conditions D.1.1(b), D.1.2(b), D.1.2(c), and D.1.4, the baghouse for particulate control shall be in operation and control emissions from the dryer/mixer at all times when the dryer/mixer is in operation.

(b) In the event that bag failure is observed in a multi-compartment baghouse, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

D.1.9 Testing Requirements [326 IAC 2-8-5(a)(1), (4)] [326 IAC 2-1.1-11]

(a) In order to demonstrate compliance with Conditions D.1.1(b), D.1.2(b), D.1.2(c), and D.1.4, the Permittee shall perform PM, PM10, and PM2.5 testing of the dryer/mixer not later than 180 days after the startup of the dryer/mixer, utilizing methods approved by the Commissioner. These tests shall be repeated at least once every five (5) years from the date of this valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition. PM10 and PM2.5 includes filterable and condensable particulate matter.

(b) In order to demonstrate compliance with Condition D.1.3(a)(7), when using Blast Furnace slag, the Permittee shall perform SO2 testing for the aggregate dryer within one hundred eighty (180) days of initial use of Blast Furnace slag in the aggregate mix, utilizing methods as approved by the Commissioner. Testing shall only be performed if the company has not previously performed SO2 testing while using Blast Furnace slag in the
aggregate mix at one of their other Indiana facilities. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

D.1.10 Sulfur Dioxide (SO₂) Emissions and Sulfur Content

Fuel Oil

(a) Pursuant to 326 IAC 3-7-4 and 326 IAC 2-8-4, compliance with the fuel limitations established in Conditions D.1.3(a)(1), D.1.3(a)(2), D.1.3(a)(5) and D.1.5, shall be determined utilizing one of the following options. Compliance shall be demonstrated on a thirty (30) day calendar-month average.

(1) Providing vendor analysis of fuel delivered, if accompanied by a vendor certification; or

(2) Analyzing the oil sample to determine the sulfur content of the oil via the procedures in 40 CFR 60, Appendix A, Method 19.

(A) Oil samples may be collected from the fuel tank immediately after the fuel tank is filled and before any oil is combusted; and

(B) If a partially empty fuel tank is refilled, a new sample and analysis would be required upon filling.

(3) Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6.

A determination of noncompliance pursuant to any of the methods specified in (1) or (2) above shall not be refuted by evidence of compliance pursuant to the other method.

Blast Furnace Slag

(b) Pursuant to 326 IAC 2-8-4, compliance with the blast furnace slag limitation established in Condition D.1.3(a)(6) shall be determined utilizing one of the following options. Compliance shall be demonstrated on a thirty (30) day calendar-month average.

(1) Maintaining all records of vendor analyses or certifications of blast furnace slag delivered; or

(2) Analyzing a sample of each blast furnace slag delivery, if no vendor analyses or certifications are available, to determine the sulfur content of the blast furnace slag, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified in (1) or (2) above shall not be refuted by evidence of compliance pursuant to the other method.
Steel Slag

(c) Pursuant to 326 IAC 2-8-4, compliance with the steel slag limitations established in Condition D.1.3(a)(8) shall be determined utilizing one of the following options. Compliance shall be demonstrated on a thirty (30) day calendar-month average.

1. Maintaining all records of vendor analyses or certifications of steel slag delivered;

or

2. Analyzing a sample of the steel slag delivery if no vendor analyses or certifications are available, at least once per quarter, to determine the sulfur content of the steel slag, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified in (1) or (2) above shall not be refuted by evidence of compliance pursuant to the other method.

D.1.11 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine, and Lead Content

The Permittee shall demonstrate compliance with the waste oil ash, chlorine, and lead content limits established in Condition D.1.3(a)(3) and D.1.3(a)(4), by providing a vendor analysis of each fuel delivery accompanied by a vendor certification.

D.1.12 Multiple Fuel and Slag Usage

In order to comply with the Condition D.1.3(c) when combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer and generator, in conjunction with the use of slag in the aggregate mix, emissions from the dryer/mixer and generator shall be limited as follows:

(a) Sulfur Dioxide (SO2) Emission Calculation

\[
SO_2 = \frac{G(E_G) + O(E_O) + W(E_W) + D(E_D) + B(E_B) + T(E_T)}{2,000 \text{ lbs/ton}}
\]

where:

- \(SO_2\) = tons of sulfur dioxide emissions for a 12-month consecutive period
- \(G\) = gallons of natural gas used in the dryer/mixer in the last 12 months
- \(O\) = gallons of No. 2 fuel oil used in the dryer/mixer in the last 12 months
- \(W\) = gallons of waste oil used in the dryer/mixer in the last 12 months
- \(D\) = gallons of diesel fuel oil used in the genset generator in the last 12 months
- \(B\) = tons of blast furnace slag used in the dryer/mixer in the last 12 months
- \(T\) = tons of steel slag used in the dryer/mixer last 12 months
- \(E_G\) = 0.60 lb/million cubic feet of natural gas
- \(E_O\) = 71.0 lb/1000 gallons of No. 2 fuel oil
- \(E_W\) = 110.3 lb/1000 gallons of waste oil
- \(E_D\) = 70.7 lb/1000 gallons of No. 2 fuel oil
- \(E_B\) = 0.74 lb/ton of blast furnace slag used
- \(E_T\) = 0.0014 lb/ton of steel slag used
(b) **Nitrogen Oxides (NOx) Emission Calculation**

\[
\text{NOx} = \frac{G(E_G) + O(E_O) + W(E_W) + D(E_D)}{2,000 \text{ lbs/ton}}
\]

where:

- \(\text{NOx}\) = tons of nitrogen oxide emissions for a 12-month consecutive period;
- \(G\) = million cubic feet of natural gas used in the dryer/mixer last 12 months;
- \(O\) = gallons of No. 2 fuel oil used in the dryer/mixer last 12 months;
- \(W\) = gallons of reclaimed/waste oil used in the dryer/mixer last 12 months;
- \(D\) = gallons of diesel fuel oil used in the genset generator in the last 12 months.

\(E_G\) = 190 lb/million cubic feet of natural gas;
\(E_O\) = 24.0 lb/1000 gallons of No. 2 fuel oil;
\(E_W\) = 19.0 lb/1000 gallons of waste oil;
\(E_D\) = 266 lb/1000 gallons of diesel oil.

(c) **HCl emissions Calculation**:

\[
\text{HCl} = \frac{W(E_W)}{2,000 \text{ lbs/ton}}
\]

where:

- \(\text{HCl}\) = tons of Hydrogen Chloride emissions for twelve (12) month consecutive period
- \(W\) = gallons of waste oil used in the last 12 months
- \(E_W\) = 13.2 lb/1000 gallons of waste oil

(d) **CO2e emissions Calculation**:

\[
\text{CO2e} = \sum [(\text{CO2} \times \text{CO2 GWP}) + (\text{CH4} \times \text{CH4 GWP}) + (\text{N2O} \times \text{N2O GWP})]
\]

Where:

- \(\text{CO2e}\) = tons of CO2e equivalent emissions for last 12 consecutive month period;

Global Warming Potentials (GWP)

- Carbon dioxide (CO2) = 1
- Methane (CH4) = 21
- Nitrous oxide (N2O) = 310

\[
\text{CO2} = \frac{G(X_G) + O(X_O) + W(X_W)}{2,000}
\]

\[
\text{CH4} = \frac{G(X_G) + O(X_O) + W(X_W)}{2,000}
\]

\[
\text{N2O} = \frac{G(X_G) + O(X_O) + W(X_W)}{2,000}
\]

- \(\text{CO2}\) = tons of CO2 emissions for last 12 consecutive month period;
- \(\text{CH4}\) = tons of CH4 emissions for last 12 consecutive month period;
- \(\text{N2O}\) = tons of N2O emissions for last 12 consecutive month period;

- \(G\) = million cubic feet of natural gas used in last 12 months;
- \(O\) = gallons of No. 2 fuel oil used in last 12 months;
- \(W\) = gallons of waste oil used in dryer/mixer in last 12 months.
For CO2:
\[X_G = 120,161.84 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 22,501.41 \times 10^{-3} \text{ pounds per gallon of No. 2 fuel oil}; \text{ and} \]
\[X_W = 22,024.15 \times 10^{-3} \text{ pounds per gallon of waste oil}; \]

For CH4:
\[X_G = 2.49 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 0.00091 \text{ pounds per gallon of No. 2 fuel oil}; \text{ and} \]
\[X_W = 0.00089 \text{ pounds per gallon of waste oil}; \]

For N2O:
\[X_G = 2.20 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 0.00026 \text{ pounds per gallon of No. 2 fuel oil}; \text{ and} \]
\[X_W = 0.00018 \text{ pounds per gallon of waste oil}. \]

D.1.13 Shingle Asbestos Content

Pursuant to 326 IAC 2-8-4, compliance with Condition D.1.3(d) shall be determined utilizing one of the following options:

1. Providing shingle supplier certification that the factory second shingles do not contain asbestos; or

2. Analyzing a sample of the recycled asphalt shingles (certified asbestos-free, factory seconds and/or post consumer waste, only) delivery to determine the asbestos content of the recycled asphalt shingles, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified above shall not be refuted by evidence of compliance pursuant to the other method.

Compliance Monitoring Requirements [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]

D.1.14 Visible Emissions Notations

(a) Visible emission notations from the conveyors, screens, material transfer points, crusher, and dryer/mixer stack (S-1) exhaust shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take reasonable response steps. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. An abnormal visible emission notation is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.
D.1.15 Parametric Monitoring

The Permittee shall record the pressure drop across the baghouse used in conjunction with the dryer/mixer, at least once per day when the dryer/mixer is in operation. When for any one reading, the pressure drop across the baghouse is outside the normal range of one (1.0) to eight (8.0) inches of water or a range established during the latest stack test, the Permittee shall take reasonable response steps. Section C - Response to Excursions or Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above-mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months, or other time period specified by the manufacturer. The Permittee shall maintain records of the manufacturer specifications, if used.

D.1.16 Broken or Failed Bag Detection

In the event that bag failure has been observed:

(a) For a single compartment baghouses controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces, or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.1.17 Record Keeping Requirements

(a) To document the compliance status with Conditions D.1.1(a), and D.1.2(a), the Permittee shall keep monthly records of the amount of asphalt processed through the dryer/mixer.

(b) To document the compliance status with Conditions D.1.3 and D.1.5, the Permittee shall maintain records in accordance with (1) through (10) below. Records maintained for (1) through (10) below shall be taken monthly and shall be complete and sufficient to establish compliance with the limits established in Conditions D.1.3 and D.1.5.

(1) Calendar dates covered in the compliance determination period;

(2) Actual fuel usage, sulfur content, heat content, and equivalent sulfur dioxide, emission rates for each fuel used at the source since the last compliance determination period;

(3) Actual waste oil usage, ash, chlorine, and lead content, and equivalent hydrogen chloride (HCl) emission rate for waste oil used at the source since the last compliance determination period;
(4) A certification, signed by the owner or operator, that the records of the fuel supplier certifications represent all of the fuel combusted during the period; and

(5) If the fuel supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

(A) Fuel supplier certifications;

(B) The name of the fuel supplier; and

(C) A statement from the fuel supplier that certifies the sulfur content of the No. 2, fuel oil, distillate fuel oil, and waste oil, and the ash, chlorine, and lead content of waste oil.

(6) Actual blast furnace and steel slag usage, sulfur content and equivalent sulfur dioxide emission rates for all blast furnace and steel slag used at the source since the last compliance determination period;

(7) A certification, signed by the owner or operator, that the records of the blast furnace and steel slag supplier certifications represent all of the blast furnace and steel slag used during the period; and

(8) If the slag supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

(A) Blast furnace and steel slag supplier certifications;

(B) The name of the blast furnace and steel slag supplier; and

(C) A statement from the blast furnace and steel slag supplier that certifies the sulfur content of the blast furnace and steel slag.

(9) A certification, signed by the owner or operator, that the records of the shingle supplier certifications represent all of the shingles used during the period; and

(10) If the shingle supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

(A) Shingle supplier certifications;

(B) The name of the shingle supplier(s); and

(C) A statement from the shingle supplier(s) that certifies the asbestos content of the shingles from their company.

(d) To document the compliance status with Condition D.1.14, the Permittee shall maintain records once per day of the visible emission notations. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g., the process did not operate that day).

(e) To document the compliance status with Condition D.1.15, the Permittee shall maintain records once per day of the pressure drop during normal operation. The Permittee shall include in its daily record when the pressure drop reading is not taken and the reason for the lack of a pressure drop reading (e.g., the process did not operate that day).
(f) Section C - General Record Keeping Requirements contains the Permittee’s obligations with regard to the records required by this condition.

D.1.18 Reporting Requirements

A quarterly summary of the information to document compliance status with Conditions D.1.1(a), D.1.2(a), and D.1.3, shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee’s obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by the “authorized individual” as defined by 326 IAC 2-1.1-1(1).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(k) One (1) Cold-mix asphalt manufacturing operations and asphalt storage piles.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.2.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]

Pursuant to 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving), the use of cutback asphalt or asphalt emulsion shall not contain more than seven percent (7%) oil distillate by volume of emulsion for any paving application except the following purposes:

(a) Penetrating prime coating

(b) Stockpile storage

(c) Application during the months of November, December, January, February, and March.

D.2.2 Volatile Organic Compounds (VOC) and HAPs [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]

(a) Pursuant to 326 IAC 2-8-4, the VOC emissions from the sum of the liquid binders (asphalt emulsions) shall not exceed 60.30 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) Liquid binders used in the production of cold mix asphalt shall be defined as follows:

 (1) Cut back asphalt rapid cure, containing a maximum of 25.3% of the liquid binder by weight of VOC solvent and 95.0% by weight of VOC solvent evaporating.

 (2) Cut back asphalt medium cure, containing a maximum of 28.6% of the liquid binder by weight of VOC solvent and 70.0% by weight of VOC solvent evaporating.

 (3) Cut back asphalt slow cure, containing a maximum of 20.0% of the liquid binder by weight of VOC solvent and 25.0% by weight of VOC solvent evaporating.

 (4) Emulsified asphalt with solvent, containing a maximum of 15.0% of liquid binder by weight of VOC solvent and 46.4% by weight of the VOC solvent in the liquid blend evaporating. The percent oil distillate in emulsified asphalt with solvent liquid, as determined by ASTM, must be seven percent (7%) or less of the total emulsion by volume.

 (5) Other asphalt with solvent binder, containing a maximum 25.9% of the liquid binder of VOC solvent and 2.5% by weight of the VOC solvent evaporating.
(c) When using only one type of liquid binder (asphalt emulsion) per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

(1) The amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 63.48 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) The amount of VOC solvent used in medium cure cutback asphalt shall not exceed 86.15 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(3) The amount of VOC solvent used in slow cure cutback asphalt shall not exceed 241.22 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(4) The amount of VOC solvent used in emulsified asphalt shall not exceed 129.97 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(5) The amount of VOC solvent used in all other asphalt shall not exceed 2,412.16 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) When using more than one liquid binder (asphalt emulsion) per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

(1) The VOC solvent allotments in (1) through (5) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
\text{VOC emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.000</td>
</tr>
<tr>
<td>emulsified asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Compliance with these limits, combined with the VOC and HAPs emissions from all other emission units at this source, will limit source-wide VOC emissions to less than one hundred (100) tons per twelve (12) consecutive month period, single HAP to less than 10 tons per twelve (12) consecutive month period and total HAPs to less than 25 tons per twelve (12) consecutive month period, and render 326 IAC 2-7 (Part 70 Permit Program) and 326 IAC 2-4.1 (Major Source of HAPs) not applicable.
Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.2.3 Record Keeping Requirements

(a) To document the compliance status with Condition D.2.2(c)(1) through (5), the Permittee shall maintain records in accordance with (1) through (4) below. Records maintained shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limits established in Condition D.2.2(c)(1) through (5).

(1) Calendar dates covered in the compliance determination period;

(2) Cutback asphalt binder usage in the production of cold mix asphalt since the last compliance determination period;

(3) VOC solvent content by weight of the cutback asphalt binder used in the production of cold mix asphalt since the last compliance determination period; and

(4) Amount of VOC solvent used in the production of cold mix asphalt, and the amount of VOC emitted since the last compliance determination period.

Records may include: delivery tickets, manufacturer’s data, material safety data sheets (MSDS), and other documents necessary to verify the type and amount used. Test results of ASTM tests for asphalt cutback and asphalt emulsion may be used to document volatilization.

(b) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.2.4 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.2.2 shall be submitted no later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee’s obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by the “authorized individual” as defined by 326 IAC 2-1.1-1(1).
SECTION E.1 NSPS REQUIREMENTS

Emissions Unit Description: Hot-mix Asphalt Plant

(a) One (1) asphalt counterflow drum mix dryer, with maximum capable of 350 tons per hour of processing raw material including blast furnace slag, steel slag, and asbestos-free recycled asphalt shingles in the aggregate mix, approved for construction in 2012, identified as ES-1, and dryer burner with a maximum heat input of 130 million (MM) British thermal units (Btu) per hour, using natural gas as a primary fuel and waste oil and No. 2 distillate fuel oil as secondary fuels, and is controlled with a pulse jet baghouse CD-1 for particulate control, and exhausting at one (1) stack (ID No. EP-1). This asphalt plant uses blast furnace and steel slag, and recycle asbestos free shingles in its aggregate mix;

(b) One (1) 30,000-gallon liquid asphalt storage tank, identified as AST-1;

(c) One (1) 20,000-gallon liquid asphalt storage tank, identified as AST-2;

(d) Two (2) 10,000-gallon used oil storage tanks, identified as AST-3 and AST-4;

(e) One (1) cold feed system, with conveyors and screen, identified as CF-1, consisting of eight (8) aggregate feed bins, capacity 30 tons each;

(f) One (1) recycle feed system, with conveyors and screen, identified as RF-1, and consisting of three (3) recycle feed bins, capacity 20 tons each;

(g) One (1) 100-ton surge bin, identified as SB-1;

(h) Aggregate storage piles, including Blast furnace and/or electric arc steel slag storage piles and Supplier certified asbestos-free factory seconds and/or post consumer waste shingles storage piles.

Under 40 CFR 60, Subpart I, the above units [items (a)-(h)] are considered affected source.

The following is a list of Insignificant activities:

(g) Fuel-oil fired combustion sources with heat input equal to or less than two million (2,000,000) Btu per hour, and firing fuel containing less than five-tenths percent (0.5%) sulfur content by weight;

One (1) number 2 distillate fuel oil-fired hot oil heater, approved for construction in 2012, with maximum heat input capacity of 2.0 million (MM) British thermal units (Btu) per hour;

Under 40 CFR 60, Subpart I, the above unit is considered affected source.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

E.1.1 General Provisions Relating to NSPS [326 IAC 12-1] [40 CFR 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, except as otherwise specified in 40 CFR 60, Subpart I.
(b) Pursuant to 40 CFR 60.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 New Source Performance Standards (NSPS) for Hot-mix Asphalt Facilities [40 CFR Part 60, Subpart I] [326 IAC 12]
The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart I (included as Attachment B of this permit), which are incorporated by reference as 326 IAC 12, except as otherwise specified in 40 CFR Part 60, Subpart I:

(a) 40 CFR 60.90
(b) 40 CFR 60.91
(c) 40 CFR 60.92
(d) 40 CFR 60.93

E.1.3 Testing Requirements [326 IAC 2-8-5(a)(1), (4)] [326 IAC 2-1.1-11]
The Permittee shall perform the stack testing required under NSPS 40 CFR 60, Subpart I, utilizing methods as approved by the Commissioner to document compliance with Condition E.1.2. These tests shall be repeated at least once every five (5) years from the date of the last valid compliance demonstration. Testing shall be conducted in accordance with Section C - Performance Testing.
SECTION E.2 NSPS REQUIREMENTS

Emissions Unit Description: Recycled Asphalt Pavement (RAP) Crushing & Screening Operation

(i) One (1) 173 horsepower, diesel fuel-fired portable crusher and screen for processing reclaimed asphalt pavement (RAP), identified as CS-1, approved for construction in 2012, with a maximum throughput capacity of 250 tons of RAP per hour.

Under 40 CFR 60, Subpart OOO, this above unit is considered an affected facility.

Under 40 CFR 1068.30, General Compliance Provisions for Highway, Stationary, and Nonroad Programs-Definitions, this unit is considered a nonroad engine.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

E.2.1 General Provisions Relating to NSPS [326 IAC 12-1] [40 CFR 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, except as otherwise specified in 40 CFR 60, Subpart OOO.

(b) Pursuant to 40 CFR 60.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 NSPS Subpart OOO Requirements - Standards of Performance for Nonmetallic Mineral Processing Plants [40 CFR Part 60, Subpart OOO] [326 IAC 12-1]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart OOO (included as Attachment C of this permit), which are incorporated by reference as 326 IAC 12, except as otherwise specified in 40 CFR Part 60, Subpart OOO:

(a) 40 CFR 60.670(a), (d), (e), and (f)
(b) 40 CFR 60.671
(c) 40 CFR 60.672(b), (d), and (e)
(d) 40 CFR 60.673
(e) 40 CFR 60.674(b)
(f) 40 CFR 60.675(a), (c)(1)(i), (ii), (iii), (c)(3), (d), (e), (g), and (i)
(g) 40 CFR 60.676(a), (b)(1), (f), (h), (i), (j), and (k)
(h) Table 1 and Table 3
E.2.3 Testing Requirements [40 CFR Part 60, Subpart OOO] [326 IAC 12-1] [326 IAC 2-8-5(a)(1),(4)]
[326 IAC 2-1.1-11]

In order to demonstrate compliance with Condition E.2.2, the Permittee shall perform testing for fugitive emissions from affected facilities without water sprays, as required under NSPS 40 CFR 60, Subpart OOO, not later than five (5) years from the most recent valid compliance demonstration, utilizing methods approved by the Commissioner. Testing shall only be performed if the company has not previously performed testing for the same crusher at one of their other Indiana facilities. This test shall be repeated at least once every five (5) years from the date of this valid compliance demonstration. Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

Note: Pursuant to §60.674(b)(1), affected facilities controlled by water carryover from upstream water sprays that are inspected according to the requirements in §60.674(b) and §60.676(b) are exempt from this 5-year repeat testing requirement.
SECTION E.3 NESHAP REQUIREMENTS

Emissions Unit Description: Generator

(j) One (1) genset generator, manufactured in 2002, and identified as ES-2, with maximum heat input capacity of 1,971 Horsepower (HP) per hour, using diesel fuel, and exhausting at one (1) stack (ID No. EP-2).

Under 40 CFR 63, Subpart ZZZZ, this unit is considered an affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAPs) Requirements [326 IAC 2-8-4(1)]

E.3.1 General Provisions Relating to NESHAP [40 CFR Part 63, Subpart A] [326 IAC 20-1]

Pursuant to 40 CFR 63, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions for generator, ES-2, which are incorporated by reference as 326 IAC 20-1, except as otherwise specified in 40 CFR 63, Subpart ZZZZ.

E.3.2 NESHAP for Stationary Reciprocating Internal Combustion Engines [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

(a) The existing Genset generator, ES-2 is subject to the requirements of the 40 CFR Part 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary reciprocating internal combustion engine (RICE), which are incorporated by reference as 326 IAC 20-82, except as otherwise specified in 40 CFR Part 63, Subpart ZZZZ (included as Attachment D of this permit) as follows:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(iii) and (iv)
(4) 40 CFR 63.6595(a)(1), (b), and (c)
(5) 40 CFR 63.6603 (a)
(6) 40 CFR 63.6604
(7) 40 CFR 63.6605
(8) 40 CFR 63.6612
(9) 40 CFR 63.6615
(10) 40 CFR 63.6620
(11) 40 CFR 63.6625(g) and (h)
(12) 40 CFR 63.6630
(13) 40 CFR 63.6635
(14) 40 CFR 63.6640(a), (b), and (e)
(15) 40 CFR 63.6645(a)(2), (g), and (h)
(16) 40 CFR 63.6650
(17) 40 CFR 63.6655
(18) 40 CFR 63.6660
(19) 40 CFR 63.6665
(20) 40 CFR 63.6670
(21) 40 CFR 63.6675
(22) Table 2b
(23) Table 2d (item 3)
(24) Table 3 (item 4)
(25) Table 4 (items 1 and 3)
(26) Table 5 (items 1, 2, 3, 4, 5, and 6)
Table 6 (items 3, 10, and 11)
Table 7 (item 1)
Table 8

E.3.3 Testing Requirements [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

The Permittee shall perform the testing required under NESHAP 40 CFR 63, Subpart ZZZZ, utilizing methods as approved by the Commissioner to document compliance with Condition E.3.2. These tests shall be repeated after every 8,760 hours of operation or at least once every three (3) years from the date of the last valid compliance demonstration, whichever comes first. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C - Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition.
SECTION E.4 NSPS & NESHAP REQUIREMENTS

Emissions Unit Description [326 IAC 2-8-4(10)]: Recycled Asphalt Pavement (RAP) Crushing & Screening Operation

(i) One (1) 173 horsepower, diesel fuel-fired portable crusher and screener for processing reclaimed asphalt pavement (RAP), identified as CS-1, approved for construction in 2012, with a maximum throughput capacity of 250 tons of RAP per hour.

Under 40 CFR 60, Subpart OOO, this above unit is considered an affected facility.

Under 40 CFR 1068.30, General Compliance Provisions for Highway, Stationary, and Nonroad Programs - Definitions, this unit is considered a nonroad engine.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAPs) Requirements [326 IAC 2-8-4(1)]

In order to render the requirements of the Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (40 CFR Part 60, Subpart III), which are incorporated by reference as 326 IAC 12, and the National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR 63, Subpart ZZZZ), which are incorporated by reference as 326 IAC 20-82, not applicable, and to ensure the diesel fuel-fired portable RAP crusher and screener is a nonroad engine, as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), the Permittee shall comply with the following:

(a) The diesel fuel-fired portable RAP crusher and screener shall remain at a location for a period not to exceed twelve (12) consecutive months.

(b) Any diesel fuel-fired portable RAP crusher and screener that replaces a diesel fuel-fired portable RAP crusher and screener at a location and that is intended to perform the same or similar function as the diesel fuel-fired portable RAP crusher and screener replaced will be included in calculating the consecutive time period.

(c) For the purposes of this condition, and pursuant to 40 CFR 1069.30 Nonroad Engine (2)(iii), a location is any single site at a building, structure, facility, or installation.

Compliance with these limits shall render the requirements of the Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (40 CFR Part 60, Subpart III) and the National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR 63, Subpart ZZZZ) not applicable.

E.4.2 Record Keeping Requirements

(a) To document the compliance status with Condition E.4.1(a), the Permittee shall maintain records of the dates of installation and removal of the diesel fuel-fired portable RAP crusher and screener as the unit is installed and removed.
(b) To document the compliance status with Condition E.4.1(b), the Permittee shall maintain records of the make, model, horsepower rating, manufacture date, and model year of each diesel fuel-fired portable RAP crusher and screener brought onto the site.

(c) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required to be maintained by this condition.

E.4.3 Reporting Requirements

A quarterly summary of the information to document compliance status with Conditions E.4.1(a) and E.4.1(b), shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by the "authorized individual" as defined by 326 IAC 2-1.1-1(1).
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FEDERALLY ENFORCEABLE STATE OPERATING PERMIT (FESOP)
CERTIFICATION

Source Name: Milestone Contractors, L.P.
Initial Source Address: 235 U.S. Highway 24, Kentland, Indiana 47951
FESOP Permit No.: F 111-31236-05365

<table>
<thead>
<tr>
<th>This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please check what document is being certified:</td>
</tr>
<tr>
<td>□ Annual Compliance Certification Letter</td>
</tr>
<tr>
<td>□ Test Result (specify)___</td>
</tr>
<tr>
<td>□ Report (specify)___</td>
</tr>
<tr>
<td>□ Notification (specify)__</td>
</tr>
<tr>
<td>□ Affidavit (specify)___</td>
</tr>
<tr>
<td>□ Other (specify)__</td>
</tr>
</tbody>
</table>

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

<table>
<thead>
<tr>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name:</td>
</tr>
<tr>
<td>Title/Position:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
</tbody>
</table>
This is an emergency as defined in 326 IAC 2-7-1(12)

- The Permittee must notify the Office of Air Quality (OAQ), within four (4) business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
- The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:
If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
</tr>
<tr>
<td>Describe:</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
</tr>
<tr>
<td>If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:</td>
</tr>
</tbody>
</table>

Form Completed by: __________________________
Title / Position: __________________________
Date: __________________________
Phone: __________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FESOP Quarterly Report

Source Name: Milestone Contractors, L.P.
Initial Source Address: 235 U.S. Highway 24, Kentland, Indiana 47951
FESOP Permit No.: F 111-31236-05365
Facility: Dryer/Mixer
Parameter: Hot mix asphalt production
Limit: The amount of hot mix asphalt production shall not exceed 600,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

YEAR: ______________________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
</tr>
<tr>
<td>Month 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- [] No deviation occurred in this quarter.
- [] Deviation/s occurred in this quarter.
 Deviation has been reported on: ____________________________

Submitted by: ________________________________
Title / Position: ________________________________
Signature: ________________________________
Date: ________________________________
Phone: ________________________________
Source Name: Milestone Contractors, L.P.
Initial Source Address: 235 U.S. Highway 24, Kentland, Indiana 47951
FESOP Permit No.: F 111-31236-05365
Facility: Dryer/Mixer Burner and Generator
Parameter: Fuel & Slag Usage / SO2, NOx, HCl and CO2e emissions

Emission Limits:

- Sulfur dioxide (SO2) emissions shall not exceed 72.06 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.12(a).
- Nitrogen oxides (NOx) emissions shall not exceed 96.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.12(b).
- Hydrogen Chloride (HCl) emissions shall not exceed 7.20 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.12(c).
- CO2 equivalent emissions (CO2e) emissions shall not exceed 31,319.93 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.12(d).

Fuel & Slag Limits: When combusting only one type of fuel per twelve (12) consecutive month period in the dryer/mixer burner, and generator in conjunction with the use of slag in the aggregate mix, fuel and slag usage shall not exceed the following:

<table>
<thead>
<tr>
<th>Fuel Type (Units)</th>
<th>Fuel Usage Limit (per 12 consecutive month period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer/Mixer Burner</td>
<td></td>
</tr>
<tr>
<td>Natural Gas (million cubic feet)</td>
<td>518.1</td>
</tr>
<tr>
<td>No. 2 Distillate Fuel Oil (gallons)</td>
<td>1,552,067</td>
</tr>
<tr>
<td>Waste Oil (gallons)</td>
<td>1,090,220</td>
</tr>
<tr>
<td>diesel fuel oil in generator (gallons)</td>
<td>201,372</td>
</tr>
<tr>
<td>Blast Furnace (tons)</td>
<td>50,000</td>
</tr>
</tbody>
</table>

Facility: Cold-mix Asphalt Production
Parameter: Binder Usage / VOC Emissions

Emission Limits: VOC emissions from the sum of the binders shall not exceed 59.62 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Binder Usage Limit (per 12 consecutive month period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>63.48</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>86.15</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>241.22</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>129.97</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>2,412.16</td>
</tr>
</tbody>
</table>
FESOP Quarterly Report - Fuel & Slag Usage / SO2, NOx, HCl, CO2e emissions

QUARTER: _______________ **YEAR:** _______________

<table>
<thead>
<tr>
<th>Month</th>
<th>Fuel Types / Slag (units)</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
<th>Equation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Usage This Month</td>
<td>Usage Previous 11 Months</td>
<td>Usage 12 Month Total</td>
<td>Sulfur Dioxide (SO2) Emissions (tons per 12 months)</td>
</tr>
<tr>
<td>Month 1</td>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel Fuel Oil (gallons) in Genset Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 2</td>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel Fuel Oil (gallons) in Genset Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 3</td>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel Fuel Oil (gallons) in Genset Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this reporting period. Submitted by: _________________________________ Date: ______________________

☐ Deviation/s occurred in this reporting period. Title / Position: ________________________________ Phone: _____________________

Deviation has been reported on: _________________ Signature: ____________________________________
FESOP Quarterly Report - Binder Usage / VOC Emissions

QUARTER: _______________ **YEAR:** _______________

<table>
<thead>
<tr>
<th>Month</th>
<th>Binder/Emulsion Types (tons)</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
<th>Equation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Usage This Month</td>
<td>Usage Previous 11 Months</td>
<td>Usage 12 Month Total</td>
<td>VOC Emissions (tons per 12 months)</td>
</tr>
<tr>
<td>Month 1</td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 2</td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 3</td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No deviation occurred in this reporting period.
- Deviation/s occurred in this reporting period.

Submitted by: ___________________________
Date: ___________________________
Title / Position: ___________________________
Phone: ___________________________
Signature: ___________________________

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.0</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Indiana Department of Environmental Management
Office of Air Quality
Compliance and Enforcement Branch

FESOP Quarterly Report

Source Name: Milestone Contractors, L.P.
Initial Source Address: 235 U.S. Highway 24, Kentland, Indiana 47951
FESOP Permit No.: F 111-31236-05365

Facility: Diesel Fuel-Fired Portable RAP Crusher and Screener, identified as CS-1
Limit: The diesel fuel-fired portable RAP crusher and screener shall remain at a location for a period not to exceed twelve (12) consecutive months.

Manufacture Date: _______________ Installation Date: _______________
Make: _______________ Removal Date: _______________
Model: _______________ Model Year: _______________
Horsepower Rating: _______________ MMBtu/hr Rating: _______________

Quarter: _______________ Year: _______________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 - Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Days Onsite This Month</td>
<td>Number of Days Onsite Previous 11 Months</td>
<td>12 Month Total Number of Days Onsite</td>
</tr>
<tr>
<td>Month 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Submitted by: ___
Title / Position: ___
Signature: ___
Date: ___
Phone: ___
This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by:______________________________
Title / Position:______________________________
Date:__
Phone:_______________________________________
Affidavit of Construction

I, ____________________________, being duly sworn upon my oath, depose and say:

1. I live in ____________________________ County, Indiana and being of sound mind and over twenty-one (21) years of age, I am competent to give this affidavit.

2. I hold the position of ____________________________ for ____________________________. (Title) (Company Name)

3. By virtue of my position with ____________________________, I have personal knowledge of the representations contained in this affidavit and am authorized to make these representations on behalf of ____________________________. (Company Name)

4. I hereby certify that Milestone Contractors, L.P. 235 U.S. Highway 24, Kentland, Indiana 47951, completed construction of the drum hot-mix asphalt plant and cold mix operation on ____________________________ in conformity with the requirements and intent of the construction permit application received by the Office of Air Quality on December 8, 2011 and as permitted pursuant to New Source Construction Permit and Federally Enforceable State Operating Permit No. F 111-31236-05365, Plant ID No.111-05365 issued on ____________________________.

Further Affiant said not.

I affirm under penalties of perjury that the representations contained in this affidavit are true, to the best of my information and belief.

Signature ____________________________

Date ____________________________

STATE OF INDIANA))SS

COUNTY OF ____________________________)

Subscribed and sworn to me, a notary public in and for ____________________________ County and State of Indiana on this ____________________________ day of ____________________________, 20 ______. My Commission expires: ____________________________.

Signature ____________________________

Name ____________________________ (typed or printed)
New Source Construction and
Federally Enforceable State Operating Permit
OFFICE OF AIR QUALITY

Milestone Contractors, L.P.
Portable

Attachment A

HOT-MIX ASPHALT CONCRETE PLANT
FUGITIVE PARTICULATE MATTER EMISSIONS
CONTROL PLAN

FESOP No. F111-31236-05365
1. **Fugitive particulate matter emissions from paved roads, unpaved roads, and parking lots shall be controlled by one or more of the following methods:**

 (a) **Paved roads and parking lots:**
 (1) power brooming while wet either from rain or application of water on an as needed basis.

 (b) **Unpaved roads and parking lots:**
 (1) paving with asphalt;
 (2) treating with emulsified asphalt on an as needed basis;
 (3) treating with water on an as needed basis;
 (4) double chip and seal the road surface and maintained on an as needed basis.

2. **Fugitive particulate matter emissions from aggregate stockpiles shall be controlled by one or more of the following methods on an as needed basis:**

 (a) maintaining minimum size and number of stock piles of aggregate;
 (b) treating around the stockpile area with emulsified asphalt;
 (c) treating around the stockpile area with water;
 (d) treating the stockpiles with water.

3. **Fugitive particulate matter emissions from outdoor conveying of aggregates shall be controlled by the following method on an as needed basis:**

 (a) applying water at the feed and the intermediate points.

4. **Fugitive particulate matter emissions from the transfer of aggregates shall be controlled by one of the following methods:**

 (a) minimize the vehicular distance between transfer points;
 (b) enclose the transfer points;
 (c) apply water on transfer points on an as needed basis.

5. **Fugitive particulate matter emissions from transportation of aggregate by truck, front end loader, etc. shall be controlled by one of the following methods:**

 (a) tarping the aggregate hauling vehicles;
 (b) maintain vehicle bodies in a condition to prevent leakage;
 (c) spray the aggregates with water;
 (d) maintain a 10 MPH speed limit in the yard.

6. **Fugitive particulate matter emissions from the loading and unloading of aggregate shall be controlled by one of the following methods:**

 (a) reduce free fall distance to a minimum;
(b) reduce the rate of discharge of the aggregate;
(c) spray the aggregate with water on an as needed basis.

7. Fugitive particulate matter (dust) emissions from material handling operations such as crushing, grinding, screening, and mixing shall be controlled by one or more the following measures:

(a) wet suppression.
(b) enclosure of emission source with venting of emissions to a fabric filter.

A copy of the (manufacturers) specification for the particulate matter collection system equipment (i.e. fabric filter, wet suppression system) used as a fugitive particulate matter emission control measure shall be appended to the Fugitive Dust Control Plan.

DEFINITIONS:
An “as-needed basis” means the frequency or quantity of application necessary to minimize visible particulate matter emissions.

REFERENCE:
The Indiana Administrative Code, Title 326 Air Pollution Control Board, Article 6. Particulate Rules, weblink: http://www.in.gov/legislative/iac/T03260/A00060.PDF. Fugitive Particulate Matter Emission Limitations.
New Source Construction and
Federally Enforceable State Operating Permit
OFFICE OF AIR QUALITY

Milestone Contractors, L.P.
Portable

Attachment B

Title 40: Protection of Environment

PART 60—NEW SOURCE PERFORMANCE STANDARDS

SUBPART I - STANDARDS OF PERFORMANCE
FOR HOT MIX ASPHALT FACILITIES

FESOP No. F111-31236-05365
§ 60.90 Applicability and designation of affected facility.
(a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following: dryers; systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler, systems for mixing hot mix asphalt; and the loading, transfer, and storage systems associated with emission control systems.
(b) Any facility under paragraph (a) of this section that commences construction or modification after June 11, 1973, is subject to the requirements of this subpart.

§ 60.91 Definitions.
As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.
(a) **Hot mix asphalt facility** means any facility, as described in §60.90, used to manufacture hot mix asphalt by heating and drying and mixing with asphalt cements.

[51 FR 12325, Apr. 10, 1986]

§ 60.92 Standard for particulate matter.
(a) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall discharge or cause the discharge into the atmosphere from any affected facility any gases which:
(1) Contain particulate matter in excess of 90 mg/dscm (four hundredths (0.04) gr/dscf).
(2) Exhibit 20 percent opacity, or greater.

[39 FR 9314, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]

§ 60.93 Test methods and procedures.
(a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).
(b) The owner or operator shall determine compliance with the particulate matter standards in §60.92 as follows:
(1) Method 5 shall be used to determine the particulate matter concentration. The sampling time and sample volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf).
(2) Method 9 and the procedures in §60.11 shall be used to determine opacity.

[54 FR 6667, Feb. 14, 1989]

Reference
http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=875648a88dd2168ac2096f026e3e4c98&rgn=div6&view=text&node=40:6.0.1.1.20&idno=40
New Source Construction and
Federally Enforceable State Operating Permit
OFFICE OF AIR QUALITY

Milestone Contractors, L.P.
Portable

Attachment C

Title 40: Protection of Environment
PART 60—NEW SOURCE PERFORMANCE STANDARDS
Subpart OOO - STANDARDS OF PERFORMANCE
FOR NONMETALLIC MINERAL PROCESSING PLANTS

FESOP No. F111-31236-05365
§ 60.670 Applicability and designation of affected facility.

(a) (1) Except as provided in paragraphs (a)(2), (b), (c), and (d) of this section, the provisions of this subpart are applicable to the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station. Also, crushers and grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in recycled asphalt pavement and subsequent affected facilities up to, but not including, the first storage silo or bin are subject to the provisions of this subpart.

(2) The provisions of this subpart do not apply to the following operations: All facilities located in underground mines; plants without crushers or grinding mills above ground; and wet material processing operations (as defined in §60.671).

(b) An affected facility that is subject to the provisions of subparts F or I of this part or that follows in the plant process any facility subject to the provisions of subparts F or I of this part is not subject to the provisions of this subpart.

(c) Facilities at the following plants are not subject to the provisions of this subpart:

(1) Fixed sand and gravel plants and crushed stone plants with capacities, as defined in §60.671, of 23 megagrams per hour (25 tons per hour) or less;

(2) Portable sand and gravel plants and crushed stone plants with capacities, as defined in §60.671, of 136 megagrams per hour (150 tons per hour) or less; and

(3) Common clay plants and pumice plants with capacities, as defined in §60.671, of 9 megagrams per hour (10 tons per hour) or less.

(d) (1) When an existing facility is replaced by a piece of equipment of equal or smaller size, as defined in §60.671, having the same function as the existing facility, and there is no increase in the amount of emissions, the new facility is exempt from the provisions of §§60.672, 60.674, and 60.675 except as provided for in paragraph (d)(3) of this section.

(2) An owner or operator complying with paragraph (d)(1) of this section shall submit the information required in §60.676(a).

(3) An owner or operator replacing all existing facilities in a production line with new facilities does not qualify for the exemption described in paragraph (d)(1) of this section and must comply with the provisions of §§60.672, 60.674 and 60.675.

(e) An affected facility under paragraph (a) of this section that commences construction, modification, or reconstruction after August 31, 1983, is subject to the requirements of this part.

(f) Table 1 of this subpart specifies the provisions of subpart A of this part 60 that do not apply to owners and operators of affected facilities subject to this subpart or that apply with certain exceptions.
§ 60.671 Definitions.

All terms used in this subpart, but not specifically defined in this section, shall have the meaning given them in the Act and in subpart A of this part.

Bagging operation means the mechanical process by which bags are filled with nonmetallic minerals.

Belt conveyor means a conveying device that transports material from one location to another by means of an endless belt that is carried on a series of idlers and routed around a pulley at each end.

Bucket elevator means a conveying device of nonmetallic minerals consisting of a head and foot assembly which supports and drives an endless single or double strand chain or belt to which buckets are attached.

Building means any frame structure with a roof.

Capacity means the cumulative rated capacity of all initial crushers that are part of the plant.

Capture system means the equipment (including enclosures, hoods, ducts, fans, dampers, etc.) used to capture and transport particulate matter generated by one or more affected facilities to a control device.

Control device means the air pollution control equipment used to reduce particulate matter emissions released to the atmosphere from one or more affected facilities at a nonmetallic mineral processing plant.

Conveying system means a device for transporting materials from one piece of equipment or location to another location within a plant. Conveying systems include but are not limited to the following: Feeders, belt conveyors, bucket elevators and pneumatic systems.

Crush or Crushing means to reduce the size of nonmetallic mineral material by means of physical impaction of the crusher or grinding mill upon the material.

Crusher means a machine used to crush any nonmetallic minerals, and includes, but is not limited to, the following types: Jaw, gyratory, cone, roll, rod mill, hammermill, and impactor.

Enclosed truck or railcar loading station means that portion of a nonmetallic mineral processing plant where nonmetallic minerals are loaded by an enclosed conveying system into enclosed trucks or railcars.

Fixed plant means any nonmetallic mineral processing plant at which the processing equipment specified in §60.670(a) is attached by a cable, chain, turnbuckle, bolt or other means (except electrical connections) to any anchor, slab, or structure including bedrock.

Fugitive emission means particulate matter that is not collected by a capture system and is released to the atmosphere at the point of generation.

Grinding mill means a machine used for the wet or dry fine crushing of any nonmetallic mineral. Grinding mills include, but are not limited to, the following types: Hammer, roller, rod, pebble and ball, and fluid energy. The grinding mill includes the air conveying system, air separator, or air classifier, where such systems are used.

Initial crusher means any crusher into which nonmetallic minerals can be fed without prior crushing in the plant.
Nonmetallic mineral means any of the following minerals or any mixture of which the majority is any of the following minerals:

1. Crushed and Broken Stone, including Limestone, Dolomite, Granite, Traprock, Sandstone, Quartz, Quartzite, Marl, Marble, Slate, Shale, Oil Shale, and Shell.
2. Sand and Gravel.
3. Clay including Kaolin, Fireclay, Bentonite, Fuller's Earth, Ball Clay, and Common Clay.
4. Rock Salt.
5. Gypsum (natural or synthetic).
6. Sodium Compounds, including Sodium Carbonate, Sodium Chloride, and Sodium Sulfate.
7. Pumice.
8. Gilsonite.
10. Boron, including Borax, Kernite, and Colemanite.
12. Fluorospar.
13. Feldspar.
15. Perlite.
16. Vermiculite.
17. Mica.
18. Kyanite, including Andalusite, Sillimanite, Topaz, and Dumortierite.

Nonmetallic mineral processing plant means any combination of equipment that is used to crush or grind any nonmetallic mineral wherever located, including lime plants, power plants, steel mills, asphalt concrete plants, portland cement plants, or any other facility processing nonmetallic minerals except as provided in §60.670 (b) and (c).

Portable plant means any nonmetallic mineral processing plant that is mounted on any chassis or skids and may be moved by the application of a lifting or pulling force. In addition, there shall be no cable, chain, turnbuckle, bolt or other means (except electrical connections) by which any piece of equipment is attached or clamped to any anchor, slab, or structure, including bedrock that must be removed prior to the application of a lifting or pulling force for the purpose of transporting the unit.

Production line means all affected facilities (crushers, grinding mills, screening operations, bucket elevators, belt conveyors, bagging operations, storage bins, and enclosed truck and railcar loading stations) which are directly connected or are connected together by a conveying system.

Saturated material means, for purposes of this subpart, mineral material with sufficient surface moisture such that particulate matter emissions are not generated from processing of the material through screening operations, bucket elevators, and belt conveyors. Material that is wetted solely by wet suppression systems is not considered to be "saturated" for purposes of this definition.

Screening operation means a device for separating material according to size by passing undersize material through one or more mesh surfaces (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders associated with truck dumping and static (non-
moving) grizzlies used anywhere in the nonmetallic mineral processing plant are not considered to be screening operations.

Seasonal shut down means shut down of an affected facility for a period of at least 45 consecutive days due to weather or seasonal market conditions.

Size means the rated capacity in tons per hour of a crusher, grinding mill, bucket elevator, bagging operation, or enclosed truck or railcar loading station; the total surface area of the top screen of a screening operation; the width of a conveyor belt; and the rated capacity in tons of a storage bin.

Stack emission means the particulate matter that is released to the atmosphere from a capture system.

Storage bin means a facility for storage (including surge bins) of nonmetallic minerals prior to further processing or loading.

Transfer point means a point in a conveying operation where the nonmetallic mineral is transferred to or from a belt conveyor except where the nonmetallic mineral is being transferred to a stockpile.

Truck dumping means the unloading of nonmetallic minerals from movable vehicles designed to transport nonmetallic minerals from one location to another. Movable vehicles include but are not limited to: Trucks, front end loaders, skip hoists, and railcars.

Vent means an opening through which there is mechanically induced air flow for the purpose of exhausting from a building air carrying particulate matter emissions from one or more affected facilities.

Wet material processing operation(s) means any of the following:

(1) Wet screening operations (as defined in this section) and subsequent screening operations, bucket elevators and belt conveyors in the production line that process saturated materials (as defined in this section) up to the first crusher, grinding mill or storage bin in the production line; or

(2) Screening operations, bucket elevators, and belt conveyors in the production line downstream of wet mining operations (as defined in this section) that process saturated materials (as defined in this section) up to the first crusher, grinding mill or storage bin in the production line.

Wet mining operation means a mining or dredging operation designed and operated to extract any nonmetallic mineral regulated under this subpart from deposits existing at or below the water table, where the nonmetallic mineral is saturated with water.

Wet screening operation means a screening operation at a nonmetallic mineral processing plant which removes unwanted material or which separates marketable fines from the product by a washing process which is designed and operated at all times such that the product is saturated with water.

§ 60.672 Standard for particulate matter (PM).

(a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup as required under §60.8. The requirements in Table 2 of this subpart apply for affected facilities with capture systems used to capture and transport particulate matter to a control device.

(b) Affected facilities must meet the fugitive emission limits and compliance requirements in Table 3 of this subpart within 60 days after achieving the maximum production rate at which the affected
facility will be operated, but not later than 180 days after initial startup as required under §60.11. The requirements in Table 3 of this subpart apply for fugitive emissions from affected facilities without capture systems and for fugitive emissions escaping capture systems.

(c) [Reserved]

(d) Truck dumping of nonmetallic minerals into any screening operation, feed hopper, or crusher is exempt from the requirements of this section.

(e) If any transfer point on a conveyor belt or any other affected facility is enclosed in a building, then each enclosed affected facility must comply with the emission limits in paragraphs (a) and (b) of this section, or the building enclosing the affected facility or facilities must comply with the following emission limits:

(1) Fugitive emissions from the building openings (except for vents as defined in §60.671) must not exceed 7 percent opacity; and

(2) Vents (as defined in §60.671) in the building must meet the applicable stack emission limits and compliance requirements in Table 2 of this subpart.

(f) Any baghouse that controls emissions from only an individual, enclosed storage bin is exempt from the applicable stack PM concentration limit (and associated performance testing) in Table 2 of this subpart but must meet the applicable stack opacity limit and compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does not apply for multiple storage bins with combined stack emissions.

§ 60.673 Reconstruction.

(a) The cost of replacement of ore-contact surfaces on processing equipment shall not be considered in calculating either the “fixed capital cost of the new components” or the “fixed capital cost that would be required to construct a comparable new facility” under §60.15. Ore-contact surfaces are crushing surfaces; screen meshes, bars, and plates; conveyor belts; and elevator buckets.

(b) Under §60.15, the “fixed capital cost of the new components” includes the fixed capital cost of all depreciable components (except components specified in paragraph (a) of this section) which are or will be replaced pursuant to all continuous programs of component replacement commenced within any 2-year period following August 31, 1983.

§ 60.674 Monitoring of operations.

(a) The owner or operator of any affected facility subject to the provisions of this subpart which uses a wet scrubber to control emissions shall install, calibrate, maintain, and operate the following monitoring devices:

(1) A device for the continuous measurement of the pressure loss of the gas stream through the scrubber. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals ±1 inch water gauge pressure and must be calibrated on an annual basis in accordance with manufacturer's instructions.

(2) A device for the continuous measurement of the scrubbing liquid flow rate to the wet scrubber. The monitoring device must be certified by the manufacturer to be accurate within ±5 percent of design scrubbing liquid flow rate and must be calibrated on an annual basis in accordance with manufacturer's instructions.

(b) The owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses wet suppression to control
emissions from the affected facility must perform monthly periodic inspections to check that water is flowing to discharge spray nozzles in the wet suppression system. The owner or operator must initiate corrective action within 24 hours and complete corrective action as expeditiously as practical if the owner or operator finds that water is not flowing properly during an inspection of the water spray nozzles. The owner or operator must record each inspection of the water spray nozzles, including the date of each inspection and any corrective actions taken, in the logbook required under §60.676(b).

(1) If an affected facility relies on water carryover from upstream water sprays to control fugitive emissions, then that affected facility is exempt from the 5-year repeat testing requirement specified in Table 3 of this subpart provided that the affected facility meets the criteria in paragraphs (b)(1)(i) and (ii) of this section:

(i) The owner or operator of the affected facility conducts periodic inspections of the upstream water spray(s) that are responsible for controlling fugitive emissions from the affected facility. These inspections are conducted according to paragraph (b) of this section and §60.676(b), and

(ii) The owner or operator of the affected facility designates which upstream water spray(s) will be periodically inspected at the time of the initial performance test required under §60.11 of this part and §60.675 of this subpart.

(2) If an affected facility that routinely uses wet suppression water sprays ceases operation of the water sprays or is using a control mechanism to reduce fugitive emissions other than water sprays during the monthly inspection (for example, water from recent rainfall), the logbook entry required under §60.676(b) must specify the control mechanism being used instead of the water sprays.

(c) Except as specified in paragraph (d) or (e) of this section, the owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses a baghouse to control emissions must conduct quarterly 30-minute visible emissions inspections using EPA Method 22 (40 CFR part 60, Appendix A–7). The Method 22 (40 CFR part 60, Appendix A–7) test shall be conducted while the baghouse is operating. The test is successful if no visible emissions are observed. If any visible emissions are observed, the owner or operator of the affected facility must initiate corrective action within 24 hours to return the baghouse to normal operation. The owner or operator must record each Method 22 (40 CFR part 60, Appendix A–7) test, including the date and any corrective actions taken, in the logbook required under §60.676(b). The owner or operator of the affected facility may establish a different baghouse-specific success level for the visible emissions test (other than no visible emissions) by conducting a PM performance test according to §60.675(b) simultaneously with a Method 22 (40 CFR part 60, Appendix A–7) to determine what constitutes normal visible emissions from that affected facility's baghouse when it is in compliance with the applicable PM concentration limit in Table 2 of this subpart. The revised visible emissions success level must be incorporated into the permit for the affected facility.

(d) As an alternative to the periodic Method 22 (40 CFR part 60, Appendix A–7) visible emissions inspections specified in paragraph (c) of this section, the owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses a baghouse to control emissions may use a bag leak detection system. The owner or operator must install, operate, and maintain the bag leak detection system according to paragraphs (d)(1) through (3) of this section.

(1) Each bag leak detection system must meet the specifications and requirements in paragraphs (d)(1)(i) through (viii) of this section.
(i) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 1 milligram per dry standard cubic meter (0.00044 grains per actual cubic foot) or less.

(ii) The bag leak detection system sensor must provide output of relative PM loadings. The owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger).

(iii) The bag leak detection system must be equipped with an alarm system that will sound when the system detects an increase in relative particulate loading over the alarm set point established according to paragraph (d)(1)(iv) of this section, and the alarm must be located such that it can be heard by the appropriate plant personnel.

(iv) In the initial adjustment of the bag leak detection system, the owner or operator must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay time.

(v) Following initial adjustment, the owner or operator shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided in paragraph (d)(1)(vi) of this section.

(vi) Once per quarter, the owner or operator may adjust the sensitivity of the bag leak detection system to account for seasonal effects, including temperature and humidity, according to the procedures identified in the site-specific monitoring plan required by paragraph (d)(2) of this section.

(vii) The owner or operator must install the bag leak detection sensor downstream of the fabric filter.

(viii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.

(2) The owner or operator of the affected facility must develop and submit to the Administrator or delegated authority for approval of a site-specific monitoring plan for each bag leak detection system. The owner or operator must operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. Each monitoring plan must describe the items in paragraphs (d)(2)(i) through (vi) of this section.

(i) Installation of the bag leak detection system;

(ii) Initial and periodic adjustment of the bag leak detection system, including how the alarm set-point will be established;

(iii) Operation of the bag leak detection system, including quality assurance procedures;

(iv) How the bag leak detection system will be maintained, including a routine maintenance schedule and spare parts inventory list;

(v) How the bag leak detection system output will be recorded and stored; and
(vi) Corrective action procedures as specified in paragraph (d)(3) of this section. In approving the site-specific monitoring plan, the Administrator or delegated authority may allow owners and operators more than 3 hours to alleviate a specific condition that causes an alarm if the owner or operator identifies in the monitoring plan this specific condition as one that could lead to an alarm, adequately explains why it is not feasible to alleviate this condition within 3 hours of the time the alarm occurs, and demonstrates that the requested time will ensure alleviation of this condition as expeditiously as practicable.

(3) For each bag leak detection system, the owner or operator must initiate procedures to determine the cause of every alarm within 1 hour of the alarm. Except as provided in paragraph (d)(2)(vi) of this section, the owner or operator must alleviate the cause of the alarm within 3 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the following:

(i) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions;

(ii) Sealing off defective bags or filter media;

(iii) Replacing defective bags or filter media or otherwise repairing the control device;

(iv) Sealing off a defective fabric filter compartment;

(v) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; or

(vi) Shutting down the process producing the PM emissions.

(e) As an alternative to the periodic Method 22 (40 CFR part 60, Appendix A–7) visible emissions inspections specified in paragraph (c) of this section, the owner or operator of any affected facility that is subject to the requirements for processed stone handling operations in the Lime Manufacturing NESHAP (40 CFR part 63, subpart AAAAA) may follow the continuous compliance requirements in row 1 items (i) through (iii) of Table 6 to Subpart AAAAA of 40 CFR part 63.

§ 60.675 Test methods and procedures.

(a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendices A–1 through A–7 of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). Acceptable alternative methods and procedures are given in paragraph (e) of this section.

(b) The owner or operator shall determine compliance with the PM standards in §60.672(a) as follows:

(1) Except as specified in paragraphs (e)(3) and (4) of this section, Method 5 of Appendix A–3 of this part or Method 17 of Appendix A–6 of this part shall be used to determine the particulate matter concentration. The sample volume shall be at least 1.70 dscm (60 dscf). For Method 5 (40 CFR part 60, Appendix A–3), if the gas stream being sampled is at ambient temperature, the sampling probe and filter may be operated without heaters. If the gas stream is above ambient temperature, the sampling probe and filter may be operated at a temperature high enough, but no higher than 121 °C (250 °F), to prevent water condensation on the filter.

(2) Method 9 of Appendix A–4 of this part and the procedures in §60.11 shall be used to determine opacity.
(c) (1) In determining compliance with the particulate matter standards in §60.672(b) or §60.672(e)(1), the owner or operator shall use Method 9 of Appendix A–4 of this part and the procedures in §60.11, with the following additions:

(i) The minimum distance between the observer and the emission source shall be 4.57 meters (15 feet).

(ii) The observer shall, when possible, select a position that minimizes interference from other fugitive emission sources (e.g., road dust). The required observer position relative to the sun (Method 9 of Appendix A–4 of this part, Section 2.1) must be followed.

(iii) For affected facilities using wet dust suppression for particulate matter control, a visible mist is sometimes generated by the spray. The water mist must not be confused with particulate matter emissions and is not to be considered a visible emission. When a water mist of this nature is present, the observation of emissions is to be made at a point in the plume where the mist is no longer visible.

(2) (i) In determining compliance with the opacity of stack emissions from any baghouse that controls emissions only from an individual enclosed storage bin under §60.672(f) of this subpart, using Method 9 (40 CFR part 60, Appendix A–4), the duration of the Method 9 (40 CFR part 60, Appendix A–4) observations shall be 1 hour (ten 6-minute averages).

(ii) The duration of the Method 9 (40 CFR part 60, Appendix A–4) observations may be reduced to the duration the affected facility operates (but not less than 30 minutes) for baghouses that control storage bins or enclosed truck or railcar loading stations that operate for less than 1 hour at a time.

(3) When determining compliance with the fugitive emissions standard for any affected facility described under §60.672(b) or §60.672(e)(1) of this subpart, the duration of the Method 9 (40 CFR part 60, Appendix A–4) observations must be 30 minutes (five 6-minute averages). Compliance with the applicable fugitive emission limits in Table 3 of this subpart must be based on the average of the five 6-minute averages.

(d) To demonstrate compliance with the fugitive emission limits for buildings specified in §60.672(e)(1), the owner or operator must complete the testing specified in paragraph (d)(1) and (2) of this section. Performance tests must be conducted while all affected facilities inside the building are operating.

(1) If the building encloses any affected facility that commences construction, modification, or reconstruction on or after April 22, 2008, the owner or operator of the affected facility must conduct an initial Method 9 (40 CFR part 60, Appendix A–4) performance test according to this section and §60.11.

(2) If the building encloses only affected facilities that commenced construction, modification, or reconstruction before April 22, 2008, and the owner or operator has previously conducted an initial Method 22 (40 CFR part 60, Appendix A–7) performance test showing zero visible emissions, then the owner or operator has demonstrated compliance with the opacity limit in §60.672(e)(1). If the owner or operator has not conducted an initial performance test for the building before April 22, 2008, then the owner or operator must conduct an initial Method 9 (40 CFR part 60, Appendix A–4) performance test according to this section and §60.11 to show compliance with the opacity limit in §60.672(e)(1).
(e) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) For the method and procedure of paragraph (c) of this section, if emissions from two or more facilities continuously interfere so that the opacity of fugitive emissions from an individual affected facility cannot be read, either of the following procedures may be used:

 (i) Use for the combined emission stream the highest fugitive opacity standard applicable to any of the individual affected facilities contributing to the emissions stream.

 (ii) Separate the emissions so that the opacity of emissions from each affected facility can be read.

(2) A single visible emission observer may conduct visible emission observations for up to three fugitive, stack, or vent emission points within a 15-second interval if the following conditions are met:

 (i) No more than three emission points may be read concurrently.

 (ii) All three emission points must be within a 70 degree viewing sector or angle in front of the observer such that the proper sun position can be maintained for all three points.

 (iii) If an opacity reading for any one of the three emission points equals or exceeds the applicable standard, then the observer must stop taking readings for the other two points and continue reading just that single point.

(3) Method 5I of Appendix A–3 of this part may be used to determine the PM concentration as an alternative to the methods specified in paragraph (b)(1) of this section. Method 5I (40 CFR part 60, Appendix A–3) may be useful for affected facilities that operate for less than 1 hour at a time such as (but not limited to) storage bins or enclosed truck or railcar loading stations.

(4) In some cases, velocities of exhaust gases from building vents may be too low to measure accurately with the type S pitot tube specified in EPA Method 2 of Appendix A–1 of this part [i.e., velocity head <1.3 mm H2O (0.05 in. H2O)] and referred to in EPA Method 5 of Appendix A–3 of this part. For these conditions, the owner or operator may determine the average gas flow rate produced by the power fans (e.g., from vendor-supplied fan curves) to the building vent. The owner or operator may calculate the average gas velocity at the building vent measurement site using Equation 1 of this section and use this average velocity in determining and maintaining isokinetic sampling rates.

\[
v_e = \frac{Q_f}{A_e} \quad (\text{Eq. 1})
\]

Where:

\(V_e \) = average building vent velocity (feet per minute);

\(Q_f \) = average fan flow rate (cubic feet per minute); and

\(A_e \) = area of building vent and measurement location (square feet).
(f) To comply with §60.676(d), the owner or operator shall record the measurements as required in §60.676(c) using the monitoring devices in §60.674 (a)(1) and (2) during each particulate matter run and shall determine the averages.

(g) For performance tests involving only Method 9 (40 CFR part 60 Appendix A–4) testing, the owner or operator may reduce the 30-day advance notification of performance test in §60.7(a)(6) and 60.8(d) to a 7-day advance notification.

(h) [Reserved]

(i) If the initial performance test date for an affected facility falls during a seasonal shut down (as defined in §60.671 of this subpart) of the affected facility, then with approval from the permitting authority, the owner or operator may postpone the initial performance test until no later than 60 calendar days after resuming operation of the affected facility.

§ 60.676 Reporting and recordkeeping.

(a) Each owner or operator seeking to comply with §60.670(d) shall submit to the Administrator the following information about the existing facility being replaced and the replacement piece of equipment.

(1) For a crusher, grinding mill, bucket elevator, bagging operation, or enclosed truck or railcar loading station:
 (i) The rated capacity in megagrams or tons per hour of the existing facility being replaced; and
 (ii) The rated capacity in tons per hour of the replacement equipment.

(2) For a screening operation:
 (i) The total surface area of the top screen of the existing screening operation being replaced; and
 (ii) The total surface area of the top screen of the replacement screening operation.

(3) For a conveyor belt:
 (i) The width of the existing belt being replaced; and
 (ii) The width of the replacement conveyor belt.

(4) For a storage bin:
 (i) The rated capacity in megagrams or tons of the existing storage bin being replaced; and
 (ii) The rated capacity in megagrams or tons of replacement storage bins.

(b) (1) Owners or operators of affected facilities (as defined in §§60.670 and 60.671) for which construction, modification, or reconstruction commenced on or after April 22, 2008, must record each periodic inspection required under §60.674(b) or (c), including dates and any corrective actions taken, in a logbook (in written or electronic format). The owner or operator must keep the logbook onsite and make hard or electronic copies (whichever is requested) of the logbook available to the Administrator upon request.
(2) For each bag leak detection system installed and operated according to §60.674(d), the owner or operator must keep the records specified in paragraphs (b)(2)(i) through (iii) of this section.

(i) Records of the bag leak detection system output;

(ii) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system settings; and

(iii) The date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and whether the cause of the alarm was alleviated within 3 hours of the alarm.

(3) The owner or operator of each affected facility demonstrating compliance according to §60.674(e) by following the requirements for processed stone handling operations in the Lime Manufacturing NESHAP (40 CFR part 63, subpart AAAAAA) must maintain records of visible emissions observations required by §63.7132(a)(3) and (b) of 40 CFR part 63, subpart AAAAA.

(c) During the initial performance test of a wet scrubber, and daily thereafter, the owner or operator shall record the measurements of both the change in pressure of the gas stream across the scrubber and the scrubbing liquid flow rate.

(d) After the initial performance test of a wet scrubber, the owner or operator shall submit semiannual reports to the Administrator of occurrences when the measurements of the scrubber pressure loss and liquid flow rate decrease by more than 30 percent from the average determined during the most recent performance test.

(e) The reports required under paragraph (d) of this section shall be postmarked within 30 days following end of the second and fourth calendar quarters.

(f) The owner or operator of any affected facility shall submit written reports of the results of all performance tests conducted to demonstrate compliance with the standards set forth in §60.672 of this subpart, including reports of opacity observations made using Method 9 (40 CFR part 60, Appendix A–4) to demonstrate compliance with §60.672(b), (e) and (f).

(g) The owner or operator of any wet material processing operation that processes saturated and subsequently processes unsaturated materials, shall submit a report of this change within 30 days following such change. At the time of such change, this screening operation, bucket elevator, or belt conveyor becomes subject to the applicable opacity limit in §60.672(b) and the emission test requirements of §60.11.

(h) The subpart A requirement under §60.7(a)(1) for notification of the date construction or reconstruction commenced is waived for affected facilities under this subpart.

(i) A notification of the actual date of initial startup of each affected facility shall be submitted to the Administrator.

(1) For a combination of affected facilities in a production line that begin actual initial startup on the same day, a single notification of startup may be submitted by the owner or operator to the Administrator. The notification shall be postmarked within 15 days after such date and shall include a description of each affected facility, equipment manufacturer, and serial number of the equipment, if available.
(2) For portable aggregate processing plants, the notification of the actual date of initial startup shall include both the home office and the current address or location of the portable plant.

(j) The requirements of this section remain in force until and unless the Agency, in delegating enforcement authority to a State under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such States. In that event, affected facilities within the State will be relieved of the obligation to comply with the reporting requirements of this section, provided that they comply with requirements established by the State.

(k) Notifications and reports required under this subpart and under subpart A of this part to demonstrate compliance with this subpart need only to be sent to the EPA Region or the State which has been delegated authority according to §60.4(b).

Table 1 to Subpart OOO—Exceptions to Applicability of Subpart A to Subpart OOO

<table>
<thead>
<tr>
<th>Subpart A reference</th>
<th>Applies to subpart OOO</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.4, Address</td>
<td>Yes</td>
<td>Except in §60.4(a) and (b) submittals need not be submitted to both the EPA Region and delegated State authority (§60.676(k)).</td>
</tr>
<tr>
<td>60.7, Notification and recordkeeping</td>
<td>Yes</td>
<td>Except in (a)(1) notification of the date construction or reconstruction commenced (§60.676(h)). Also, except in (a)(6) performance tests involving only Method 9 (40 CFR part 60, Appendix A–4) require a 7-day advance notification instead of 30 days (§60.675(g)).</td>
</tr>
<tr>
<td>60.8, Performance tests</td>
<td>Yes</td>
<td>Except in (d) performance tests involving only Method 9 (40 CFR part 60, Appendix A–4) require a 7-day advance notification instead of 30 days (§60.675(g)).</td>
</tr>
<tr>
<td>60.11, Compliance with standards and maintenance requirements</td>
<td>Yes</td>
<td>Except in (b) under certain conditions (§§60.675(c)), Method 9 (40 CFR part 60, Appendix A–4) observation is reduced from 3 hours to 30 minutes for fugitive emissions.</td>
</tr>
<tr>
<td>60.18, General control device</td>
<td>No</td>
<td>Flares will not be used to comply with the emission limits.</td>
</tr>
</tbody>
</table>

Intentionally left blank................. continued on next page.................
Table 2 to Subpart OOO—Stack Emission Limits for Affected Facilities With Capture Systems

<table>
<thead>
<tr>
<th>For * * *</th>
<th>The owner or operator must meet a PM limit of * * *</th>
<th>And the owner or operator must meet an opacity limit of * * *</th>
<th>The owner or operator must demonstrate compliance with these limits by conducting * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected facilities (as defined in §§60.670 and 60.671) that commenced construction, modification, or reconstruction after August 31, 1983 but before April 22, 2008</td>
<td>0.05 g/dscm (0.022 gr/dscf)<sup>a</sup></td>
<td>7 percent for dry control devices<sup>b</sup></td>
<td>An initial performance test according to §60.8 of this part and §60.675 of this subpart; and Monitoring of wet scrubber parameters according to §60.674(a) and §60.676(c), (d), and (e).</td>
</tr>
<tr>
<td>Affected facilities (as defined in §§60.670 and 60.671) that commence construction, modification, or reconstruction on or after April 22, 2008</td>
<td>0.032 g/dscm (0.014 gr/dscf)<sup>a</sup></td>
<td>Not applicable (except for individual enclosed storage bins) 7 percent for dry control devices on individual enclosed storage bins</td>
<td>An initial performance test according to §60.8 of this part and §60.675 of this subpart; and Monitoring of wet scrubber parameters according to §60.674(a) and §60.676(c), (d), and (e); and Monitoring of baghouses according to §60.674(c), (d), or (e) and §60.676(b).</td>
</tr>
</tbody>
</table>

^aExceptions to the PM limit apply for individual enclosed storage bins and other equipment. See §60.672(d) through (f).

^bThe stack opacity limit and associated opacity testing requirements do not apply for affected facilities using wet scrubbers.
Table 3 to Subpart OOO—Fugitive Emission Limits

<table>
<thead>
<tr>
<th>For * * *</th>
<th>The owner or operator must meet the following fugitive emissions limit for grinding mills, screening operations, bucket elevators, transfer points on belt conveyors, bagging operations, storage bins, enclosed truck or railcar loading stations or from any other affected facility (as defined in §§60.670 and 60.671)</th>
<th>The owner or operator must meet the following fugitive emissions limit for crushers at which a capture system is not used * * *</th>
<th>The owner or operator must demonstrate compliance with these limits by conducting * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected facilities (as defined in §§60.670 and 60.671) that commenced construction, modification, or reconstruction after August 31, 1983 but before April 22, 2008</td>
<td>10 percent opacity</td>
<td>15 percent opacity</td>
<td>An initial performance test according to §60.11 of this part and §60.675 of this subpart.</td>
</tr>
<tr>
<td>Affected facilities (as defined in §§60.670 and 60.671) that commence construction, modification, or reconstruction on or after April 22, 2008</td>
<td>7 percent opacity</td>
<td>12 percent opacity</td>
<td>An initial performance test according to §60.11 of this part and §60.675 of this subpart; and Periodic inspections of water sprays according to §60.674(b) and §60.676(b); and A repeat performance test according to §60.11 of this part and §60.675 of this subpart within 5 years from the previous performance test for fugitive emissions from affected facilities without water sprays. Affected facilities controlled by water carryover from upstream water sprays that are inspected according to the requirements in §60.674(b) and §60.676(b) are exempt from this 5-year repeat testing requirement.</td>
</tr>
</tbody>
</table>

Reference:
New Source Construction and Federally Enforceable State Operating Permit
OFFICE OF AIR QUALITY

Milestone Contractors, L.P.
Portable

Attachment D

Title 40: Protection of Environment

PART 63—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for
Stationary Reciprocating Internal Combustion Engines

FESOP No. F111-31236-05365
PART 63—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Source: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§ 63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§ 63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3603, Jan. 18, 2008]
§ 63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(b) Stationary RICE subject to limited requirements. (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of §63.6645(f) and the requirements of §§63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(vi) Existing residential emergency stationary RICE located at an area source of HAP emissions;

(vii) Existing commercial emergency stationary RICE located at an area source of HAP emissions; or

(viii) Existing institutional emergency stationary RICE located at an area source of HAP emissions.

(c) *Stationary RICE subject to Regulations under 40 CFR Part 60.* An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;

(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
§ 63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations and operating limitations no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations and operating limitations no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations and operating limitations no later than October 19, 2013.

(2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.

(3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
(b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.

(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.

(c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

Emission and Operating Limitations

§ 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§ 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§ 63.6602 What emission limitations must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[75 FR 51589, Aug. 20, 2010]

§ 63.6603 What emission limitations and operating limitations must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 1b and Table 2b to this subpart that apply to you.

(b) If you own or operate an existing stationary non-emergency CI RICE greater than 300 HP located at area sources in areas of Alaska not accessible by the Federal Aid Highway System (FAHS) you do not have to meet the numerical CO emission limitations specified in Table 2d to this subpart. Existing stationary non-emergency CI RICE greater than 300 HP located at area sources in areas of Alaska not accessible by the FAHS must meet the management practices that are shown for stationary non-emergency CI RICE less than or equal to 300 HP in Table 2d to this subpart.

§ 63.6604 What fuel requirements must I meet if I own or operate an existing stationary CI RICE?

If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel. Existing non-emergency CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, or at area sources in areas of Alaska not accessible by the FAHS are exempt from the requirements of this section.

[75 FR 51589, Aug. 20, 2010]

General Compliance Requirements

§ 63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations and operating limitations in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

[75 FR 9675, Mar. 3, 2010]

Testing and Initial Compliance Requirements

§ 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the
promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§ 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.
(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad (\text{Eq. 1})
\]

Where:

- \(C_i\) = concentration of CO or formaldehyde at the control device inlet,
- \(C_o\) = concentration of CO or formaldehyde at the control device outlet, and
- \(R\) = percent reduction of CO or formaldehyde emissions.

(2) You must normalize the carbon monoxide (CO) or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO\(_2\)). If pollutant concentrations are to be corrected to 15 percent oxygen and CO\(_2\) concentration is
measured in lieu of oxygen concentration measurement, a CO₂ correction factor is needed. Calculate the CO₂ correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific F₀ value for the fuel burned during the test using values obtained from Method 19, section 5.2, and the following equation:

\[F₀ = \frac{0.209 F_d}{F_c} \] \hspace{1cm} (Eq. 2)

Where:

- \(F₀ \) = Fuel factor based on the ratio of oxygen volume to the ultimate CO₂ volume produced by the fuel at zero percent excess air.
- 0.209 = Fraction of air that is oxygen, percent/100.
- \(F_d \) = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).
- \(F_c \) = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent oxygen, as follows:

\[X_{CO₂} = \frac{5.9}{F₀} \] \hspace{1cm} (Eq. 3)

Where:

- \(X_{CO₂} \) = CO₂ correction factor, percent.
- 5.9 = 20.9 percent O₂ − 15 percent O₂, the defined O₂ correction value, percent.

(iii) Calculate the NOₓ and SO₂ gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

\[C_{adj} = C_d \cdot \frac{X_{CO₂}}{%CO₂} \] \hspace{1cm} (Eq. 4)

Where:

- \(%CO₂ \) = Measured CO₂ concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.
(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be
clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

§ 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either oxygen or CO₂ at both the inlet and the outlet of the control device according to the requirements in paragraphs (a)(1) through (4) of this section.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (5) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.

(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in §63.8(c)(1) and (c)(3); and
(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in §63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.

(3) The CPMS must collect data at least once every 15 minutes (see also §63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

1. An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

2. An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

3. An existing emergency or black start stationary RICE located at an area source of HAP emissions;

4. An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

5. An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

6. An existing non-emergency, non-black start landfill or digester gas stationary RICE located at an area source of HAP emissions;

7. An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;
(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (g)(2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska not accessible by the FAHS do not have to meet the requirements of paragraph (g) of this section.

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates, and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine’s time spent at idle during startup and minimize the engine’s startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.

(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change
requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

§ 63.6630 How do I demonstrate initial compliance with the emission limitations and operating limitations?

(a) You must demonstrate initial compliance with each emission and operating limitation that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

Continuous Compliance Requirements

§ 63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§ 63.6640 How do I demonstrate continuous compliance with the emission limitations and operating limitations?
(a) You must demonstrate continuous compliance with each emission limitation and operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.

(b) You must report each instance in which you did not meet each emission limitation or operating limit in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) [Reserved]

(d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: A new or reconstructed emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

(f) Requirements for emergency stationary RICE. (1) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that was installed on or after June 12, 2006, or an existing emergency stationary RICE located at an area source of HAP emissions, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1)(i) through (iii) of this section. Any operation other than emergency operation, maintenance and testing, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1)(i) through (iii) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1)(i) through (iii) of this section, the engine will not be considered an emergency engine under this subpart and will need to meet all requirements for non-emergency engines.

(i) There is no time limit on the use of emergency stationary RICE in emergency situations.

(ii) You may operate your emergency stationary RICE for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness
testing, but a petition is not required if the owner or operator maintains records indicating that Federal, State, or local standards require maintenance and testing of emergency RICE beyond 100 hours per year.

(iii) You may operate your emergency stationary RICE up to 50 hours per year in non-emergency situations, but those 50 hours are counted towards the 100 hours per year provided for maintenance and testing. The 50 hours per year for non-emergency situations cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity; except that owners and operators may operate the emergency engine for a maximum of 15 hours per year as part of a demand response program if the regional transmission organization or equivalent balancing authority and transmission operator has determined there are emergency conditions that could lead to a potential electrical blackout, such as unusually low frequency, equipment overload, capacity or energy deficiency, or unacceptable voltage level. The engine may not be operated for more than 30 minutes prior to the time when the emergency condition is expected to occur, and the engine operation must be terminated immediately after the facility is notified that the emergency condition is no longer imminent. The 15 hours per year of demand response operation are counted as part of the 50 hours of operation per year provided for non-emergency situations. The supply of emergency power to another entity or entities pursuant to financial arrangement is not limited by this paragraph (f)(1)(iii), as long as the power provided by the financial arrangement is limited to emergency power.

(2) If you own or operate an emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that was installed prior to June 12, 2006, you must operate the engine according to the conditions described in paragraphs (f)(2)(i) through (iii) of this section. If you do not operate the engine according to the requirements in paragraphs (f)(2)(i) through (iii) of this section, the engine will not be considered an emergency engine under this subpart and will need to meet all requirements for non-emergency engines.

(i) There is no time limit on the use of emergency stationary RICE in emergency situations.

(ii) You may operate your emergency stationary RICE for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by the manufacturer, the vendor, or the insurance company associated with the engine. Required testing of such units should be minimized, but there is no time limit on the use of emergency stationary RICE in emergency situations and for routine testing and maintenance.

(iii) You may operate your emergency stationary RICE for an additional 50 hours per year in non-emergency situations. The 50 hours per year for non-emergency situations cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

Notifications, Reports, and Records

§ 63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following:

(1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.
(2) An existing stationary RICE located at an area source of HAP emissions.

(3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

(5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.

c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.

e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).

(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).
§ 63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.

(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.
(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.
(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.

(1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

(2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.

(3) Any problems or errors suspected with the meters.

§ 63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).
(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.

(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE:

(1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

(2) An existing stationary emergency RICE.

(3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) or (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engines are used for demand response operation, the owner or operator must keep records of the notification of the emergency situation, and the time the engine was operated as part of demand response.

(1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.

(2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

§ 63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

Other Requirements and Information

§ 63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§ 63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

(1) Approval of alternatives to the non-opacity emission limitations and operating limitations in §63.6600 under §63.6(g).
(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

(5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§ 63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101–549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by §63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO₂.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary internal combustion engine whose operation is limited to emergency situations and required testing and maintenance. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc. Stationary RICE used for peak shaving are not considered emergency stationary RICE. Stationary RICE used to supply power to an electric grid or that supply non-emergency power as part of a financial arrangement with another entity are not considered to be emergency engines, except as permitted under §63.6640(f). All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes “rich” glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The “lean” glycol is then recycled.
Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2, except that:

(1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

(2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated;

(3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

(4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.
Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NO\textsubscript{x}) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NO\textsubscript{x}, CO, and volatile organic compounds (VOC) into CO\textsubscript{2}, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C\textsubscript{3}H\textsubscript{8}.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.
Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOX (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4SRB stationary RICE</td>
<td>a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td></td>
<td>b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂</td>
<td></td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions and existing 4SRB stationary RICE >500 HP located at an area source of HAP emissions that operate more than 24 hours per calendar year:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or 4SRB stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and using NSCR; or 4SRB stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust</td>
<td>a. Maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. Maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.</td>
</tr>
</tbody>
</table>
2. 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or
4SRB stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O2 and not using NSCR; or
4SRB stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 2.7 ppmvd or less at 15 percent O2 and not using NSCR.

Comply with any operating limitations approved by the Administrator.

[76 FR 12867, Mar. 9, 2011]

Table 2ato Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB stationary RICE</td>
<td>a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O2. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd until June 15, 2007</td>
<td>Minimize the engine’s time spent at idle and minimize the engine’s startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.</td>
</tr>
<tr>
<td>2. 4SLB stationary RICE</td>
<td>a. Reduce CO emissions by 93 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O2</td>
<td></td>
</tr>
<tr>
<td>3. CI stationary RICE</td>
<td>a. Reduce CO emissions by 70 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O2</td>
<td></td>
</tr>
</tbody>
</table>

Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing Compression Ignition Stationary RICE >500 HP, and Existing 4SLB Stationary RICE >500 HP Located at an Area Source of HAP Emissions

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and compression ignition stationary RICE located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; existing compression ignition stationary RICE >500 HP; and existing 4SLB stationary RICE >500 HP located at an area source of HAP emissions that operate more than 24 hours per calendar year:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation . . .</th>
</tr>
</thead>
</table>
| 1. 2SLB and 4SLB stationary RICE and CI stationary RICE complying with the requirement to reduce CO emissions and using an oxidation catalyst; or 2SLB and 4SLB stationary RICE and CI stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst; or 4SLB stationary RICE and CI stationary RICE complying with the requirement to limit the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst | a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and
b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹ |
| 2. 2SLB and 4SLB stationary RICE and CI stationary RICE complying with the requirement to reduce CO emissions and not using an oxidation catalyst; or 2SLB and 4SLB stationary RICE and CI stationary RICE complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; or 4SLB stationary RICE and CI stationary RICE complying with the requirement to limit the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst | Comply with any operating limitations approved by the Administrator. |

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(g) for a different temperature range.

[75 FR 51593, Aug. 20, 2010, as amended at 76 FR 12867, Mar. 9, 2011]
As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Emergency stationary CI RICE and black start stationary CI RICE.¹ | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.³ |
| 2. Non-Emergency, non-black start stationary CI RICE <100 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
| 3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP | Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O₂ | |
| 4. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
<p>| 5. Non-Emergency, non-black start stationary CI RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>percent O<sub>2</sub>; or</td>
<td></td>
</tr>
<tr>
<td>b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>6. Emergency stationary SI RICE and black start stationary SI RICE.<sup>1</sup></td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first:<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first;</td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary:<sup>3</sup></td>
</tr>
<tr>
<td>7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first:<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first;</td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary:<sup>3</sup></td>
</tr>
<tr>
<td>8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first:<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first;</td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary:<sup>3</sup></td>
</tr>
<tr>
<td>9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500</td>
<td>Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O<sub>2</sub>.</td>
</tr>
<tr>
<td>10. Non-emergency, non-black start 4SLB</td>
<td>Limit concentration of CO in the stationary RICE exhaust to</td>
</tr>
<tr>
<td>Stationary RICE</td>
<td>Requirement</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>100≤HP≤500</td>
<td>47 ppmvd or less at 15 percent O₂</td>
</tr>
</tbody>
</table>

11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500

Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O₂

12. Non-emergency, non-black start landfill or digester gas-fired stationary RICE 100≤HP≤500

Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O₂

1 If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under Federal, State, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under Federal, State, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under Federal, State, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the Federal, State or local law under which the risk was deemed unacceptable.

2 Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement in Table 2c of this subpart.

3 Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 51593, Aug. 20, 2010]

Table 2d of Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

<table>
<thead>
<tr>
<th>Even for each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Non-Emergency, non-black start CI stationary RICE ≤300 HP</td>
<td>a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;¹</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.</td>
</tr>
<tr>
<td></td>
<td>b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first;</td>
<td></td>
</tr>
<tr>
<td>Milestone Contractors, L.P.</td>
<td>Portable, Indiana</td>
<td>Reviewer: Renee Traivaranon</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Non-Emergency, non-black start CI stationary RICE 300<HP≤500</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O\textsubscript{2}; or</td>
<td></td>
</tr>
<tr>
<td>b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Non-Emergency, non-black start CI stationary RICE >500 HP</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O\textsubscript{2}; or</td>
<td></td>
</tr>
<tr>
<td>b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Emergency stationary CI RICE and black start stationary CI RICE (^2)</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first; (^1)</td>
<td></td>
</tr>
<tr>
<td>b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year (^2)</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first; (^1)</td>
<td></td>
</tr>
<tr>
<td>b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-emergency, non-black start 2SLB stationary RICE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6.</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-emergency, non-black start 4SLB stationary RICE ≤500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-emergency, non-black start 4SLB stationary RICE >500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd at 15 percent O₂; or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Reduce CO emissions by 93 percent or more.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-emergency, non-black start 4SRB stationary RICE ≤500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually,</td>
<td></td>
</tr>
</tbody>
</table>
10. Non-emergency, non-black start 4SRB stationary RICE >500 HP
 a. Limit concentration of formaldehyde in the stationary RICE exhaust to 2.7 ppmvd at 15 percent O₂; or
 b. Reduce formaldehyde emissions by 76 percent or more.

11. Non-emergency, non-black start landfill or digester gas-fired stationary RICE
 a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹
 b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first; and
 c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.

¹Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement in Table 2d of this subpart.

²If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under Federal, State, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under Federal, State, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under Federal, State, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the Federal, State or local law under which the risk was deemed unacceptable.

[75 FR 51595, Aug. 20, 2010]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed 2SLB stationary RICE with a</td>
<td>Reduce CO</td>
<td>Conduct subsequent</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must . . .</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1. 2SLB, 4SLB, and CI stationary RICE</td>
<td>a. Reduce CO emissions</td>
<td>i. Measure the (O_2) at the inlet and outlet of the control device; and (1) Portable CO and (O_2) analyzer</td>
</tr>
</tbody>
</table>

\(^1\)After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[75 FR 51596, Aug. 20, 2010]

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§63.6610, 63.6611, 63.6612, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:
ii. Measure the CO at the inlet and the outlet of the control device

(1) Portable CO and O₂ analyzer

(a) Using ASTM D6522–00 (2005)(incorporated by reference, see §63.14) or Method 10 of 40 CFR appendix A. The CO concentration must be at 15 percent O₂, dry basis.

2. 4SRB stationary RICE
 a. Reduce formaldehyde emissions
 i. Select the sampling port location and the number of traverse points; and

(1) Method 1 or 1A of 40 CFR part 60, appendix A §63.7(d)(1)(i)

(a) Sampling sites must be located at the inlet and outlet of the control device.

 ii. Measure O₂ at the inlet and outlet of the control device; and

(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A, or ASTM Method D6522–00m (2005)

(a) Measurements to determine O₂ concentration must be made at the same time as the measurements for formaldehyde concentration.

 iii. Measure moisture content at the inlet and outlet of the control device; and

(1) Method 4 of 40 CFR part 60, appendix A, or Test Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348–03

(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde concentration.

 iv. Measure formaldehyde at the inlet and the outlet of the control device

(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348–03, provided in ASTM D6348–03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130

(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

3. Stationary RICE
 a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust
 i. Select the sampling port location and the number of traverse points; and

(1) Method 1 or 1A of 40 CFR part 60, appendix A §63.7(d)(1)(i)

(a) If using a control device, the sampling site must be located at the outlet of the control device.

 ii. Determine the O₂ concentration of the stationary RICE exhaust at the sampling port location; and

(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A, or ASTM Method D6522–00 (2005)

(a) Measurements to determine O₂ concentration must be made at the same time and location as the measurements for formaldehyde concentration.

 iii. Measure moisture content of the stationary RICE exhaust at the sampling port location; and

(1) Method 4 of 40 CFR part 60, appendix A, or

(a) Measurements to determine moisture content
the stationary RICE exhaust at the sampling port location; and

| iv. Measure formaldehyde at the exhaust of the stationary RICE; or (1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348–03, provided in ASTM D6348–03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130 |
| v. Measure CO at the exhaust of the stationary RICE (1) Method 10 of 40 CFR part 60, appendix A, ASTM Method D6522–00 (2005), Method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03 (a) CO Concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs. |

You may also use Methods 3A and 10 as options to ASTM–D6522–00 (2005). You may obtain a copy of ASTM–D6522–00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106. ASTM–D6522–00 (2005) may be used to test both CI and SI stationary RICE.

You may also use Method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03.

You may obtain a copy of ASTM–D6348–03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

[75 FR 51597, Aug. 20, 2010]

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations and Operating Limitations

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, existing non-</td>
<td>i. Reduce CO emissions and using an oxidation catalyst, and using a CPMS</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and</td>
</tr>
<tr>
<td>Scenario</td>
<td>Action</td>
<td>Conditions</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Emergency stationary CI RICE >500 HP located at an area source of HAP,</td>
<td>iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
<td></td>
</tr>
<tr>
<td>and existing non-emergency 4SLB stationary RICE >500 HP located at a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area source of HAP that are operated more than 24 hours per calendar year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Non-emergency stationary CI RICE >500 HP located at a major source</td>
<td>a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>of HAP, existing non-emergency stationary CI RICE >500 HP located at an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area source of HAP, and existing non-emergency 4SLB stationary RICE >500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP located at an area source of HAP that are operated more than 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>per calendar year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP</td>
<td>a. Reduce CO emissions and not using oxidation catalyst</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>located at a major source of HAP, new or reconstructed non-emergency 4SLB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stationary RICE >250 HP located at a major source of HAP, non-emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stationary CI RICE >500 HP located at a major source of HAP, existing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-emergency stationary CI RICE >500 HP located at an area source of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP, and existing non-emergency 4SLB stationary RICE >500 HP located at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>an area source of HAP that are operated more than 24 hours per calendar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Non-emergency stationary CI RICE >500 HP located at a major source</td>
<td>a. Limit the concentration of CO, and not using oxidation catalyst</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>of HAP, existing non-emergency stationary CI RICE >500 HP located at an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area source of HAP, and existing non-emergency 4SLB stationary RICE >500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP located at an area source of HAP that are operated more than 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>per calendar year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP</td>
<td>a. Reduce CO emissions, and using a CEMS</td>
<td>i. You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and</td>
</tr>
<tr>
<td>located at a major source of HAP, new or reconstructed non-emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4SLB stationary RICE ≥250 HP located at a major source of HAP, non-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>emergency stationary CI RICE >500 HP located at a major source of HAP,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>existing non-emergency stationary CI RICE >500 HP located at an area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source of HAP, and existing non-emergency 4SLB stationary RICE >500 HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>located at an area source of HAP that are operated more than 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>per calendar year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>located at an area source of HAP, and existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year</td>
<td></td>
<td>iii. The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.</td>
</tr>
</tbody>
</table>
| 6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, existing non-emergency stationary CI RICE >500 HP located at an area source of HAP, and existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year | a. Limit the concentration of CO, and using a CEMS | i. You have installed a CEMS to continuously monitor CO and either O_2 or CO_2 at the outlet of the oxidation catalyst according to the requirements in §63.6625(a); and
ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
iii. The average concentration of CO calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period. |
| 7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year | a. Reduce formaldehyde emissions and using NSCR | i. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
ii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. |
| 8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year | a. Reduce formaldehyde emissions and not using NSCR | i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction; and
ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
iii. You have recorded the approved operating parameters (if any) during the initial performance test. |
<table>
<thead>
<tr>
<th>Milestone Contractors, L.P.</th>
<th>Attachment D</th>
<th>NESHAP Subpart ZZZZ</th>
<th>FESOP No. F111-31236-05365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable, Indiana</td>
<td>Reviewer: Renee Traivaranon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year

| a. Limit the concentration of formaldehyde and not using NSCR | i. The average formaldehyde concentration determined from the initial performance test is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test. |

10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP

| a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR | i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. |

11. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP

| a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR | i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test. |

12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP

| a. Reduce CO or formaldehyde emissions | i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction. |

13. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP

| a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust | i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limit. |
As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS</td>
<td>i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and</td>
</tr>
</tbody>
</table>
Milestone Contractors, L.P.
Portable, Indiana
Reviewer: Renee Traivaranon

NESHAP Subpart ZZZZ
FESOP No. F111-31236-05365
Page 46 of 55

<table>
<thead>
<tr>
<th>reconstructed non-emergency stationary</th>
<th>Milestone Contractors, L.P. Attachment D</th>
</tr>
</thead>
</table>
| **CI RICE >500 HP located at a major source of HAP, existing non-emergency stationary CI RICE >500 HP, existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are operated more than 24 hours per calendar year** | **ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and**
| **iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.** | **4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP** |
| **a. Reduce formaldehyde emissions and using NSCR** | **i. Collecting the catalyst inlet temperature data according to §63.6625(b); and**
ii. Reducing these data to 4-hour rolling averages; and
iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test. |
| **5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP** | **a. Reduce formaldehyde emissions and not using NSCR** |
| **i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and**
ii. Reducing these data to 4-hour rolling averages; and
iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test. | **6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP** |
| **a. Reduce formaldehyde emissions** | **Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved.**
<p>| 7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250 ≤HP≤500 located at a major source of HAP | a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR |
| i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and
ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
iii. Reducing these data to 4-hour rolling averages; and | b. Collecting the catalyst inlet temperature data according to §63.6625(b); and
ii. Reducing these data to 4-hour rolling averages; and
iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test. |</p>
<table>
<thead>
<tr>
<th>8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250 ≤HP≤500 located at a major source of HAP</th>
<th>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit, and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency CI RICE ≤300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency landfill or digester gas stationary SI RICE located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year</td>
<td>a. Work or Management practices i. Operating and maintaining the stationary RICE according to the manufacturer’s emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.</td>
</tr>
<tr>
<td>10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE, and existing 4SLB and 4SRB stationary</td>
<td>a. Reduce CO or formaldehyde emissions, and limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, and...</td>
</tr>
<tr>
<td>RICE >500 HP located at an area source of HAP that operate more than 24 hours per calendar year and are not limited use stationary RICE</td>
<td>of formaldehyde or CO in the stationary RICE exhaust, and using oxidation catalyst or NSCR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
<td></td>
</tr>
</tbody>
</table>

11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE, and existing 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate more than 24 hours per calendar year and are not limited use stationary RICE

<table>
<thead>
<tr>
<th>a. Reduce CO or formaldehyde emissions, or limit the concentration of formaldehyde or CO in the stationary RICE exhaust, and not using oxidation catalyst or NSCR</th>
<th>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
</tbody>
</table>

12. Existing limited use CI stationary RICE >500 HP and existing limited use 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate more than 24 hours per calendar year

| a. Reduce CO or formaldehyde emissions, or limit the concentration of formaldehyde or CO in the stationary RICE exhaust, and using an oxidation catalyst or NSCR | i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and |
ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

| 13. Existing limited use CI stationary RICE >500 HP and existing limited use 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate more than 24 hours per calendar year | a. Reduce CO or formaldehyde emissions or limit the concentration of formaldehyde or CO in the stationary RICE exhaust, and not using an oxidation catalyst or NSCR | i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

| | ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and

| | iii. Reducing these data to 4-hour rolling averages; and

| | iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[76 FR 12870, Mar. 9, 2011]

Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in §63.6650, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>For each ...</th>
<th>You must submit a ...</th>
<th>The report must contain ...</th>
<th>You must submit</th>
</tr>
</thead>
</table>
1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; existing non-emergency, non-black start stationary RICE >250≤HP≤500 located at an area source of HAP and operated more than 24 hours per calendar year; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP and operated more than 24 hours per calendar year.

| Compliance report | a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in §63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), the information in §63.6650(e); or c. If you had a malfunction during the reporting period, the information in §63.6650(c)(4) i. Semiannually according to the requirements in §63.6650(b)(1)–(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)–(9) for engines that are limited use stationary RICE subject to numerical emission limitations. i. Semiannually according to the requirements in §63.6650(b). i. Semiannually according to the requirements in §63.6650(b). |

2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis

| Report | a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and i. Annually, according to the requirements in §63.6650. b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and i. See item 2.a.i. c. Any problems or errors suspected with the meters. |
Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §63.6675.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and abbreviations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.4</td>
<td>Prohibited activities and circumvention</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.5</td>
<td>Construction and reconstruction</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Applicability</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)–(4)</td>
<td>Compliance dates for new and reconstructed sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(5)</td>
<td>Notification</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(6)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(7)</td>
<td>Compliance dates for new and reconstructed area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(1)–(2)</td>
<td>Compliance dates for existing sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(3)–(4)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(5)</td>
<td>Compliance dates for existing area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(d)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(e)</td>
<td>Operation and maintenance</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(1)</td>
<td>Applicability of standards</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2)</td>
<td>Methods for determining compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(3)</td>
<td>Finding of compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)–(3)</td>
<td>Use of alternate standard</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Opacity and visible emission</td>
<td>No.</td>
<td>Subpart ZZZZ does not contain</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Yes/No</td>
<td>Details</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>§63.6(i)</td>
<td>Compliance extension procedures and criteria</td>
<td>Yes</td>
<td>opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Presidential compliance exemption</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)</td>
<td>Performance test dates</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
</tr>
<tr>
<td>§63.7(a)(2)</td>
<td>CAA section 114 authority</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)(1)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.7(b)(1) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(b)(2)</td>
<td>Notification of rescheduling</td>
<td>Yes</td>
<td>Except that §63.7(b)(2) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(c)</td>
<td>Quality assurance/test plan</td>
<td>Yes</td>
<td>Except that §63.7(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(d)</td>
<td>Testing facilities</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(1)</td>
<td>Conditions for conducting performance tests</td>
<td>No</td>
<td>Subpart ZZZZ specifies conditions for conducting performance tests at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(2)</td>
<td>Conduct of performance tests and reduction of data</td>
<td>Yes</td>
<td>Subpart ZZZZ specifies test methods at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(3)</td>
<td>Test run duration</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(4)</td>
<td>Administrator may require other testing under section 114 of the CAA</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(f)</td>
<td>Alternative test method provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(g)</td>
<td>Performance test data analysis, recordkeeping, and reporting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(h)</td>
<td>Waiver of tests</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1)</td>
<td>Applicability of monitoring requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
</tr>
<tr>
<td>§63.8(a)(2)</td>
<td>Performance specifications</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(3)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td>Monitoring for control devices</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(1)</td>
<td>Monitoring</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2)</td>
<td>Multiple effluents and multiple monitoring systems</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)</td>
<td>Monitoring system operation and</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Requirement</td>
<td>Status</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>§63.8(c)(1)(i)</td>
<td>Routine and predictable SSM</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(ii)</td>
<td>SSM not in Startup Shutdown Malfunction Plan</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(iii)</td>
<td>Compliance with operation and maintenance requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(2)–(3)</td>
<td>Monitoring system installation</td>
<td>Yes.</td>
<td>Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).</td>
</tr>
<tr>
<td>§63.8(c)(4)</td>
<td>Continuous monitoring system (CMS) requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>COMS minimum procedures</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(c)(6)–(8)</td>
<td>CMS requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>CMS quality control</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS performance evaluation</td>
<td>Yes</td>
<td>Except for §63.8(e)(5)(ii), which applies to COMS.</td>
</tr>
<tr>
<td>§63.8(f)(1)–(5)</td>
<td>Alternative monitoring method</td>
<td>Yes</td>
<td>Except that §63.8(f)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to relative accuracy test</td>
<td>Yes</td>
<td>Except that §63.8(f)(6) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data reduction</td>
<td>Yes</td>
<td>Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§63.6635 and 63.6640.</td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Applicability and State delegation of notification requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.9(b)(1)–(5)</td>
<td>Initial notifications</td>
<td>Yes</td>
<td>Except that §63.9(b)(3) is reserved.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for compliance extension</td>
<td>Yes</td>
<td>Except that §63.9(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification of special compliance requirements for new sources</td>
<td>Yes</td>
<td>Except that §63.9(d) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Yes/No</td>
<td>Exception</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.9(e) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of visible emission (VE)/opacity test</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(1)</td>
<td>Notification of performance evaluation</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(g)(2)</td>
<td>Notification of use of COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(3)</td>
<td>Notification that criterion for alternative to RATA is exceeded</td>
<td>Yes</td>
<td>If alternative is in use.</td>
</tr>
<tr>
<td>§63.9(h)(1)–(6)</td>
<td>Notification of compliance status</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of submittal deadlines</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in previous information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Administrative provisions for recordkeeping/reporting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>Record retention</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(i)–(v)</td>
<td>Records related to SSM</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(vi)–(xii)</td>
<td>Records</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Record when under waiver</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Records when using alternative to RATA</td>
<td>Yes</td>
<td>For CO standard if using RATA alternative.</td>
</tr>
<tr>
<td>§63.10(b)(xiv)</td>
<td>Records of supporting documentation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Records of applicability determination</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)</td>
<td>Additional records for sources using CEMS</td>
<td>Yes</td>
<td>Except that §63.10(c)(2)–(4) and (9) are reserved.</td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General reporting requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Report of performance test results</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Requirement</td>
<td>Yes/No</td>
<td>Reason</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Reporting opacity or VE observations</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>Startup, shutdown, and malfunction reports</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(1) and (2)(i)</td>
<td>Additional CMS Reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(2)(ii)</td>
<td>COMS-related report</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess emission and parameter exceedances reports</td>
<td>Yes.</td>
<td>Except that §63.10(e)(3)(i) (C) is reserved.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>Reporting COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Waiver for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Flares</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.12</td>
<td>State authority and delegations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorporation by reference</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of information</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

[75 FR 9688, Mar. 3, 2010]
Indiana Department of Environmental Management
Office of Air Quality

Technical Support Document (TSD) for a New Source Construction and Federally Enforceable State Operating Permit (FESOP)

Source Description and Location

Source Name:	Milestone Contractors, L.P. (Portable)
Initial Source Location:	235 U.S. Highway 24, Kentland, IN 47951
County:	Newton
SIC Code:	2951 (Asphalt Paving Mixtures and Blocks)
Operation Permit No.:	F111-31236-05365
Permit Reviewer:	Renee Traivaranon

On December 8, 2011, the Office of Air Quality (OAQ) received an application from Milestone Contractors, L.P. related to the construction and operation of a portable drum hot-mix plant and cold mix asphalt production operation. Recycled asphalt pavement (RAP) is crushed on-site, and blast furnace, electric arc furnace steel mill slag, and/or asbestos-free recycled shingles are processed in the aggregate mix. This source does not grind any shingles on-site.

Existing Approvals

There have been no previous approvals issued to this source.

County Attainment Status

The source is located in Newton County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective June 15, 2004, for the 8-hour ozone standard.¹</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Cannot be classified or better than national standards.</td>
</tr>
<tr>
<td>Pb</td>
<td>Not designated.</td>
</tr>
</tbody>
</table>

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005. Unclassifiable or attainment effective April 5, 2005, for PM₂.₅.

(a) Ozone Standards

Volatile organic compounds (VOC) and Nitrogen Oxides (NOx) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOx emissions are considered when evaluating the rule applicability relating to ozone. Newton County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) PM₂.₅

Newton County has been classified as attainment for PM₂.₅. On May 8, 2008 U.S. EPA promulgated the requirements for Prevention of Significant Deterioration (PSD) for PM₂.₅ emissions. These rules became effective on July 15, 2008. On May 4, 2011 the air pollution...
The control board issued an emergency rule establishing the direct PM$_{2.5}$ significant level at ten (10) tons per year. This rule became effective, June 28, 2011. Therefore, direct PM$_{2.5}$ and SO$_2$ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2. See the State Rule Applicability – Entire Source section.

(c) Other Criteria Pollutants
Newton County has been classified as attainment or unclassifiable in Indiana for all other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

This type of operation is not one of the twenty-eight (28) listed source categories under 326 IAC 2-2, 326 IAC 2-3, or 326 IAC 2-7, however, there is an applicable New Source Performance Standard that was in effect on August 7, 1980, therefore fugitive emissions are counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

Background and Description of New Source Construction

The Office of Air Quality (OAQ) has reviewed an application, submitted by Milestone Contractors, L.P. on December 8, 2011, requesting a FESOP for a construction and operation of portable drum hot-mix asphalt plant and cold mix asphalt production operation.

The following is a list of the new emission units and pollution control devices:

(a) One (1) asphalt counterflow drum mix dryer, with maximum capable of 350 tons per hour of processing raw material including blast furnace slag, steel slag, and asbestos-free recycled asphalt shingles in the aggregate mix, approved for construction in 2012, identified as ES-1, and dryer burner with a maximum heat input of 130 million (MM) British thermal units (Btu) per hour, using natural gas as a primary fuel and waste oil and No. 2 distillate fuel oil as secondary fuels, and is controlled with a pulse jet baghouse CD-1 for particulate control, and exhausting at one (1) stack (ID No. EP-1). This asphalt plant uses blast furnace and steel slag, and recycle asbestos free shingles in its aggregate mix;

(b) One (1) 30,000-gallon liquid asphalt storage tank, identified as AST-1;

(c) One (1) 20,000-gallon liquid asphalt storage tank, identified as AST-2;

(d) Two (2) 10,000-gallon used oil storage tanks, identified as AST-3 and AST-4;

(e) One (1) cold feed system, with conveyors and screen, identified as CF-1, consisting of eight (8) aggregate feed bins, capacity 30 tons each;

(f) One (1) recycle feed system, with conveyors and screen, identified as RF-1, and consisting of three (3) recycle feed bins, capacity 20 tons each;

(g) One (1) 100-ton surge bin, identified as SB-1;

(h) Aggregate storage piles, including Blast furnace and/or electric arc steel slag storage piles and Supplier certified asbestos-free factory seconds and/or post consumer waste shingles storage piles.

Under 40 CFR 60, Subpart I, the above units [items (a)-(h)] are considered affected source.
(i) One (1) 173 horsepower, diesel fuel-fired portable crusher and screener for processing reclaimed asphalt pavement (RAP), identified as CS-1, approved for construction in 2012, with a maximum throughput capacity of 250 tons of RAP per hour.

Under 40 CFR 60, Subpart OOO, this above unit is considered an affected facility.

Under 40 CFR 1068.30, General Compliance Provisions for Highway, Stationary, and Nonroad Programs-Definitions, this unit is considered a nonroad engine.

(j) One (1) genset generator, manufactured in 2002, and identified as ES-2, with maximum heat input capacity of 1,971 Horsepower (HP) per hour, using diesel fuel, and exhausting at one (1) stack (ID No. EP-2).

Under 40 CFR 63, Subpart ZZZZ, this unit is considered an affected facility.

(k) One (1) Cold-mix asphalt manufacturing operations and asphalt storage piles.

The following is a list of Insignificant activities:

(a) Fuel-oil fired combustion sources with heat input equal to or less than two million (2,000,000) Btu per hour, and firing fuel containing less than five-tenths percent (0.5%) sulfur content by weight;

One (1) number 2 distillate fuel oil-fired hot oil heater, approved for construction in 2012, with maximum heat input capacity of 2.0 million (MM) British thermal units (Btu) per hour;

Under 40 CFR 60, Subpart I, the above unit is considered affected source.

(b) A petroleum fuel, other than gasoline, dispensing facility, having a storage tank capacity less than or equal to ten thousand five hundred (10,500) gallons, and dispensing three thousand five hundred (3,500) gallons per day or less;

(c) One (1) 1,000-gallon ultra low sulfur diesel fuel tank, identified as AST-5;

(d) One (1) oil pre heater, identified as HOH-1 (no combustion source) for closed loop hot oil piping system for heating;

(e) Paved and unpaved roads and parking lots with public access.

Unpermitted Emission Units and Pollution Control Equipment

There are no unpermitted emission units during this review.

Enforcement Issues

There are no pending enforcement actions related to this application.

Emission Calculations

See Appendix A1 and A2 of this TSD for detailed emission calculations.
Permit Level Determination – FESOP

The following table reflects the unlimited potential to emit (PTE) of the entire source before controls. Control equipment is not considered federally enforceable until it has been required in a federally enforceable permit.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential To Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>>250</td>
</tr>
<tr>
<td>PM10<sup>(1)</sup></td>
<td>>250</td>
</tr>
<tr>
<td>PM2.5</td>
<td>>250</td>
</tr>
<tr>
<td>SO₂</td>
<td>>250</td>
</tr>
<tr>
<td>NOₓ</td>
<td>>250</td>
</tr>
<tr>
<td>VOC</td>
<td>>250</td>
</tr>
<tr>
<td>CO</td>
<td>>250</td>
</tr>
<tr>
<td>GHGs as CO₂e</td>
<td>>100,000</td>
</tr>
<tr>
<td>Single HAP</td>
<td>>10</td>
</tr>
<tr>
<td>Total HAPs</td>
<td>>25</td>
</tr>
</tbody>
</table>

⁽¹⁾ Under the Part 70 Permit program (40 CFR 70), particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers (PM10), not particulate matter (PM), is considered as a "regulated air pollutant".

⁽²⁾ See Potential to emit of each pollutant in attached appendix A.1 calculation to TSD

(a) The potential to emit (PTE) (as defined in 326 IAC 2-7-1(29)) of all criteria pollutants are each greater than one hundred (100) tons per year. The source would have been subject to the provisions of 326 IAC 2-7. However, the source will be issued a New Source Construction Permit (326 IAC 2-5.1-3) and a Federally Enforceable State Operating Permit (FESOP) (326 IAC 2-8), because the source will limit emissions to less than the Title V major source threshold levels.

(b) The potential to emit (PTE) (as defined in 326 IAC 2-7-1(29)) of any single HAP is greater than ten (10) tons per year and the PTE of a combination of HAPs is greater than twenty-five (25) tons per year. Therefore, the source would have been subject to the provisions of 326 IAC 2-7. However, the source will be issued a New Source Construction Permit (326 IAC 2-5.1-3) and a FESOP (326 IAC 2-8), because the source will limit emissions of HAPs to less than the Title V major source threshold levels.

(c) The potential to emit (PTE) (as defined in 326 IAC 2-7-1(29)) greenhouse gases (GHGs) is greater than the Title V subject to regulation threshold of one hundred thousand (100,000) tons of CO2 equivalent emissions (CO2e) per year. The source would have been subject to the provisions of 326 IAC 2-7. However, the source will be issued a New Source Construction Permit (326 IAC 2-5.1-3) and a Federally Enforceable State Operating Permit (FESOP) (326 IAC 2-8), because the source will limit greenhouse gases (GHGs) to less than one hundred thousand (100,000) tons of CO2 equivalent emissions (CO2e) per year.

PTE of the Entire Source After Issuance of the FESOP

The table below summarizes the potential to emit of the entire source after issuance of this FESOP, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of this FESOP, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.
<table>
<thead>
<tr>
<th>Process/ Emission Unit</th>
<th>Potential To Emit of the Entire Source After Issuance of FESOP (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>Ducted/Ductable Emissions</td>
<td></td>
</tr>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>35.58</td>
</tr>
<tr>
<td>Dryer/Mixer (2) (Process)</td>
<td>190.84</td>
</tr>
<tr>
<td>Hot Oil Heater Fuel Combustion (worst case)</td>
<td>0.13</td>
</tr>
<tr>
<td>Genset Generator</td>
<td>1.38</td>
</tr>
<tr>
<td>Crusher Fuel Combustion</td>
<td>NA</td>
</tr>
<tr>
<td>Worst Case Emissions*</td>
<td>192.35</td>
</tr>
<tr>
<td>Fugitive Emissions</td>
<td></td>
</tr>
<tr>
<td>Asphalt Load-Out, Silo Filling, and On-Site Yard (3)</td>
<td>0.33</td>
</tr>
<tr>
<td>Material Storage Piles</td>
<td>2.56</td>
</tr>
<tr>
<td>Material Processing and Handling (3)</td>
<td>1.94</td>
</tr>
<tr>
<td>Material Crushing, Screening, and Conveying (3)</td>
<td>9.52</td>
</tr>
<tr>
<td>Unpaved and Paved Roads (worst case) (1)</td>
<td>21.31</td>
</tr>
<tr>
<td>Cold Mix Asphalt Production (4)</td>
<td>0.00</td>
</tr>
<tr>
<td>Gasoline Fuel Transfer and Dispensing</td>
<td>0.00</td>
</tr>
<tr>
<td>Volatile Organic Liquid Storage Vessels **</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Fugitive Emissions</td>
<td>35.65</td>
</tr>
<tr>
<td>Total Limited/ Controlled Emissions</td>
<td>228</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>N/A</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
</tr>
<tr>
<td>Emission Offset/ Nonattainment NSR Major Source Thresholds</td>
<td>N/A</td>
</tr>
</tbody>
</table>

negl = negligible
N/A = Not applicable
na = Not accounted for in previous permit.

* Under the Part 70 Permit program (40 CFR 70), particulate matter with an aerodynamic diameter less than or equal to a nominal ten (10) micrometers (PM10), not particulate matter (PM), is considered as a "regulated air pollutant". Additionally, US EPA has directed states to regulate PM10 emissions as surrogate for PM2.5 emissions.

** The 100,000 CO2e threshold represents the Title V and PSD subject to regulation thresholds for GHGs in order to determine whether a source’s emissions are a regulated NSR pollutant under Title V and PSD.

*** Fugitive emissions from each of the volatile organic liquid storage tanks were calculated using the EPA Tanks 4.0.9d program and were determined to be negligible.

(1) Limited PTE based upon annual production and fuel usage limits to comply with 326 IAC 2-2 (PSD) and 326 IAC 2-8 (FESOP).

(2) Limited PTE based upon annual production limit and lb/ton emission limits to comply with 326 IAC 2-2 (PSD) and 326 IAC 2-8 (FESOP).

(3) Limited PTE based upon annual production limit to comply with 326 IAC 2-2 (PSD) & 326 IAC 2-8 (FESOP).

(4) Limited PTE based upon maximum annual VOC usage limit to comply with 326 IAC 2-8 (FESOP).
(a) **FESOP Status**

This new source is not a Title V major portable source, because the potential to emit criteria pollutants from the entire source will be limited to less than the Title V major source threshold levels. In addition, this new source is not a major source of HAPs, as defined in 40 CFR 63.41, because the potential to emit HAPs is limited to less than ten (10) tons per year for a single HAP and twenty-five (25) tons per year of total HAPs. Therefore, this source is an area source under Section 112 of the Clean Air Act and is subject to the provisions of 326 IAC 2-8 (FESOP).

In order to comply with the requirements of 326 IAC 2-8-4 (FESOP), the source shall comply with the following:

(I) **For Asphalt Production:**

1. The amount of hot-mix asphalt processed shall not exceed 600,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

2. The PM10 emissions from the dryer/mixer shall not exceed 0.262 pounds per ton of asphalt processed.

3. The PM2.5 emissions from the dryer/mixer shall not exceed 0.281 pounds per ton of asphalt processed.

4. The SO2 emissions from the dryer/mixer shall not exceed 0.058 pounds per ton of asphalt processed.

5. The NOx emissions from the dryer/mixer shall not exceed 0.055 pounds per ton of asphalt processed.

6. The VOC emissions from the dryer/mixer shall not exceed 0.032 pounds per ton of asphalt processed.

7. The CO emissions from the dryer/mixer shall not exceed 0.130 pounds per ton of asphalt processed.

Compliance with these limits, combined with the potential to emit PM10, PM2.5, SO2, NOx, VOC, CO from all other emission units at this source, shall limit the source-wide total potential to emit of PM10, PM2.5, SO2, NOx, VOC, CO to less than 100 tons per 12 consecutive month period, each and shall render 326 IAC 2-7 (Part 70 Permits), and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD) not applicable.

(II) **Fuel, Slag and Shingles:**

1. **Fuel and Slag Specifications:**

 (i) The sulfur content of the No. 2 distillate fuel oil shall not exceed 0.50% by weight.

 (ii) The sulfur content of the waste oil shall not exceed 0.75% by weight.

 (iii) The waste oil combusted in the dryer burner shall not contain more than 1.02% ash, 0.20% chlorine, and 0.01% lead.

 (iv) The HCl emissions shall not exceed 13.2 pounds of HCl per 1,000 gallons of waste oil burned.
(v) The sulfur content of the Blast Furnace slag shall not exceed 1.50% by weight.

(vi) The SO2 emissions from the dryer/mixer shall not exceed 0.740 pounds per ton of Blast Furnace slag processed in the aggregate mix.

(vii) The sulfur content of the Steel slag shall not exceed 0.66% by weight.

(viii) The SO2 emissions from the dryer/mixer shall not exceed 0.0014 pounds per ton of Steel slag processed in the aggregate mix.

(2) **Single Fuel and Slag Usage Limitations:**
When combusting only one type of fuel per twelve (12) consecutive month period in the dryer/mixer burner and generator, the usage of fuel shall be limited as follows:

(i) Natural gas usage shall not exceed 518.1 MMCF per twelve (12) consecutive month period, with compliance determined at the end of each month;

(ii) No. 2 fuel oil usage shall not exceed 1,552,067 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month;

(iii) Waste oil usage shall not exceed 1,090,220 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month; and

(iv) The Blast Furnace slag usage shall not exceed 50,000 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

A Steel slag usage limit is not required for the source to comply with their FESOP SO2 Limit, since unlimited usage results in a PTE SO2 of less than 1 tons/yr (see TSD Appendix A.1, Unlimited Dryer-Mixer Slag). To form a conservative estimate, SO2 emissions are based on the "worst case" assumption that steel slag usage corresponds to 100% of the aggregate used to produce hot-mix asphalt (see TSD Appendix A.2, Limited Dryer-Mixer Slag).

(v) The usage of diesel fuel in the generator shall not exceed 201,372 gallons per consecutive twelve (12) month period, with compliance determined at the end of each month;

Note: The source is only permitted to burn the above-mentioned fuels in the dryer/mixer burner and generator.

(3) **Multiple Fuel and Slag Usage Limitation:**
When combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner, in conjunction with the use of slag in the aggregate mix, SO2, NOx, HCl, and CO2e emissions from the dryer/mixer burner and generator shall not exceed the following:

(i) SO2 emissions from the dryer/mixer burner and generator shall not exceed 72.06 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

\[
SO_2 \text{ emissions} = 60.10 + 11.96
\]

(ii) NOx emissions from the dryer/mixer burner and generator shall not exceed 96.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
NOx emissions = 49.22+47.30

(iii) HCl emissions from the dryer/mixer burner shall not exceed 7.20 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(iv) CO₂ equivalent emissions (CO₂e) from the dryer/mixer shall not exceed 31,319.93 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Note: The unlimited CO₂e emissions from the generator is 10,050.5 tons per year, therefore, adding the limited CO₂e emissions from dryer/mixer burner 31,319.93 is sufficient to limit the entire source to less than 100,000 tons per year of CO₂e emissions.

(4) Asphalt Shingle Usage Limitation
Pursuant to 326 IAC 2-8-4 (FESOP), and in order to render the requirements of 326 IAC 2-2 (PSD) and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAPs)) not applicable, the Permittee shall not grind recycled asphalt shingles on-site and shall only use certified asbestos-free recycled shingles, post consumer waste and/or factory seconds, as an additive in its aggregate mix.

Compliance with these limits, combined with the potential to emit SO₂, NOx and HAPs from all other emission units at this source, shall limit the source-wide total potential to emit of SO₂, NOx to less than 100 tons per twelve (12) consecutive month period, any single HAP to less than ten (10) tons per twelve (12) consecutive month period, and total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-7 (Part 70 Permits), 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)), and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP) not applicable.

(III) In order to comply with the requirements of 326 IAC 2-8-4 (FESOP), the VOC emissions from cold-mix (cutback) asphalt production shall be limited as follows:

(1) VOC emissions from the sum of the binders shall not exceed 60.30 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(2) Liquid binders used in the production of cold mix asphalt shall be defined as follows:

(i) Cut back asphalt rapid cure, containing a maximum of 25.3% of the liquid binder by weight of VOC solvent and 95.0% by weight of VOC solvent evaporating. This is a new requirement for this source.

(ii) Cut back asphalt medium cure, containing a maximum of 28.6% of the liquid binder by weight of VOC solvent and 70.0% by weight of VOC solvent evaporating. This is a new requirement.

(iii) Cut back asphalt slow cure, containing a maximum of 20.0% of the liquid binder by weight of VOC solvent and 25.0% by weight of VOC solvent evaporating. This is a new requirement for this source.

(iv) Emulsified asphalt with solvent, containing a maximum of 15.0% of liquid binder by weight of VOC solvent and 46.4% by weight of the VOC solvent in the liquid blend evaporating. The percent oil distillate in emulsified asphalt with solvent liquid, as determined by ASTM, must be seven percent (7%) or less of the total emulsion by volume. This is a new requirement for this source.
(v) Other asphalt with solvent binder, containing a maximum 25.9% of the liquid binder of VOC solvent and 2.5% by weight of the VOC solvent evaporating. This is an existing requirement for this source.

(3) When using only one type of liquid binder per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

(i) The amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 63.48 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(ii) The amount of VOC solvent used in medium cure cutback asphalt shall not exceed 86.15 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(iii) The amount of VOC solvent used in slow cure cutback asphalt shall not exceed 241.22 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(iv) The amount of VOC solvent used in emulsified asphalt shall not exceed 128.48 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(v) The amount of VOC solvent used in all other asphalt shall not exceed 2,412.16 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(4) When using more than one liquid binder per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

The VOC solvent allotments in (C)(i) through (C)(v) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
\text{VOC emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.000</td>
</tr>
<tr>
<td>emulsified asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Compliance with these limits, combined with the VOC emissions from other units at this source, will limit source-wide VOC emissions to less than 100 tons per twelve (12) consecutive month period and render 326 IAC 2-7 (Part 70 Permit Program) and 326 IAC 2-2 (PSD), not applicable.

Also, the worst single HAP shall not exceed 9% VOC and the total HAPs shall not exceed 26% VOC, compliance with these limits, and combined with the HAPs
emissions from all other emission units at this source, will limit source-wide single
HAP to less than 10 tons per twelve (12) consecutive month period and total
HAPs to less than 25 tons per twelve (12) consecutive month period, and render
326 IAC 2-7 (Part 70 Permit Program) and 326 IAC 2-2 (PSD)) and 326 IAC 2-4.1
(Major Source of HAPs) not applicable.

(b) PSD Minor Source

This new source is not a major stationary source, under PSD (326 IAC 2-2), because the potential
to emit PM is limited to less than 250 tons per year, and this source is not one of the twenty-eight
(28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1). Therefore, pursuant to 326 IAC
2-2, the PSD requirements do not apply.

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD))
not applicable, the source shall comply with the following:

1. The amount of hot-mix asphalt processed shall not exceed 600,000 tons per twelve (12)
 consecutive month period, with compliance determined at the end of each month.

2. PM emissions from the dryer/mixer shall not exceed 0.636 pounds per ton of asphalt
 processed.

Compliance with these limits, combined with the potential to emit PM from all other emission units
at this source, shall limit the source-wide total potential to emit of PM to less than 250 tons per 12
consecutive month period, and shall render 326 IAC 2-2 (Prevention of Significant Deterioration
(PSD)) not applicable.

Federal Rule Applicability Determination

New Source Performance Standards (NSPS)

(a) 40 CFR 60, Subpart I - Standards for Hot-mix Asphalt Facilities

The drum hot-mix asphalt plant, approved for construction in 2012, is subject to the New Source
Performance Standard, 40 CFR 60, Subpart I (326 IAC 12), because it meet the definition of a

Therefore, pursuant to 40 CFR 60.92(a), particulate matter emissions from the above listed units,
shall not exceed four hundredths (0.04) grains per dry standard cubic foot (gr/dscf), and visible
emissions shall not exceed twenty percent (20%) opacity.

The source will comply with this rule by using a baghouse to limit particulate matter emissions
from the dryer/mixer to less than four hundredths (0.04) gr/dscf, and by applying the management
techniques outlined in their Fugitive Dust Plan (included as Attachment A of the permit).

The hot-mix asphalt facility is subject to the following portions of 40 CFR 60, Subpart I (included
as Attachment B of the permit):

1. 40 CFR 60.90.
2. 40 CFR 60.91.
3. 40 CFR 60.92.
4. 40 CFR 60.93.

Note: this NSPS includes testing requirements applicable to this source.

The provisions of 40 CFR 60 Subpart A – General Provisions, which are incorporated as 326 IAC
12-1, apply to the hot-mix asphalt facility except when otherwise specified in 40 CFR 60
Subpart I.*
(b) 40 CFR 60, Subpart Ka - Standards of Performance for Storage Vessels for Petroleum Liquids
The requirements of 40 CFR 60, Subpart Ka, apply to tank which is constructed prior to 1984; therefore, all tanks at this source are not subject to the New Source Performance Standard, 326 IAC 12, (40 CFR Part 60.110a, Subpart Ka) “Standards of Performance for Storage Vessels for Petroleum Liquids”.

(c) 40 CFR 60, Subpart Kb - Standards Performance for Volatile Organic Liquid Storage Vessels
(1) The requirements of 40 CFR 60, Subpart Kb (326 IAC 12), apply to each storage vessel with a capacity greater than 75 cubic meters (m3) (19,812 gallons); that is used to store volatile organic liquids (VOL) for which construction is commenced after July 23, 1984, therefore they do not apply to tank AST-3 (10,000 gallons), AST-4 (10,000 gallons), AST-5 (1,000 gallons), and petroleum fuel tank (10,500 gallons), since each tank has a capacity less than 75 m3.

(2) The requirements of 40 CFR 60, subpart Kb (326 IAC 12), do not apply to storage vessels with a capacity greater than or equal to 75 m3 (19,812 gallons); but less than 151 m3 (39,889.979) storing a liquid with a maximum true vapor pressure less than 15.0 kPa. Therefore, these requirements do not apply to tank AST-1 (30,000 gallons), and tank AST-2 (20,000 gallons), since each tank is stored a liquid with the vapor pressure less than 15.0 kPa.

(d) 40 CFR 60, Subpart OOO - Standards for Nonmetallic Mineral Processing Plants
The diesel fuel-fired portable crusher and screener is subject to the New Source Performance Standard for Nonmetallic Mineral Processing Plants, 40 CFR 60, Subpart OOO (326 IAC 12), because it is used to reduce the size of nonmetallic minerals embedded in the Recycled Asphalt Pavement (RAP).

The units subject to this rule include the following:

(1) crushers;
(2) grinding mills; and
(3) subsequent affected facilities up to, but not including, the first storage silo or bin, such as:
 (A) bucket elevators;
 (B) belt conveyors;
 (C) screening operations; and
 (D) bagging operations;

Therefore, pursuant to 40 CFR 60.672(b) and (c), fugitive particulate matter emissions from any transfer point on belt conveyors or from any other of the above-listed facilities, except the crusher, shall not exceed seven percent (7%) opacity, and fugitive particulate matter emissions from the crusher shall not exceed twelve percent (12%) opacity.

The source will comply with this rule by applying the management techniques outlined in their Fugitive Dust Plan (included as Attachment A of the permit).

The crushing operation is therefore subject to the following requirements of 40 CFR 60, Subpart OOO (included as Attachment C of the permit):

(1) 40 CFR 60.670(a), (d), (e), and (f) (6) 40 CFR 60.675(a), (c)(1)(i), (ii), (iii),
(2) 40 CFR 60.671 (c)(3), (d), (e), (g), and (i)
(3) 40 CFR 60.672(b), (d), and (e) (7) 40 CFR 60.676(a), (b)(1), (f), (h), (i),
(6) 40 CFR 60.675(a), (c)(1)(i), (ii), (iii),
(7) 40 CFR 60.676(a), (b)(1), (f), (h), (i),
(8) 40 CFR 60.677(a), (b)(1), (f), (h), (i),
(9) 40 CFR 60.678(a), (b)(1), (f), (h), (i),
(4) 40 CFR 60.673
(5) 40 CFR 60.674(b)

Note: this NSPS includes testing requirements applicable to this source.

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the crushing operation except as otherwise specified in 40 CFR 60, Subpart OOO.

(e) 40 CFR 60, Subpart IIII - NSPS for Stationary Compression Ignition Internal Combustion Engines

(1) The requirements of the New Source Performance Standard for Stationary Compression Ignition Internal Combustion Engines, 40 CFR 60, Subpart IIII (4I) (326 IAC 12), do not apply to the diesel fuel-fired portable crusher and screener, since Milestone intends to move this diesel-fired portable crusher and screener (CS-1) from one permitted asphalt plant to another permitted asphalt plant. IDEM, OAQ, determined that this CS-1 is not subject to 40 CFR 60, Subpart III because it is considered a nonroad engine, pursuant to 40 CFR 60.4200(e), providing that it meets the following requirements:

(1.1) The diesel fuel-fired portable RAP crusher and screener shall remain at a location for a period of less than twelve (12) consecutive months.

(1.2) Any diesel fuel-fired portable RAP Crusher and screener that replaces a diesel fuel-fired portable crusher and screener at this location and that is intended to performed the same or similar function as the diesel fuel-fired portable RAP crusher and screener that replaced will be included in the calculating the consecutive time period.

(1.3) For the purposes of this condition and pursuant to 40 CFR 1068.30 (2)(iii), a location is any single site at a building, structure, facility or installation.

(b) The requirements of the New Source Performance Standard for Stationary Compression Ignition Internal Combustion Engines, 40 CFR 60, Subpart IIII (4I) (326 IAC 12), does not apply to the Genset Generator, ES-2, because this compression ignition internal combustion generator was manufactured in 2002, prior to April 1, 2006.

(f) There are no other New Source Performance Standards (NSPS)(326 IAC 12 and 40 CFR 60) included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

(a) 40 CFR 63, Subpart ZZZZ - NESHAP for Stationary Reciprocating Internal Combustion Engines

(1) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Stationary Reciprocating Internal Combustion Engines, 40 CFR 63, Subpart ZZZZ (4Z) (326 IAC 20-84), do not apply to the diesel fuel-fired portable crusher and screener because it meets the definition of a nonroad engine, as defined in 40 CFR 1068.30, since Milestone intends to move this diesel-fired portable crusher and screener (CS-1) from one permitted asphalt plant to another permitted asphalt plant.

IDEM, OAQ, determined that this CS-1 is not subject to 40 CFR 63, Subpart ZZZZ (4Z) because it is considered a nonroad engine, pursuant to 40 CFR 60.4200(e), providing that it meets the following requirements:

(1) The diesel fuel-fired portable RAP crusher and screener shall remain at a location for a period of less than twelve (12) consecutive months.
(2) Any diesel fuel-fired portable RAP Crusher and screener that replaces a diesel fuel-fired portable crusher and screener at this location and that is intended to performed the same or similar function as the diesel fuel-fired portable RAP crusher and screener that replaced will be included in the calculating the consecutive time period.

(3) For the purposes of this condition and pursuant to 40 CFR 1068.30 (2)(iii), a location is any single site at a building, structure, facility or installation.

(2) the requirements of the 40 CFR 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary Reciprocating Internal Combustion Engines (326 IAC 20-82), apply to the generator, ES-2, because it is considered an existing stationary reciprocating internal combustion engine (RICE) at an area source of hazardous air pollutants (HAP). This engine was manufactured in 2002 and Milestone purchased it from previous owner in 2009. No additional information can be provided regarding the date of the construction of the previous owner. However, pursuant to 40 CFR 63.6590(a)(1)(iv), a change in ownership of an existing stationary RICE does not make the stationary RICE a new or reconstructed stationary RICE.

The Genset generator, ES-2, is subject to the following applicable portions of the NESHAP for existing non-emergency stationary RICE (construction commenced before June 12, 2006), which has a site rating of greater than 500 brake horsepower (HP) at an area source of HAP:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(iii) and (iv)
(4) 40 CFR 63.6595(a)(1), (b), and (c)
(5) 40 CFR 63.6603 (a)
(6) 40 CFR 63.6604
(7) 40 CFR 63.6605
(8) 40 CFR 63.6612
(9) 40 CFR 63.6615
(10) 40 CFR 63.6620
(11) 40 CFR 63.6625(g) and (h)
(12) 40 CFR 63.6630
(13) 40 CFR 63.6635
(14) 40 CFR 63.6640(a), (b), and (e)
(15) 40 CFR 63.6645(a)(2), (g), and (h)
(16) 40 CFR 63.6650
(17) 40 CFR 63.6655
(18) 40 CFR 63.6660
(19) 40 CFR 63.6665
(20) 40 CFR 63.6670
(21) 40 CFR 63.6675
(22) Table 2b
(23) Table 2d (item 3)
(24) Table 3 (item 4)
(25) Table 4 (items 1 and 3)
(26) Table 5 (items 1, 2, 3, 4, 5, and 6)
(27) Table 6 (items 3, 10, and 11)
(28) Table 7 (item 1)
(29) Table 8

Note: 40 CFR 63, Subpart ZZZZ requires testing to demonstrate compliance with the emission limitations.
The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1-1, apply to the source except as otherwise specified in 40 CFR 63, Subpart ZZZZ.

(b) 40 CFR 63, Subpart CCCCCC - NESHAP for the Source Category Identified as Gasoline Dispensing Facilities (GDF)
The requirements of this National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Source Category Identified as Gasoline Dispensing Facilities (GDF), 40 CFR 63, Subpart CCCCCC (6C) (326 IAC 20), are not included in the permit, because this drum mix asphalt pavement production plant has no gasoline dispensing facilities.

(c) 40 CFR 63, Subpart JJJJJJ - NESHAPs for Industrial, Commercial, and Institutional Boilers Area Sources
The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Industrial, Commercial, and Institutional Boilers Area Sources, 40 CFR 63, Subpart JJJJJJ (6J), are not included in the permit for the hot oil heater, although this new source is an area source of hazardous air pollutants (HAP), as defined in §63.2, the hot oil heater is not a boiler, as defined in 40 CFR 63.11237.

(d) 40 CFR 63, Subpart AAAAAAA - NESHAP for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing
The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing, 40 CFR 63, Subpart AAAAAAA (7A) (326 IAC 20), are not included in the permit, because although this drum hot-mix asphalt plant is an area source of hazardous air pollutant (HAP) emissions, as defined in §63.2, it does not meet the definition of an asphalt processing operation or an asphalt roofing manufacturing operation, as defined in §63.11566, since it does not engage in the preparation of asphalt flux or asphalt roofing materials.

(e) There are no other National Emission Standards for Hazardous Air Pollutants (NESHAPs) (326 IAC 14, 326 IAC 20 and 40 CFR Part 63) included in the permit.

Compliance Assurance Monitoring (CAM)
Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is not included in the permit, because the potential to emit of the source is limited to less than the Title V major source thresholds and the source is not required to obtain a Part 70 or Part 71 permit.

State Rule Applicability Determination

The following state rules are applicable to the source:

(a) 326 IAC 2-8-4 (FESOP)
FESOP applicability is discussed under the PTE of the Entire Source After Issuance of the FESOP section above.

(b) 326 IAC 2-2 (Prevention of Significant Deterioration (PSD))
PSD applicability is discussed under the PTE of the Entire Source After Issuance of the FESOP section above.

(c) 326 IAC 2-3 (Emission Offset)
All countries are classified as attainment or unclassifiable in Indiana for all regulated NSR pollutants, except PM2.5. Therefore, the requirements of 326 IAC 2-3 (Emission Offset) do not apply.
(d) 326 IAC 2-1.1-5 (Nonattainment New Source Review)
The potential to emit PM2.5 at this source has been limited to less than 100 tons per year; therefore, the Nonattainment New Source Review requirements do not apply.

(e) 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The potential to emit is limited to less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs. Therefore, the source is not subject to the requirements of 326 IAC 2-4.1. See PTE of the Entire Source After Issuance of the FESOP Section above.

(f) 326 IAC 2-6 (Emission Reporting)
Pursuant to 326 IAC 2-6-1, this source is not subject to this rule, because it is not required to have an operating permit under 326 IAC 2-7 (Part 70), it is not allow to relocate to Lake, Porter, or LaPorte County, and it does not emit lead into the ambient air at levels equal to or greater than 5 tons per year. Therefore, 326 IAC 2-6 does not apply.

(g) 326 IAC 5-1 (Opacity Limitations)
When this source is relocated to Clark County, Dearborn County, Dubois County, Marion County St. Joseph County Vanderburgh County Vigo County:

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(1) Opacity shall not exceed an average of thirty percent (30%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(2) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

When this source is relocated to all other counties, except Lake County:

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following,

(1) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(2) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

(h) 326 IAC 6-4 (Fugitive Dust Emissions Limitations)
Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

(i) 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
The source is subject to the requirements of 326 IAC 6-5, because the fugitive dust sources have potential fugitive particulate emissions greater than 25 tons per year. Pursuant to 326 IAC 6-5, fugitive particulate matter emissions shall be controlled according to the Fugitive Dust Control Plan, submitted on December 8, 2011, which is included as Attachment A to the permit.
(j) 326 IAC 6.5-1-2(a) (Particulate Matter Limitations except Lake County Limitations)
This new portable asphalt plant has the potential to emit PM before controls greater than 100 tons per year and may be relocated to Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo, or Wayne Counties.

Pursuant to 6.5-1-2(a), PM emissions from the dryer/mixer shall not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)) when the source is located in Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo, or Wayne Counties.

In order to comply with the requirements of 326 IAC 6.5-1-2, particulate from the dryer/mixer shall be controlled by the baghouse at all times that the dryer/mixer is in operation.

(h) 326 IAC 6.8 (Particulate Matter Limitations)
This portable source is not permitted to locate in Lake or Porter Counties; therefore, the requirements of 326 IAC 6.8 do not apply.

(i) 326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The unlimited VOC potential emissions from the dryer/mixer are greater than twenty-five (25) tons per year. However, the source shall limit the VOC potential emissions from the dryer/mixer to less than twenty-five (25) tons per year.

In order to render the requirements of 326 IAC 8-1-6 not applicable, the dryer/mixer shall be limited as follows:

1. The hot-mix asphalt production rate shall not exceed 60,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

2. VOC emissions from the dryer/mixer shall not exceed 0.032 pounds of VOC per ton of asphalt produced.

(j) 326 IAC 8-5-2 (Miscellaneous operations: asphalt paving)
Any paving application made after January 1, 1980, is subject to the requirements of 326 IAC 8-5-2. Pursuant to this rule, no person shall cause or allow the use of cutback asphalt or asphalt emulsion containing more than seven percent (7%) oil distillate by volume of emulsion for any paving application except the following purposes:

a) penetrating prime coating

b) stockpile storage

c) application during the months of November, December, January, February and March.

(l) 326 IAC 6.8 (Particulate Matter Limitations)
This portable source is not permitted to locate in Lake or Porter Counties; therefore, the requirements of 326 IAC 6.8 do not apply.

(m) 326 IAC 7-1.1 (Sulfur Dioxide Emissions Limitations)
The potential to emit SO2 from the burner using distillate fuel No.2 and waste oil is greater than twenty-five (25) tons/year; therefore, the 326 IAC 7-1.1 requirements apply to the source.

See Appendix A, for the detailed calculations.
(n) 326 IAC 8-4-3 (Petroleum Liquid Storage Facilities)
The storage tanks are not subject to the requirements of 326 IAC 8-4-3 because they are not petroleum liquid storage vessels with capacities greater than thirty-nine thousand (39,000) gallons.

(o) 326 IAC 8-9 (Volatile Organic Liquid Storage Vessels)
This portable source can relocate to Clark or Floyd Counties and the five (5) storage tanks, identified as AST-1, AST-2, AST-3, AST-4, AST-5, and petroleum fuel tank (10,500 gallons), each have a capacity of less than thirty-nine thousand (39,000) gallons. Pursuant to 326 IAC 8-9-1(b), the storage tanks AST-1, AST-2, AST-3, AST-4, AST-5, are subject to reporting and recordkeeping provisions of section 6(a) and 6(b) of this rule and are exempt from all other provisions of this rule when the source is located in Clark or Floyd Counties.

Pursuant to 326 IAC 8-9-6(b), the Permittee shall maintain a record and submit to IDEM, OAQ a report containing the following information for the storage tanks AST-1, AST-2, AST-3, AST-4, and AST-5, when the source is located in Clark or Floyd Counties.

1. the tank identification number;
2. the tank dimensions; and
3. the tank capacity.

Pursuant to 326 IAC 8-9-6(a), these records shall be maintained for the life of the tank.

(p) 326 IAC 9-1 (Carbon Monoxide Emission Limits)
This drum hot-mix asphalt plant is not one of the source types listed in 326 IAC 9-1-2. Therefore, the requirements of 326 IAC 9-1 do not apply.

(q) 326 IAC 10-1 (Nitrogen Oxides Control in Clark and Floyd Counties)
This drum hot-mix asphalt plant is authorized to relocate to Clark and Floyd counties, however, PTE of NOx emissions have been limited to less than one hundred (100) tons per year. Therefore, the requirements of 326 IAC 10-1 do not apply.

(r) 326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Category)
The dryer burner does not meet the definition of an affected facility, as defined in 326 IAC 10-3-1(a), therefore, it is not subject to this rule and the requirements are not included in the permit.

(s) 326 IAC 10-5 (Nitrogen Oxide Reduction Program for Internal Combustion Engines (ICE))
The dryer burner still does not meet the definition of an affected facility, as defined in 326 IAC 10-5-2(1), because it is still an external combustion unit and not an internal combustion engine.

(t) 326 IAC 12 (New Source Performance Standards)
See Federal Rule Applicability Section of this TSD.

(u) 326 IAC 20 (Hazardous Air Pollutants)
See Federal Rule Applicability Section of this TSD.

Compliance Determination, Monitoring and Testing Requirements

(a) The compliance determination requirements applicable to this source are as follows:

1. The fuel and slag characteristics (i.e., sulfur, ash, lead and chlorine content) and usage rates will be used to verify compliance with the SO2, NOx CO2e and HAPs emission limits.
(2) The shingle characteristics (i.e., lack of asbestos content) will be used to verify compliance with the FESOP HAP limitation.

(4) The liquid binder characteristics (i.e., evaporation, % VOC weight) and usage rates, in the production of cold-mix cutback asphalt, will be used to verify compliance with the FESOP VOC emission limitation.

(5) The following equations will be used to determine compliance with SO2, NOx, HCl and emissions from the dryer/mixer burner and generator operations:

\[
SO_2 = \frac{G(E_G) + O(E_O) + W(E_W) + D(E_D) + B(E_B) + T(E_T)}{2,000 \text{ lbs/ton}}
\]

where:

\[
SO_2 = \text{tons of sulfur dioxide emissions for a 12-month consecutive period}
\]
\[
G = \text{gallons of natural gas used in the dryer/mixer in the last 12 months}
\]
\[
O = \text{gallons of No. 2 fuel oil used in the dryer/mixer in the last 12 months}
\]
\[
W = \text{gallons of waste oil used in the dryer/mixer in the last 12 months}
\]
\[
D = \text{gallons of diesel fuel used in the genset generator in the last 12 months}
\]
\[
B = \text{tons of blast furnace slag used in the dryer/mixer in the last 12 months}
\]
\[
T = \text{tons of steel slag used in the dryer/mixer last 12 months}
\]

\[
E_G = 0.60 \text{ lb/million cubic feet of natural gas}
\]
\[
E_O = 71.0 \text{ lb/1000 gallons of No. 2 fuel oil}
\]
\[
E_W = 110.3 \text{ lb/1000 gallons of waste oil}
\]
\[
E_D = 70.7 \text{ lb/1000 gallons of diesel oil}
\]
\[
E_B = 0.74 \text{ lb/ton of blast furnace slag used}
\]
\[
E_T = 0.0014 \text{ lb/ton of steel slag used}
\]

Note: the diesel fuel oil emission \(E_D\) has been converted from 0.505 lb/MMBtu, for the purposes of this compliance calculation.

Methodology

\[
S = \text{Sulfur content of the fuel (\%) = 0.50}\%
\]

\[
EF \ (\text{lb/MMBtu}) = [1.01S]
\]

\[
EF \ (\text{lb/kgal}) = [\frac{EF \ (\text{lb/MMBtu}) \times \text{Fuel Heating Value (0.140 MMBtu/1 gallon)} \times \text{conversion value (1000 gal/1 kgal)}}{1000 \text{ gal/1 kgal}}]
\]

\[
EF \ (\text{lb/kgal}) = [(1.01 \times 0.50\%) \times (0.140 \text{ MMBtu/1 gallon}) \times (1000 \text{ gal/1 kgal})]
\]

Nitrogen Oxides (NOx) Emission Calculation

\[
NOx = \frac{G(E_G) + O(E_O) + W(E_W) + D(E_D)}{2,000 \text{ lbs/ton}}
\]

where:

\[
NOx = \text{tons of nitrogen oxide emissions for a 12-month consecutive period}
\]
\[
G = \text{million cubic feet of natural gas used in the dryer/mixer last 12 months}
\]
\[
O = \text{gallons of No. 2 fuel oil used in the dryer/mixer last 12 months}
\]
\[
W = \text{gallons of reclaimed/waste oil used in the dryer/mixer last 12 months}
\]
\[
D = \text{gallons of diesel fuel oil used in the genset generator in the last 12 months}
\]

\[
E_G = 190 \text{ lb/million cubic feet of natural gas}
\]
\[
E_O = 24.0 \text{ lb/1000 gallons of No. 2 fuel oil}
\]
EW = 19.0 lb/1000 gallons of waste oil.
ED = 266 lb/1000 gallons of diesel fuel oil.

Note: the fuel oil emission (ED) has been converted from 1.90 lb/MMBtu, for the purposes of this compliance calculation.

\[
EF \text{ (lb/kgal)} = \left[EF \text{ (lb/MMBtu)} \times \text{Fuel Heating Value (0.140 MMBtu/1 gallon)} \times \text{conversion value (1000 gal/1 kgal)} \right]
\]

HCl emissions Calculation:

\[
\text{HCl} = \frac{W(E_W)}{2,000 \text{ lbs/ton}}
\]

where:
HCl = tons of Hydrogen Chloride emissions for twelve (12) month consecutive period
W = gallons of waste oil used in the last 12 months
E_W = 13.2 lb/1000 gallons of waste oil

The following equations will be used to determined compliance with CO2e emissions from the dryer/mixer burner operations:

CO2e emissions Calculation:

\[
\text{CO2e} = \sum \left[(\text{CO}_2 \times \text{CO}_2 \text{ GWP}) + (\text{CH}_4 \times \text{CH}_4 \text{ GWP}) + (\text{N}_2\text{O} \times \text{N}_2\text{O} \text{ GWP}) \right]
\]

Where:
CO2e = tons of CO2e equivalent emissions for last 12 consecutive month period;

Greenhouse Warming Potentials (GWP)
Carbon dioxide (CO2 GWP) = 1
Methane (CH4 GWP) = 21
Nitrous oxide (N2O GWP) = 310

\[
\text{CO}_2 = \left[\frac{G(X_G) + O(X_O) + W(X_W)}{2,000} \right]
\]

\[
\text{CH}_4 = \left[\frac{G(X_G) + O(X_O) + W(X_W)}{2,000} \right]
\]

\[
\text{N}_2\text{O} = \left[\frac{G(X_G) + O(X_O) + W(X_W)}{2,000} \right]
\]

CO2 = tons of CO2 emissions for last 12 consecutive month period;
CH4 = tons of CH4 emissions for last 12 consecutive month period;
N2O = tons of N2O emissions for last 12 consecutive month period;

G = million cubic feet of natural gas used in last 12 months;
O = gallons of No. 2 fuel oil used in last 12 months;
W = gallons of waste oil used in dryer/mixer in last 12 months.
For CO₂:

\[X_G = 120,161.84 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 22,501.41 \times 10^{-3} \text{ pounds per gallon of No. 2 fuel oil}; \]
\[X_W = 22,024.15 \times 10^{-3} \text{ pounds per gallon of waste oil}; \]

For CH₄:

\[X_G = 2.49 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 0.00091 \text{ pounds per gallon of No. 2 fuel oil}; \]
\[X_W = 0.00089 \text{ pounds per gallon of waste oil}; \]

For N₂O:

\[X_G = 2.20 \text{ pounds per million cubic feet of natural gas}; \]
\[X_O = 0.00026 \text{ pounds per gallon of No. 2 fuel oil}; \]
\[X_W = 0.00018 \text{ pounds per gallon of waste oil}. \]

(b) The testing requirements applicable to this source are as follows:

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>Pollutant</th>
<th>Timeframe for Testing</th>
<th>Frequency of Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer/mixer</td>
<td>Baghouse</td>
<td>PM/PM10/PM2.5</td>
<td>Within 180 days after the startup</td>
<td>Once every five (5) years</td>
</tr>
<tr>
<td>Dryer/mixer</td>
<td>N/A</td>
<td>SO₂</td>
<td>Within 180 days after initial use</td>
<td>One time test</td>
</tr>
<tr>
<td>RAP Crusher</td>
<td>N/A</td>
<td>PM/PM10/PM2.5 (opacity/fugitives)</td>
<td>Within 180 days after initial use</td>
<td>Once every five (5) years</td>
</tr>
<tr>
<td>Generator</td>
<td>N/A</td>
<td>CO</td>
<td>Within 180 days after initial use</td>
<td>According to Table 3: every 8760 hours of operation or 3 years, whichever comes first.</td>
</tr>
</tbody>
</table>

(1) Testing shall only be performed if the company has not previously performed SO₂ testing while using Blast Furnace slag in the aggregate mix at one of their other Indiana facilities.

(2) Required for compliance with 40 CFR 60, Subpart OOO, and 326 IAC 2-8 (FESOP), for fugitive emissions from affected facilities without water sprays. Testing shall only be performed if the company has not previously performed testing at one of their other Indiana facilities. Additionally, affected facilities controlled by water carryover from upstream water sprays that are inspected according to the requirements in §60.674(b) and §60.676(b) are exempt from the 5-year repeat testing requirement.

(3) Testing is required for 40 CFR 63, Subpart ZZZZ. This initial testing is not required for this generator, if this unit had been previously tested and the test met all of the conditions in 40 CFR 63.6612 (b)(1) through (4).

(c) The dryer/mixer and associated material conveying, screening, and transfer points have applicable compliance monitoring conditions as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Range</th>
<th>Excursions and Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Emissions</td>
<td>Once per day</td>
<td>normal/abnormal</td>
<td>Response Steps</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>Once per day</td>
<td>1"- 8" of water</td>
<td>Response Steps</td>
</tr>
</tbody>
</table>

These monitoring conditions are necessary to ensure compliance with 40 CFR 60, Subpart I, 326 IAC 2-8 (FESOP), 326 IAC 6-5, and the limits that render the requirements of 326 IAC 2-2 (PSD) and 326 IAC 2-7 (Part 70 Permit Program) not applicable.

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on December 8, 2011 and additional information was received on February 16, 2012.

The construction and operation of this source shall be subject to the conditions of the attached proposed New Source Construction and FESOP No. 111-31236-05365. The staff recommends to the Commissioner that this New Source Construction and FESOP be approved.

IDEM Contact

(a) Questions regarding this proposed permit can be directed to Renee Traivaranon at the Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251 or by telephone at (317) 234-5615 or toll free at 1-800-451-6027 extension 4-5615.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM’s Guide for Citizen Participation and Permit Guide on the Internet at: www.in.gov/idem
Asphalt Plant Maximum Capacity - Drum Mix

Maximum Hourly Asphalt Production = 350 ton/hr

Maximum Annual Asphalt Production = 3,066,000 ton/yr

Maximum Annual Blast Furnace Slag Usage = 1,287,720 ton/yr 1.50 % sulfur

Maximum Annual Steel Slag Usage = 1,287,720 ton/yr 0.66 % sulfur

Maximum Dryer Fuel Input Rate = 130.0 MMBtu/hr

Natural Gas Usage = 1,139 MMCF/yr

No. 2 Fuel Oil Usage = 8,134,286 gal/yr, and 0.50 % sulfur

No. 4 Fuel Oil Usage = 0 gal/yr, and 0 % sulfur

Residual (No. 5 or No. 6) Fuel Oil Usage = 0 gal/yr, and 0 % sulfur

Liquefied Petroleum Gas (propane) Usage = 0 gal/yr, and 0.20 gr/100 ft³ sulfur

Liquefied Petroleum Gas (butane) Usage = 0 gal/yr, and 0 gr/100 ft³ sulfur

Used/Waste Oil Usage = 8,134,286 gal/yr, and 0.75 % sulfur 1.02 % ash 0.20 % chlorine, 0.010 % lead

Diesel Fuel Oil Usage (generator only) = 882,009 gal/yr, and 0.50 % sulfur

Distillate Fuel Oil Usage (Astec only) = 77,433 gal/yr, and 0.50 % sulfur

Unlimited PM Dryer/Mixer Emission Factor = 28.0 lb/ton of asphalt production

Unlimited PM10 Dryer/Mixer Emission Factor = 6.5 lb/ton of asphalt production

Unlimited PM2.5 Dryer/Mixer Emission Factor = 1.5 lb/ton of asphalt production

Unlimited SO2 Dryer/Mixer Emission Factor = 0.058 lb/ton of asphalt production

Unlimited NOx Dryer/Mixer Emission Factor = 0.055 lb/ton of asphalt production

Unlimited VOC Dryer/Mixer Emission Factor = 0.03 lb/ton of asphalt production

Unlimited SO2 Blast Furnace Slag Dryer/Mixer Emission Factor = 0.57 lb/ton of slag processed

Unlimited Steel Slag SO2 Dryer/Mixer Emission Factor = 0.44 lb/ton of slag processed

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>CO2e</th>
<th>THM</th>
<th>PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ducted Emissions</td>
<td></td>
</tr>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>265.50</td>
<td>211.57</td>
<td>211.57</td>
<td>446.40</td>
<td>108.19</td>
<td>4.07</td>
<td>47.83</td>
<td>91,922.23</td>
<td>58.22</td>
<td>53.69</td>
</tr>
<tr>
<td>Asphalt/Steel Slag Processing (worst case)</td>
<td>42,924.15</td>
<td>9,366.50</td>
<td>2,290.50</td>
<td>98.91</td>
<td>94.30</td>
<td>46.98</td>
<td>199.79</td>
<td>36,916.32</td>
<td>16.35</td>
<td>4.76</td>
</tr>
<tr>
<td>Hot Oil Heater Fuel Combustion (worst case)</td>
<td>0.13</td>
<td>0.03</td>
<td>0.13</td>
<td>4.44</td>
<td>1.25</td>
<td>0.03</td>
<td>0.31</td>
<td>1,418.19</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Liquefied Petroleum Gas (propane)</td>
<td>0.26</td>
<td>0.06</td>
<td>0.06</td>
<td>52.38</td>
<td>127.19</td>
<td>0.69</td>
<td>47.48</td>
<td>10,060.54</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Liquefied Petroleum Gas (butane)</td>
<td>0.12</td>
<td>0.04</td>
<td>0.05</td>
<td>13.70</td>
<td>0.20</td>
<td>0.02</td>
<td>0.07</td>
<td>1,059.49</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>All Other Considerations</td>
<td>0</td>
</tr>
<tr>
<td>Worst Case Emissions</td>
<td>43,220.17</td>
<td>9,366.50</td>
<td>2,290.50</td>
<td>98.91</td>
<td>94.30</td>
<td>46.98</td>
<td>199.79</td>
<td>94,209.93</td>
<td>58.22</td>
<td>53.69</td>
</tr>
</tbody>
</table>

Totals Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>CO2e</th>
<th>THM</th>
<th>PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>319.63</td>
<td>25.50</td>
<td>25.50</td>
<td>47.32</td>
<td>1.97</td>
<td>0.13</td>
<td>0.76</td>
<td>100,524.07</td>
<td>61.27</td>
<td>57.12</td>
</tr>
</tbody>
</table>

HAPs

- Hydrogen Sulfide (H2S)
- Benzene
- Formaldehyde (HCHO)
- Acetaldehyde (CH2=CHCHO)
- Hydrogen Chloride (HCl)
- Xylenes

Total HAPs

<table>
<thead>
<tr>
<th>HAP</th>
<th>Tons/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S</td>
<td>171.69</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.44</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>0</td>
</tr>
<tr>
<td>Xylenes</td>
<td>3,316.11</td>
</tr>
</tbody>
</table>

Total HAPs

Worst Case Fuel Combustion is based on the fuel with the highest emissions for each specific pollutant.

negl = negligible N/A = not applicable.

* The crusher has been determined a nonroad vehicle under 40 CFR 60, and 40 CFR 63, therefore, the criteria pollutant emissions are not counted toward PSD and TV applicability.

** Worst Case Emissions (tons/yr) = Worst Case Emissions from Dryer Fuel Combustion and Dryer/Mixer + Worst Case Emissions From Dryer/Mixer Slag Processing + Worst Case Emissions from Hot Oil Heater Fuel Combustion

Fuel component percentages provided by the source.
The following calculations determine the unlimited/uncontrolled emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer at the source.

Maximum Capacity

<table>
<thead>
<tr>
<th>Maximum Hourly Asphalt Production</th>
<th>350 ton/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Annual Asphalt Production</td>
<td>3,066,000 ton/yr</td>
</tr>
<tr>
<td>Maximum Fuel Input Rate</td>
<td>130 MMBtu/hr</td>
</tr>
</tbody>
</table>

Natural Gas Usage

- **Natural Gas Usage**: 1,139 MMCF/yr

Fuel Oil Usage

- **No. 2 Fuel Oil Usage**: 8,134,286 gal/yr, and 0.50% sulfur
- **No. 4 Fuel Oil Usage**: 0 gal/yr, and 0% sulfur
- **Residual (No. 5 or No. 6) Fuel Oil Usage**: 0 gal/yr, and 0% sulfur

Propane Usage

- **Propane Usage**: 0 gal/yr, and 0.20 gr/100 ft³ sulfur

Butane Usage

- **Butane Usage**: 0 gal/yr, and 0 gr/100 ft³ sulfur

Used/Waste Oil Usage

- **Used/Waste Oil Usage**: 8,134,286 gal/yr, and 0.75% sulfur, 1.02% ash, 0.200% chlorine, 0.010% lead

Unlimited/Uncontrolled Emissions

Calculations

- **Natural Gas Usage (MMCF/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 MMCF/1,000 MMBtu}\]
- **Fuel Oil Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.140 MMBtu}\]
- **Propane Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.0905 MMBtu}\]
- **Butane Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.0974 MMBtu}\]

Emission Factors (lb/MMCF)

- **PM**: 5.925
- **SO2**: 0.02
- **NOx**: 190
- **VOC**: 5.5
- **CO**: 84

Sources of AP-42 Emission Factors for fuel combustion:

- **Natural Gas**: AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
- **Propane and Butane**: AP-42 Chapter 1.5 (dated 7/08), Tables 1.5-1 (assuming PM = PM10)
- **Waste Oil**: AP-42 Chapter 1.11 (dated 10/96), Tables 1.11-1, 1.11-2, 1.11-3, 1.11-4, and 1.11-5

Methodology

- **Natural Gas Usage (MMCF/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 MMCF/1,000 MMBtu}\]
- **Oil Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.140 MMBtu}\]
- **Butane Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.0905 MMBtu}\]
- **Waste Oil Usage (gal/yr)** = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{8,760 hrs/yr} \times \text{1 gal/0.0974 MMBtu}\]
- **All Other Fuels**: \text{Unlimited/Uncontrolled Potential to Emit (tons/yr)} = \[\text{Maximum Fuel Usage (gals/yr)} \times \text{Emission Factor (lb/gal)} \times \text{kgal/1000 gal} \times \text{ton/2000 lbs}\]

Since there are no specific AP-42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.

Abbreviations

- **PM**: Particulate Matter
- **PM5**: Particulate Matter (< 5 um)
- **NOx**: Nitric Oxides
- **SO2**: Sulfur Dioxide
- **HAP**: Hazardous Air Pollutants
- **VOC**: Volatile Organic Compounds
- **CO**: Carbon Monoxide
- **NO2**: Nitrogen Dioxide
Appendix A.1: Unlimited Emissions Calculations
Greenhouse Gas (CO2e) Emissions from the Dryer/Mixer Fuel Combustion with Maximum Capacity ≥ 100 MMBtu/hr

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-0536
Reviewer: Renee Traivaranon
Date: 2/21/2012

The following calculations determine the unlimited/uncontrolled emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer at the source.

Maximum Capacity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hourly Asphalt Production</td>
<td>350 ton/hr</td>
</tr>
<tr>
<td>Maximum Annual Asphalt Production</td>
<td>3,066,000 ton/yr</td>
</tr>
</tbody>
</table>

Uncontrolled/Unlimited Emissions

<table>
<thead>
<tr>
<th>Fuel</th>
<th>CO2e Fraction (tons/yr)</th>
<th>CO2e Equivalent Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>68,422.83</td>
<td>68,838.30</td>
</tr>
<tr>
<td>No. 2 Fuel Oil</td>
<td>91,521.22</td>
<td>91,922.23</td>
</tr>
<tr>
<td>No. 4 Fuel Oil</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Propane</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Butane</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Used/Waste Oil</td>
<td>89,579.74</td>
<td>89,878.59</td>
</tr>
</tbody>
</table>

Greenhouse Warming Potentials (GWP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Methane</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>

Calculation Methodology

Unlimited Potential to Emit CO2e (tons/yr)

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (21) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (310).

CO2e Equivalent Emissions (tons/yr)

Unlimited Potential to Emit CO2e (tons/yr)

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (21) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (310).
The following calculations determine the unlimited/uncontrolled emissions from the aggregate drying/mixing:

Maximum Hourly Asphalt Production

- **PM**: 350 ton/hr

Maximum Annual Asphalt Production

- **3,066,000 ton/yr**

Criteria Pollutant

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM*</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>SO2**</td>
<td>0.00034</td>
<td>0.0034</td>
<td>0.0034</td>
<td>0.00034</td>
<td>0.00034</td>
<td>0.00034</td>
</tr>
<tr>
<td>NOx**</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>VOC**</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
<td>0.047</td>
</tr>
<tr>
<td>CO***</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutant

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>2.1E-04</td>
<td>2.1E-04</td>
<td>2.1E-04</td>
<td>2.1E-04</td>
<td>2.1E-04</td>
<td>2.1E-04</td>
</tr>
<tr>
<td>Antimony</td>
<td>1.8E-07</td>
<td>1.8E-07</td>
<td>1.8E-07</td>
<td>1.8E-07</td>
<td>1.8E-07</td>
<td>1.8E-07</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7.6E-07</td>
<td>7.6E-07</td>
<td>7.6E-07</td>
<td>7.6E-07</td>
<td>7.6E-07</td>
<td>7.6E-07</td>
</tr>
<tr>
<td>Cadmium</td>
<td>4.7E-07</td>
<td>4.7E-07</td>
<td>4.7E-07</td>
<td>4.7E-07</td>
<td>4.7E-07</td>
<td>4.7E-07</td>
</tr>
<tr>
<td>Chromium</td>
<td>6.0E-06</td>
<td>6.0E-06</td>
<td>6.0E-06</td>
<td>6.0E-06</td>
<td>6.0E-06</td>
<td>6.0E-06</td>
</tr>
<tr>
<td>Cobalt</td>
<td>2.7E-06</td>
<td>2.7E-06</td>
<td>2.7E-06</td>
<td>2.7E-06</td>
<td>2.7E-06</td>
<td>2.7E-06</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.4E-07</td>
<td>2.4E-07</td>
<td>2.4E-07</td>
<td>2.4E-07</td>
<td>2.4E-07</td>
<td>2.4E-07</td>
</tr>
<tr>
<td>Nickel</td>
<td>5.6E-06</td>
<td>5.6E-06</td>
<td>5.6E-06</td>
<td>5.6E-06</td>
<td>5.6E-06</td>
<td>5.6E-06</td>
</tr>
<tr>
<td>Selenium</td>
<td>3.1E-07</td>
<td>3.1E-07</td>
<td>3.1E-07</td>
<td>3.1E-07</td>
<td>3.1E-07</td>
<td>3.1E-07</td>
</tr>
</tbody>
</table>

Total PAH/HAPs

- **16.74**

Methodology

- **Worst Single HAP**: 4.79 (formaldehyde)

Unlimited/Uncontrolled Potential to Emit (tons/yr)

Unlimited/Uncontrolled Potential to Emit (tons/yr) = \((\text{Maximum Annual Asphalt Production (tons/yr) \times Emission Factor (lb/ton)} \times \text{ton/2000 lbs)})

- Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.
- **PM, PM10, and PM2.5** AP-42 emission factors based on drum mix dryer fired with natural gas, propane, fuel oil, and waste oil. According to AP-42 fuel type does not significantly affect PM, PM10, and PM2.5 emissions.
- **SO2**, **NOx**, and **VOC** AP-42 emission factors are for natural gas, No. 2 fuel oil, and waste oil only.
- **CO** AP-42 emission factor determined by combining data from drum mix dryer fired with natural gas, No. 8 fuel oil, and No. 2 fuel oil to develop single CO emission factor.

Abbreviations

- **VOC** = Volatile Organic Compounds
- **HAP** = Hazardous Air Pollutant
- **HCl** = Hydrogen Chloride
- **PAH** = Polycyclic Aromatic Hydrocarbon
- **SO2** = Sulfur Dioxide
The following calculations determine the unlimited/uncontrolled emissions from the aggregate drying/mixing:

Maximum Hourly Asphalt Production

Maximum Hourly Asphalt Production = 350 ton/hr

Maximum Annual Asphalt Production = 3,066,000 ton/yr

Emission Factors

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂e for Worst Case Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unlimited/Uncontrolled Potential to Emit (tons/yr)

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Methodology

Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Tables 11.1-7 and 11.1-8

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

There are no emission factors for N₂O available in either the 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no N₂O emission anticipated from this process.

Unlimited Potential to Emit CO₂e (tons/yr) = Unlimited Potential to Emit CO₂ of "worst case" fuel (tons/yr) + Unlimited Potential to Emit CH₄ (tons/yr) + Unlimited Potential to Emit N₂O (tons/yr) x N₂O GWP (310).

Abbreviations

- CO₂ = Carbon Dioxide
- CH₄ = Methane
- N₂O = Nitrogen Dioxide
- PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Dryer/Mixer Slag Processing

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Trairavanon
Date: 2/21/2012

The following calculations determine the unlimited emissions from the processing of slag in the aggregate drying/mixing.

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)**</th>
<th>Unlimited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag</td>
<td>0.74</td>
<td>476.46</td>
</tr>
<tr>
<td>Steel Slag</td>
<td>0.0014</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Methodology

* The maximum annual slag usage was provided by the source.

** Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.

** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Unlimited Potential to Emit SO2 from Slag (tons/yr) = [(Maximum Annual Slag Usage (ton/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations

SO2 = Sulfur Dioxide
Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Emission Factor (lb/MMCF)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
<th>Hot Oil Heater</th>
<th>Hot Oil Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (lb/MMCF)</td>
<td>Natural Gas (lb/MMCF)</td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
<td>Waste Case (tons/yr)</td>
</tr>
<tr>
<td>PM 1.0</td>
<td>1.9</td>
<td>2.0</td>
<td>0</td>
<td>0.125</td>
</tr>
<tr>
<td>PM 2.5</td>
<td>7.6</td>
<td>7.3</td>
<td>0</td>
<td>0.986</td>
</tr>
<tr>
<td>NOx</td>
<td>9.6</td>
<td>9.1</td>
<td>0</td>
<td>4.44</td>
</tr>
<tr>
<td>SO2</td>
<td>108</td>
<td>101</td>
<td>0</td>
<td>7.96</td>
</tr>
<tr>
<td>CO</td>
<td>95</td>
<td>91</td>
<td>0</td>
<td>0.913</td>
</tr>
</tbody>
</table>

Handling Air Asbestos

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Emission Factor (lb/MMCF)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2.0E-04</td>
<td>3.8E-04</td>
</tr>
<tr>
<td>Barium</td>
<td>1.0E-04</td>
<td>4.0E-04</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.0E-03</td>
<td>4.0E-04</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lead</td>
<td>5.0E-04</td>
<td>1.3E-03</td>
</tr>
<tr>
<td>Iron</td>
<td>3.8E-04</td>
<td>8.4E-04</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.6E-04</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Selenium</td>
<td>2.4E-05</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
<td>0</td>
</tr>
<tr>
<td>Bromoform</td>
<td>4.3E-03</td>
<td>0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>6.5E-03</td>
<td>0</td>
</tr>
<tr>
<td>Dimethyl</td>
<td>7.1E-04</td>
<td>0</td>
</tr>
<tr>
<td>Ethyl</td>
<td>8.4E-04</td>
<td>0</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.2E-02</td>
<td>6.1E-02</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.8E+00</td>
<td>0</td>
</tr>
<tr>
<td>Methyl</td>
<td>3.8E-03</td>
<td>0</td>
</tr>
<tr>
<td>Nonane</td>
<td>6.5E-02</td>
<td>0</td>
</tr>
<tr>
<td>Total PTHF Haps</td>
<td>neglig</td>
<td>neglig</td>
</tr>
<tr>
<td>Unregulated Organic Matter</td>
<td>7.1E-04</td>
<td>7.1E-04</td>
</tr>
</tbody>
</table>

Total TPH = 0.004

Methodology

Equivalent Natural Gas Usage (MMCF/yr) = \(\text{Maximum Fuel Input Rate (MMBtu/hr)} \times [8,760 \text{ hrs/yr}] \times [1 \text{ MMCF/1,000 MMBtu}] \)

Equivalent Oil Usage (gal/yr) = \(\text{Maximum Fuel Input Rate (MMBtu/hr)} \times [8,760 \text{ hrs/yr}] \times [1 \text{ gal/5,460 MMBtu}] \)

Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = \(\text{Maximum Natural Gas Usage (MMCF/yr)} \times \text{Emission Factor (lb/MMCF)} \times [\text{ton/2000 lbs}] \)

All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = \(\text{Maximum Fuel Usage (gals/yr)} \times \text{Emission Factor (lb/kgal)} \times [\text{kgal/1000 gal}] \times [\text{ton/2000 lbs}] \)

Sources of AP-42 Emission Factors for fuel combustion:

- Natural Gas: AP-42 Chapter 1.4 (dated 7/98): Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
- No. 2 Fuel Oil: AP-42 Chapter 1.3 (dated 3/11): Tables 1.3-1, 1.3-2, 1.3-3, 1.3-4, 1.3-9, 1.3-10, and 1.3-11

Abbreviations

- PM =Particulate Matter
- CO = Carbon Monoxide
- PM10 = Particulate Matter (<10 μm)
- HAP = Hazardous Air Pollutant
- SO2 = Sulfur Dioxide
- NOx = Nitrogen Oxides
- VOC =Volatile Organic Compounds
- PAH = Polynuclear Hydrocarbon
- HCl = Hydrogen Chloride
- H2S = Hydrogen Sulfide
- CH4 = Methane
- CO2 = Carbon Dioxide
Appendix A.1: Unlimited Emissions Calculations
Greenhouse Gas (CO2e) Emissions from Hot Oil Heater Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

Maximum Hot Oil Heater Fuel Input Rate = 2.00 MMBtu/hr
Natural Gas Usage = 0 MMCF/yr
No. 2 Fuel Oil Usage = 125,142.86 gal/yr, 0.50 % sulfur

<table>
<thead>
<tr>
<th>Unlilked/Uncontrolled Emissions</th>
<th>Emission Factor (units)</th>
<th>Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas (lb/MMCF)</td>
<td>CO2</td>
</tr>
</tbody>
</table>
| | | Emission | Natural Gas Usage (lb/kgal) | CH4 (ton/yr) | CH4 (ton/yr)
| | Fuel Oil (lb/kgal) | EF | EF | EF (lb/MMCF) | |
| | | 120,161.84 | 22,501.41 | 0.91 | 21 |
| | | 21 | 0 | 0.06 |
| | Fuel Oil | 0 | 1 | 0.02 |
| | EF (lb/MMCF) | 1,407.95 | 0 | 1,408.02 |

Worse Case CO2e Emissions (tons/yr)
0 1,414.19

Methodology
Greenhouse Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A. Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]

Sources of Emission Factors for fuel combustion: (Note: To form a conservative estimate, the "worst case" emission factors have been used.)

Natural Gas: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factor for NO2 from AP-42 Chapter 1.4 (dated 7/98), Table 1.4-2

No. 2 Fuel Oil: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/kgal. Emission Factor for NO2 from AP-42 Chapter 1.3 (dated 5/10), Table 1.3-8

Propane: Emission Factor for CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, has been converted from kg/MMBtu to lb/kgal. Emission Factors for CO2 and NO2 from AP-42 Chapter 1.5 (dated 7/08), Table 1.5-1

Butane: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/kgal. Emission Factor for NO2 from AP-42 Chapter 1.5 (dated 7/08), Table 1.5-1

Emission Factor (EF) Conversions

Natural Gas: EF (lb/MMCF) = [EF (kg/MMBtu)] * Conversion Factor (2.20462 lbs/kg) * Heating Value of Natural Gas (MBtu/scf) * Conversion Factor (1,000,000 scf/MMCF)]

Fuel Oils: EF (lb/kgal) = [EF (kg/MMBtu)] * Conversion Factor (2.20462 lbs/kg) * Heating Value of the Fuel Oil (MMBtu/gal) * Conversion Factor (1000 gal/kgal)]

Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/1000 MMCF)] * [ton/2000 lbs]

All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (21) + Unlimited Potential to Emit NO2 of "worst case" fuel (ton/yr) x NO2 GWP (310).

Abbreviations
CO2 = Carbon Dioxide
N2O = Nitrogen Dioxide
CH4 = Methane
PTE = Potential to Emit
Unlimited Emissions Calculations

Reciprocating Internal Combustion Engines

Diesel Fuel-fired Portable Crusher

Output Rating (≤ 600 HP)

Maximum Input Rate (≤ 4.2 MMBtu/hr)

Company Name: Milestone Contractors, L.P.

Source Address: 235 U.S. Highway 24, Kentland, IN 47951

Permit Number: F111-31236-05365

Reviewer: Renee Traivaranon

Date: 2/21/2012

Emissions Calculated Based on Output Rating (hp)

<table>
<thead>
<tr>
<th>Output Horsepower Rating (hp)</th>
<th>Unlimited Potential Diesel Engine Oil Usage = 77,433 gal/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Operating Hours per Year</td>
<td>8760</td>
</tr>
<tr>
<td>Unlimited Potential Throughput (hp-hr/yr)</td>
<td>1,515,480</td>
</tr>
</tbody>
</table>

Criteria Pollutants

<table>
<thead>
<tr>
<th>PM*</th>
<th>PM10*</th>
<th>PM2.5*</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.47</td>
<td>42.47</td>
<td>42.47</td>
<td>39.73</td>
<td>604.17</td>
<td>49.32</td>
<td>130.15</td>
</tr>
</tbody>
</table>

Potential Emission in tons/yr

<table>
<thead>
<tr>
<th>PM*</th>
<th>PM10*</th>
<th>PM2.5*</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.64</td>
<td>1.64</td>
<td>1.64</td>
<td>1.54</td>
<td>23.39</td>
<td>1.91</td>
<td>5.04</td>
</tr>
</tbody>
</table>

*PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs***</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.28E-01</td>
<td>5.60E-02</td>
<td>3.90E-02</td>
<td>5.36E-03</td>
<td>1.62E-01</td>
<td>1.05E-01</td>
<td>1.27E-02</td>
<td>2.30E-02</td>
</tr>
</tbody>
</table>

Potential Emission in tons/yr

<table>
<thead>
<tr>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs***</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.95E-03</td>
<td>2.17E-03</td>
<td>1.51E-03</td>
<td>2.07E-04</td>
<td>0.006</td>
<td>4.07E-03</td>
<td>4.91E-04</td>
<td>8.91E-04</td>
</tr>
</tbody>
</table>

***PAH = Polyaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

****Emission factors in lb/MMBtu were converted to lb/kgal using the heating value of diesel fuel oil (137,000 Btu/gal) as taken from AP 42 Appendix A (09/85), page A-5.

Notes

Constant: 1 kilogallon (kgal) = 1000 gallons (gal)

The heating value of Diesel fuel oil is 137,000 Btu/gal as taken from AP 42 Appendix A (09/85), page A-5.

Emission Factors for Diesel Fuel Oil combustion are from AP 42 - 3.3 Gasoline and Diesel Industrial Engines (Supplement B 10/96), Tables 3.3-1 and 3.3-2

Methodology

**Potential Throughput (hp-hr/yr) = Output Horsepower Rating (hp) * Maximum Operating Hours per Year

Unlimited Potential Diesel Engine Oil Usage (gal/yr) = \([(\text{Potential Throughput (hp-hr/yr)} * \text{average brake specific fuel consumption of 7,000 Btu/hp-hr}) / 137,000 \text{ Btu/gal}]\)

Unlimited Potential to Emit (tons/yr) = \([(\text{Unlimited Potential Diesel Engine Oil Usage (gal/yr)}) * \text{Emission Factor (lb/kgal)) / (1000 gal/kgal * 2,000 lb/ton})]\)
Appendix A.1: Unlimited Emissions Calculations
Greenhouse Gas (CO2e) Emissions from the Diesel Fuel-fired Portable Crusher
Reciprocating Internal Combustion Engines
Output Rating (<= 600 HP)
Maximum Input Rate (= 4.2 MMBtu/hr)

Company Name: Milestone Contractors, L.P.
Source Address: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

Emissions calculated based on output rating (hp)

<table>
<thead>
<tr>
<th>Output Horsepower Rating (hp)</th>
<th>Diesel Engine Oil Usage(1)</th>
<th>Sulfur Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.0</td>
<td>77,433 gal/yr</td>
<td>0.50 % sulfur</td>
</tr>
</tbody>
</table>

Maximum Operating Hours per Year 8760 Sulfur Content = 0.50 % sulfur

Potential Throughput (hp-hr/yr) 1,515,480

Greenhouse Warming Potentials (GWP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Global warming potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>CO2</td>
<td>1</td>
</tr>
<tr>
<td>Methane</td>
<td>CH4</td>
<td>21</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>N2O</td>
<td>310</td>
</tr>
</tbody>
</table>

Unlimited/Uncontrolled Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>870.08</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Summed Potential Emissions in tons/yr 870.12

CO2e Equivalent Emissions (tons/yr) 872.98

Notes
Constant: 1 kilogallon (kgal) = 1000 gallons (gal)
The heating value of Diesel fuel oil is 137,000 Btu/gal as taken from AP 42 Appendix A (09/85), page A-5.
Greenhouse Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.
Sources of Emission Factors for fuel combustion: (Note: To form a conservative estimate, the "worst case" emission factors have been used.)

- Diesel Engine Oil: Emission Factor for CO2 from AP-42 Chapter 3.3 (dated 10/96), Table 3.3-1, has been converted from lb/MMBtu to lb/kgal.
- Emission Factors for CH4 and N2O from 40 CFR Part 98 Subpart C, Table C-2, have been converted from kg/MMBtu to lb/kgal.

- Emission Factor (EF) Conversion for CO2: EF (lb/kgal) = [EF (lb/MMBtu) x average heating value of diesel (19,300 Btu/lb) x Conversion Factor (1/1,000,000 MMBtu/Btu) x density of diesel (7.1 lb/gal) x Conversion Factor (1,000 gal/kgal)]
- Emission Factor (EF) Conversion for CH4 & N2O: EF (lb/kgal) = [EF (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of the Fuel Oil (MMBtu/gal) * Conversion Factor (1000 gal/kgal)]

Methodology

- Potential Throughput (hp-hr/yr) = Output Horsepower Rating (hp) * Maximum Operating Hours per Year
- Unlimited Potential Diesel Engine Oil Usage (gal/yr) = [(Potential Throughput (hp-hr/yr)) / 137,000 Btu/hr] x Specific fuel consumption of Diesel fuel oil (7,000 Btu/hp-hr)
- Unlimited Potential to Emit (tons/yr) = [(Unlimited Potential Diesel Engine Oil Usage (gal/yr)) / (1500 gal/kgal * 2.000 lb/ton)]
- Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 (tons/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 (tons/yr) x CH4 GWP (21) + Unlimited Potential to Emit N2O (tons/yr) x N2O GWP (310).
Appendix A.1: Unlimited Emissions Calculations

Large Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (>600 HP)

Company Name: Milestone Contractors, L.P.
Source Address: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 3/21/2012

Output Horsepower Rating (hp): 1971.0

Maximum Hours Operated per Year: 8760

Sulfur Content (S) of Fuel (% by weight): 0.75

Potential Throughput (hp-hr/yr): 17,265,960

Maximum Diesel Fuel Usage (gal/yr): 882,009

Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/hp-hr</th>
<th>Emission Factor in lb/MMBtu</th>
<th>Emission Factor in lb/kgal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>7.3E-04</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
<tr>
<td>PM10</td>
<td>7.3E-04</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>SO2</td>
<td>7.0E-04</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
<tr>
<td>NOx</td>
<td>7.0E-04</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
<tr>
<td>VOC</td>
<td>7.7E-04</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
<tr>
<td>CO</td>
<td>2.1E-05</td>
<td>0.0574</td>
<td>0.00809</td>
</tr>
</tbody>
</table>

1. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
2. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)
3. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/MMBtu</th>
<th>Emission Factor in lb/kgal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>7.1E-04</td>
<td>0.04</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.8E-04</td>
<td>0.02</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.7E-04</td>
<td>0.01</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.4E-05</td>
<td>0.01</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>2.4E-05</td>
<td>0.01</td>
</tr>
<tr>
<td>Acrolein</td>
<td>2.1E-04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
2. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.

Green House Gas Emissions (GHG)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>NA</td>
<td>NA</td>
<td>0.0006</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>NA</td>
<td>NA</td>
<td>0.08</td>
</tr>
</tbody>
</table>

1. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
2. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
3. Emission factor (lb/kgal) = 40 CFR 98 EF (kg/MMBtu) * 2.20462 (lb/kg) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Potential Emission of Total HAPs (ton/yr)

9.51×10^{-2}

Potential Emission of Worst Case HAPs (ton/yr)

4.69×10^{-2}

Green House Gas Emissions (GHG)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2 (ton/yr)</th>
<th>CH4 (ton/yr)</th>
<th>N2O (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>1.0E-06</td>
<td>0.0006</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Potential Emission of Total CO2 (ton/yr)

$1.0E-06$

Summed Potential Emissions in ton/yr

$1.0E-06$

Methodology

Emission Factors are from AP-42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4 and have been converted to lb/kgal.

1. According to AP-42, Table 3.4-1, TOC (as CH4) is 9% methane by weight. As a result, the lb/hp-hr emission factor for TOC (as CH4) in AP-42 has been multiplied by 9% to determine the portion that is emitted as methane.
2. The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
3. The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
4. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in kg/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
5. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
6. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 2.20462 (lb/kg) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)
7. The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lbs / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.
8. Emission factor (lb/kgal) = 40 CFR 98 EF (kg/MMBtu) * 2.20462 (lb/kg) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

$10,050.54$

$10,014.88$

$10,014.88$
Appendix A.1: Unlimited Emissions Calculations
Asphalt Load-Out, Silo Filling, and Yard Emissions

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

The following calculations determine the unlimited/uncontrolled fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/ton asphalt)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load-Out</td>
<td>Silo Filling</td>
</tr>
<tr>
<td>Total PM*</td>
<td>5.2E-04</td>
<td>5.9E-04</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
<td>2.5E-04</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
<td>0.012</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

PM/HAPs	0.037	0.044	0	0.081
VOC/HAPs	0.094	0.238	0.025	0.357
non-VOC/HAPs	4.9E-04	5.9E-05	1.3E-04	6.7E-04
non-VOC/non-HAPs	0.46	0.26	0.12	0.85

Total VOCs = 5.99
Total HAPs = 0.13
Worst Single HAP (formaldehyde) = 0.136

Methodology

The asphalt temperature and volatility factor were provided by the source.

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):

Total PM/PM10/PM2.5 EF = 0.000181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)

Organic PM EF = 0.00105(-V)e^((0.0251)(T+460)-20.43)

TOC EF = 0.00488(-V)e^((0.0251)(T+460)-20.43)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):

PM/PM10 EF = 0.000332 + 0.00105(-V)e^((0.0251)(T+460)-20.43)

Organic PM EF = 0.00105(-V)e^((0.0251)(T+460)-20.43)

TOC EF = 0.00586(-V)e^((0.0251)(T+460)-20.43)

CO EF = 0.00488(-V)e^((0.0251)(T+460)-20.43)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

*No emission factors available for PM10 or PM2.5, therefore IDEM assumes PM10 and PM2.5 are equivalent to Total PM.

Abbreviations

TOC = Total Organic Compounds
CO = Carbon Monoxide
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
Organic Particulate-Based Compounds (Table 11.1-15)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% of Total Organic PM)</th>
<th>Silo Filling and Asphalt Storage Tank (% of Total Organic PM)</th>
<th>Load-out</th>
<th>Site Filling</th>
<th>Onsite Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>0.26%</td>
<td>0.47%</td>
<td>1.4E-03</td>
<td>1.8E-03</td>
<td>NA</td>
<td>3.2E-03</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>0.81%</td>
<td>1.8%</td>
<td>4.2E-03</td>
<td>7.0E-03</td>
<td>NA</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>0.15%</td>
<td>0.44%</td>
<td>7.8E-04</td>
<td>1.7E-03</td>
<td>NA</td>
<td>2.5E-03</td>
</tr>
<tr>
<td>Total PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.031</td>
</tr>
<tr>
<td>Other semi-volatile HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td>PM/HAP</td>
<td>Organic PM</td>
<td>1.18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2E-03</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = Speciation Profile (%) * Organic PM (tons/yr)

Abbreviations

PM = Particulate Matter
HAP = Hazardous Air Pollutant
POM = Polycyclic Organic Matter

Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% of TOC)</th>
<th>Silo Filling and Asphalt Storage Tank (% of TOC)</th>
<th>Load-out</th>
<th>Site Filling</th>
<th>Onsite Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>6.50%</td>
<td>0.26%</td>
<td>4.1E-01</td>
<td>4.9E-02</td>
<td>1.1E-01</td>
<td>0.573</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>0.046%</td>
<td>0.055%</td>
<td>2.9E-03</td>
<td>1.0E-02</td>
<td>7.8E-04</td>
<td>0.014</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>0.71%</td>
<td>1.10%</td>
<td>4.5E-02</td>
<td>2.1E-01</td>
<td>1.2E-02</td>
<td>0.263</td>
</tr>
<tr>
<td>Total non-VOC/non-HAPs</td>
<td>7.30%</td>
<td></td>
<td></td>
<td>1.40%</td>
<td>0.465</td>
<td>0.262</td>
<td>0.123</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>VOC/HAP</td>
<td>TOC</td>
<td>0.052%</td>
<td>0.032%</td>
<td>3.3E-03</td>
<td>6.0E-03</td>
<td>8.8E-04</td>
<td>1.0E-02</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>VOC/HAP</td>
<td>TOC</td>
<td>0.0096%</td>
<td></td>
<td>0.41%</td>
<td>0.20%</td>
<td>2.6E-02</td>
<td>3.7E-02</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>VOC/HAP</td>
<td>TOC</td>
<td>0.08%</td>
<td>0.057%</td>
<td>5.1E-03</td>
<td>1.1E-02</td>
<td>1.3E-03</td>
<td>1.7E-02</td>
</tr>
<tr>
<td>Total volatile organic HAPs</td>
<td>1.50%</td>
<td></td>
<td></td>
<td>1.30%</td>
<td>0.096</td>
<td>0.243</td>
<td>0.025</td>
<td>0.364</td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = Speciation Profile (%) * TOC (tons/yr)

Abbreviations

TOC = Total Organic Compounds
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
MTBE = Methyl tert butyl ether
Appendix A.1: Unlimited Emissions Calculations
Material Storage Piles

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA’s AP-42 (Pre 1983 Edition), Section 11.2.3.

\[
Ef = 1.7\left(\frac{s}{1.5}\right)\left(\frac{365-p}{235}\right)\left(\frac{f}{15}\right)
\]

where
Ef = emission factor (lb/acre/day)
\(s\) = silt content (wt %)
\(p\) = 125 days of rain greater than or equal to 0.01 inches
\(f\) = 15% of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>0.80</td>
<td>0.439</td>
<td>0.154</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>1.30</td>
<td>0.439</td>
<td>0.154</td>
</tr>
<tr>
<td>RAP</td>
<td>0.5</td>
<td>0.58</td>
<td>1.40</td>
<td>0.148</td>
<td>0.052</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>1.20</td>
<td>0.406</td>
<td>0.142</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.40</td>
<td>1.00</td>
<td>0.803</td>
<td>0.281</td>
</tr>
<tr>
<td>Shingles</td>
<td>3.8</td>
<td>4.40</td>
<td>0.40</td>
<td>0.321</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Totals: 2.56 0.89

Methodology
PTE of PM (tons/yr) = (Emission Factor (lb/acre/day)) * (Maximum Pile Size (acres)) * (ton/2000 lbs) * (8760 hours/yr)
PTE of PM10/PM2.5 (tons/yr) = (Potential PM Emissions (tons/yr)) * 35%
*Silt content values obtained from AP-42 Table 13.2.4-1 (dated 1/95)
**Maximum anticipated pile size (acres) provided by the source.
PM2.5 = PM10

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
RAP = recycled asphalt pavement
Appendix A.1: Unlimited Emissions Calculations

Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: P11-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)

To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1995) are utilized.

\[
Ef = k(0.0032) / [(U/5)^{1.3} / (M/2)^{1.4}]
\]

where:
- \(Ef \) = Emission factor (lb/ton)
- \(k \) (PM) = 0.74 (particle size multiplier (0.74 assumed for aerodynamic diameter <100 um))
- \(k \) (PM10) = 0.35 (particle size multiplier (0.35 assumed for aerodynamic diameter <10 um))
- \(k \) (PM2.5) = 0.053 (particle size multiplier (0.053 assumed for aerodynamic diameter <2.5 um))
- \(U \) = 10.2 (worst case annual mean wind speed (Source: NOAA, 2006*))
- \(M \) = 4.0 (material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1))

Maximum Annual Asphalt Production = 3,066,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 2,912,700 tons/yr

Unlimited/Uncontrolled Potential to Emit (tons/yr) Table

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10 (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>3.30</td>
<td>1.56</td>
<td>0.24</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>3.30</td>
<td>1.56</td>
<td>0.24</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>3.30</td>
<td>1.56</td>
<td>0.24</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>9.90</td>
<td>4.68</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Material Screening and Conveying (AP-42 Section 11.19.2)

To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 11.19.2 (dated 8/04) are utilized.

Unlimited Potential to Emit (tons/yr) Table

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lbs/ton)*</th>
<th>Uncontrolled Emission Factor for PM10 (lbs/ton)*</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10 (tons/yr)*</th>
<th>Unlimited/Uncontrolled PTE of PM2.5 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0004</td>
<td>0.0024</td>
<td>7.86</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>Screening</td>
<td>0.035</td>
<td>0.0037</td>
<td>38.41</td>
<td>19.87</td>
<td></td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0111</td>
<td>4.37</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48.64</td>
<td>17.77</td>
<td>48.64</td>
<td>17.77</td>
<td>48.64</td>
</tr>
</tbody>
</table>

Methodology

The percent asphalt cement/binder provided by the source.

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Unlimited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include limestone, sand, recycled asphalt pavement (RAP), gravel, slag, and other additives.

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006

Abbreviations

PM = Particulate Matter
PM2.5 = Particulate matter (< 2.5 um)
PM10 = Particulate Matter (<10 um)
PTE = Potential to Emit

*U*ncontro*lle*degem*iss*ions*for*PM/PM10*represent*tertiary*crushing*of*stone*with*moisture*content*range*from*0.21*to*1.3*percent*by*weight*(Source:AP-42 Section 11.1.1.1).

**Assumes PM10 = PM2.5
Appendix A.1: Unlimited Emissions Calculations
Unpaved Roads

Company Name: Milestone Contractors, L.P.
Current Source Location: 233 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31226-05856
Reviewer: Renee Traivaran
Date: 2/21/2012

Unpaved Roads at Industrial Site
The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch 13.2.2 (12/2003).

Maximum Annual Asphalt Production = 3,066,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 2,912,700 tons/yr
Maximum Asphalt Cement/Binder Throughput = 153,300 tons/yr
Maximum No. 2 Fuel Oil Usage = 8,134,286 gallons/yr

<table>
<thead>
<tr>
<th>Process Type</th>
<th>Process</th>
<th>Maximum Weight of Vehicle (tons)</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum Weight of Vehicle and Load (tons/trip)</th>
<th>Maximum Weight of Vehicle and Load (ton/year)</th>
<th>Maximum one-way distance (feet)</th>
<th>Maximum one-way distance (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Enter Full Dump truck (16 CY)</td>
<td>Maximum</td>
<td>17.0</td>
<td>15.4</td>
<td>32.4</td>
<td>8,161,190</td>
<td>104</td>
<td>0.067</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full Dump truck (16 CY)</td>
<td>Minimum</td>
<td>10.0</td>
<td>0</td>
<td>10.0</td>
<td>5,941,360</td>
<td>104</td>
<td>0.067</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full Dump truck (16 CY)</td>
<td>Maximum</td>
<td>17.0</td>
<td>22.4</td>
<td>39.4</td>
<td>1.3E+05</td>
<td>5.1E+06</td>
<td>300</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full Dump truck (16 CY)</td>
<td>Minimum</td>
<td>10.0</td>
<td>9.8</td>
<td>19.8</td>
<td>4,084,679</td>
<td>104</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Average Vehicle Weight Per Trip = 20.3 tons/trip
Average Miles Per Trip = 0.057 miles/trip

Unmitigated Emission Factor, Ef = k*(s/12)^a*[(W/3)^b]

where:
- k = 4.9
- s = 4.8
- a = 0.7
- b = 0.45
- W = 20.3 tons

PM PM10 PM2.5
Unmitigated Emission Factor, Ef = 6.10 1.55 0.16 lb/mile
Mitigated Emission Factor, Eext = 4.01 1.02 0.10 lb/mile
Dust Control Efficiency = 50% 50% 50%

Controlled PTE of PM (tons/yr) = (Mitigated PTE (tons/yr)) * (1 - Dust Control Efficiency)

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit

Methodology
Maximum Material Handling Throughput = [Annual Asphalt Production Limitation (tons/yr)] / [Percent Asphalt Cement/Binder (weight %)]
Maximum Asphalt Cement/Binder Throughput = [Annual Asphalt Production Limitation (tons/yr)] / [Percent Asphalt Cement/Binder (weight %)]
Maximum Weight of Vehicle and Load (tons/trip) = [Maximum Weight of Vehicle (tons/trip)] + [Maximum Weight of Load (tons/trip)]
Maximum Weight of Vehicle and Load (ton/year) = [Maximum Weight of Vehicle and Load (tons/trip)] * [Total Weight driven (trips/yr)]
Maximum one-way distance (feet) = [(Maximum one-way distance (feet/trip)) / [Total Weight driven (trips/yr)]]
Maximum one-way distance (miles) = [(Maximum one-way distance (miles/trip)) / [Total Weight driven (trips/yr)]]

Unmitigated PTE (tons/yr) = [Maximum one-way distance (miles)] * [Unmitigated Emission Factor (lb/mile)] / [2000 lbs]
Mitigated PTE (tons/yr) = (Mitigated PTE (tons/yr)) * (1 - Dust Control Efficiency)

Controlled PTE of PM (tons/yr) = (Mitigated PTE (tons/yr)) * (1 - Dust Control Efficiency)
Paved Roads

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-01256-0365
Reviewer: Rene Trairvanon
Date: 2/21/2012

Appendix A: Unlimited Emissions Calculations

Paved Roads

Maximum Annual Asphalt Production = 3,066,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 2,912,700 tons/yr
Maximum Asphalt Cement/Binder Throughput = 153,300 tons/yr
Maximum No. 2 Fuel Oil Usage = 8,134,286 gallons/yr

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (12/2003).

Maximum Weight of Vehicle and Load (tons/trip) = [Maximum Weight of Vehicle (tons/trip)] + [Maximum Weight of Load (tons/trip)]

Maximum Weight of Vehicle (tons/trip) = [Maximum Weight of Vehicle (tons) / (trip)]

Maximum Weight of Load (tons/trip) = [Maximum Weight of Load (tons) / (trip)]

Maximum No. 2 Fuel Oil Usage (gallons/yr) = [Maximum No. 2 Fuel Oil Usage (gallons) / (yr)]

Process Vehicle Type

Maximum Weight of Vehicle (tons/trip) = [Maximum Weight of Vehicle (tons)]
Maximum Weight of Load (tons/trip) = [Maximum Weight of Load (tons)]

Maximum Weight of Vehicle and Load (tons/trip) = [Maximum Weight of Vehicle (tons)] + [Maximum Weight of Load (tons)]

Maximum one-way distance (feet/trip) = [Maximum one-way distance (feet)]

Maximum one-way distance (mi/trip) = [Maximum one-way distance (mi)]

Maximum one-way miles (mi/yr) = [Maximum one-way distance (mi)]

Average Vehicle Weight Per Trip = [Average Vehicle Weight per Trip (ton/yr)]
Average Miles Per Trip = [Average Miles per Trip (mi/yr)]

Unmitigated Emission Factor, Ef = [k * (sL)^0.91 * (W)^1.02] (Equation 1 from AP-42 13.2.1)

where k = [particle size multiplier (AP-42 Table 13.2.1-1)]
W = [average vehicle weight (provided by source)]
sL = [Ubitiguous Baseline Silt Loading Values of paved roads (Table 13.2.1-3 for summer months)]

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, Eext = Ef * (1 - (p/4N))

where p = [125 days of rain greater than or equal to 0.01 inches (see Fig. 13.2.1-2)]
N = [365 days per year]

Dust Control Efficiency = [50%]

Unmitigated PTE of PM (tons/yr) = [Unmitigated PTE of PM (tons)]
Mitigated PTE of PM (tons/yr) = [Mitigated PTE of PM (tons)]
Controlled PTE of PM (tons/yr) = [Controlled PTE of PM (tons)]

Methodology

Maximum Material Handling Throughput = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Maximum Asphalt Cement/Binder Throughput = [Annual Asphalt Production Limitation (tons/yr)] * [Percent Asphalt Cement/Binder (weight %)]

Maximum Weight of Vehicle and Load (tons/trip) = [Maximum Weight of Vehicle (tons)] + [Maximum Weight of Load (tons)]

Total Weight driven per year (ton/yr) = [Maximum Weight of Vehicle and Load (tons)]

Total Weight driven per year (mi/yr) = [Total Weight driven per year (ton/yr)] / [2000 lbs/ton]

Abbreviations

PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PM2.5 = PM10
PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Cold Mix Asphalt Production and Stockpiles

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
 Permit Number: F111-31266-00365
Reviewer: Renee Traivaranon
Date: 2/21/2012

The following calculations determine the amount of VOC and HAP emissions created from volatilization of solvent used as diluent in the liquid binder for cold mix asphalt production

Maximum Annual Asphalt Production = 3,866,600 tons/yr
Percentage Asphalt Cement/Binder (weight %) = 5.5%
Maximum Asphalt Cement/Binder Throughput = 210,359 tons/yr

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>Maximum Weight % of VOC in solvent</th>
<th>Weight % VOC solvent in binder</th>
<th>Maximum Weight % of VOC Solvent</th>
<th>PTE of VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt (rapid cure)</td>
<td>25.3%</td>
<td>36.0%</td>
<td>38,785.90</td>
<td>38,845.66</td>
</tr>
<tr>
<td>Cut back asphalt (slow cure)</td>
<td>20.0%</td>
<td>30.66%</td>
<td>7,865.00</td>
<td></td>
</tr>
<tr>
<td>Emulsified asphalt (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>43.1%</td>
<td>22,965.00</td>
<td>10,669.68</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.5%</td>
<td>2.5%</td>
<td>38,785.70</td>
<td>992.62</td>
</tr>
</tbody>
</table>

Worst Case PTE of VOC = 38,845.66

Hazardous Air Pollutants

Worst Case Total HAP Content of VOC solvent (weight %) = 26.08%
Worst Case Single HAP Content of VOC solvent (weight %) = 9.0% Xylenes

PTE of Total HAPs (tons/yr) = 3,618.71
PTE of Single HAP (tons/yr) = 992.62 Xylenes

Hazardous Air Pollutant (HAP) Content (% by weight)* For Various Petroleum Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Butadiene</th>
<th>Toluene</th>
<th>Acenaphthene</th>
<th>Acenaphthylene</th>
<th>Ethylbenzene</th>
<th>Fluoranthene</th>
<th>Fluorene</th>
<th>Indeno(1,2,3-cd)pyrene</th>
<th>Carcinogenic</th>
<th>Pyrene</th>
<th>Total Xylenes</th>
<th>Total Organic HAPs</th>
<th>Total Single HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>0.00%</td>
<td>8.10%</td>
<td>0.19%</td>
<td>0.16%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>1.29%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Kerosene</td>
<td>3.74E-4%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Diesel (#2)</td>
<td>2.50E-4%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Fuel Oil No. 2</td>
<td>0.00%</td>
</tr>
<tr>
<td>Fuel Oil No. 6</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Methodology

Maximum Asphalt Cement/Binder Throughput = [Annual Asphalt Production Limitation (tons/yr) * Percentage Asphalt Cement/Binder (weight %)] * [Maximum Asphalt Cement/Binder Throughput (tons/yr) * [Maximum Weight % of VOC Solvent in Binder] / [Potential to Emit of VOC (tons/yr)]]

Maximum asphalt cement/binder throughput = [Weight % of binder that evaporates] / [Potential to Emit of VOC (tons/yr)]

Abbreviations

VOC = Volatile Organic Compounds
PTE = Potential to Emit

Appendix A.1: Unlimited Emissions Calculations

No Gasoline Fuel Transfer and Dispensing Operation at this location

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

To calculate evaporative emissions from the gasoline dispensing fuel transfer and dispensing operation handling emission factors from AP-42 Table 5.2-7 were used. The total potential emission of VOC is as follows:

Gasoline Throughput = 0 gallons/day = 0 kgal/yr

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Emission Factor (lb/kgal of throughput)</th>
<th>PTE of VOC (tons/yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling storage tank (balanced submerged filling)</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Tank breathing and emptying</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle refueling (displaced losses - controlled)</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>Spillage</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Worst Case Total HAP Content of VOC solvent (weight %)*</th>
<th>26.08%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case Single HAP Content of VOC solvent (weight %)*</td>
<td>9.0%</td>
</tr>
<tr>
<td>Xylenes</td>
<td>Xylenes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limited PTE of Total HAPs (tons/yr)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited PTE of Single HAP (tons/yr)</td>
<td>0</td>
</tr>
<tr>
<td>Xylenes</td>
<td>Xylenes</td>
</tr>
</tbody>
</table>

Methodology

The gasoline throughput was provided by the source.

Gasoline Throughput (kgal/yr) = [Gasoline Throughput (lbs/day)] * [365 days/yr] * [kgal/1000 gal]

PTE of VOC (tons/yr) = [Gasoline Throughput (kgal/yr)] * [Emission Factor (lb/kgal)] * [ton/2000 lb]

PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [PTE of VOC (tons/yr)]

PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [PTE of VOC (tons/yr)]

Abbreviations

VOC = Volatile Organic Compounds
PTE = Potential to Emit
Asphalt Plant Limitations - Drum Mix

<table>
<thead>
<tr>
<th>Limitation Type</th>
<th>Quantity/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hourly Asphalt Production</td>
<td>350 ton/hr</td>
</tr>
<tr>
<td>Annual Asphalt Production Limitation</td>
<td>600,000 ton</td>
</tr>
<tr>
<td>Blast Furnace Slag Usage Limitation</td>
<td>50,000 ton</td>
</tr>
<tr>
<td>Steel Slag Usage Limitation</td>
<td>50,000 ton</td>
</tr>
<tr>
<td>Natural Gas Limitation</td>
<td>1,562.1 MMCF/y</td>
</tr>
<tr>
<td>No. 2 Fuel Oil Limitation</td>
<td>9 gal/yr</td>
</tr>
<tr>
<td>No. 4 Fuel Oil Limitation</td>
<td>1 gal/yr</td>
</tr>
<tr>
<td>Residual (No. 5 or No. 6) Fuel Oil Limitation</td>
<td>0 gal/yr</td>
</tr>
<tr>
<td>Propane Limitation</td>
<td>0 gal/yr</td>
</tr>
<tr>
<td>Butane Limitation</td>
<td>0 gal/yr</td>
</tr>
<tr>
<td>Used/Waste Oil Limitation</td>
<td>1,000.2 gal/yr</td>
</tr>
<tr>
<td>Natural Gas Limitation in Dryer/Mixer</td>
<td>77.433 gal/yr</td>
</tr>
</tbody>
</table>

Limited/Controlled Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Criteria Pollutants</th>
<th>Greenhouse Gas Pollutants</th>
<th>Hazardous Air Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>38.50</td>
<td>28.36</td>
<td>28.36</td>
</tr>
<tr>
<td>Dryer/Mixer (Process)</td>
<td>38.50</td>
<td>28.36</td>
<td>28.36</td>
</tr>
<tr>
<td>SO2 Dryer/Mixer Limitation</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>NOx Dryer/Mixer Limitation</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>VOC Dryer/Mixer Limitation</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>CO Dryer/Mixer Limitation</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Blast Furnace Slag SO2 Dryer/Mixer Limitation</td>
<td>0.746</td>
<td>0.746</td>
<td>0.746</td>
</tr>
<tr>
<td>Steel Slag SO2 Dryer/Mixer Limitation</td>
<td>0.0014</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
<tr>
<td>Cold Mix Asphalt VOC Usage Limitation</td>
<td>90.36</td>
<td>90.36</td>
<td>90.36</td>
</tr>
<tr>
<td>HCl Limitation</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Totals Limited/Controlled Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Criteria Pollutants</th>
<th>Greenhouse Gas Pollutants</th>
<th>Hazardous Air Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td></td>
<td>192.35</td>
<td>192.35</td>
<td>192.35</td>
</tr>
</tbody>
</table>

Notes:
- PM = Particulate Matter
- PM10 = Particulate Matter (10 microns or less)
- PM2.5 = Particulate Matter (2.5 microns or less)
- SO2 = Sulfur Dioxide
- NOx = Nitrogen Oxides
- VOC = Volatile Organic Compounds
- CO = Carbon Monoxide
- CO2e = Carbon Dioxide equivalent
- HAPs = Hazardous Air Pollutants
- Total HAPs include all HAPs listed in the table.
- Total Fugitive Emissions include all fugitive emissions calculated in the table.
- Totals Limited/Controlled Emissions include all limited/controlled emissions calculated in the table.

Formaldehyde (HCHO), Benzene (C6H6), and Hydrogen Chloride (HCl) are included as hazardous air pollutants (HAPs) for the purposes of this permit.
The following calculations determine the limited emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer and all other fuel combustion sources at the source.

Production and Fuel Limitations

- **Maximum Hourly Asphalt Production**: 350 ton/hr
- **Annual Asphalt Production Limitation**: 600,000 ton/yr
- **Natural Gas Limitation**: 518 MMCF/yr
- **No. 2 Fuel Oil Limitation**: 1,552,067 gal/yr, and 0.50 \% sulfur
- **No. 4 Fuel Oil Limitation**: 0 gal/yr, and 0 \% sulfur
- **Residual (No. 5 or No. 6) Fuel Oil Limitation**: 0 gal/yr, and 0 \% sulfur
- **Propane Limitation**: 0 gal/yr, and 0.20 gr/100 ft³ sulfur
- **Butane Limitation**: 0 gal/yr, and 0 gr/100 ft³ sulfur
- **Used/Waste Oil Limitation**: 1,090,220 gal/yr, and 0.75 \% sulfur, 1.02 \% ash, 0.20 \% chlorine, 0.010 \% lead

Limited Emissions

Emission Factor (units)

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>No. 4 Fuel Oil (lb/gal)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (lb/gal)</th>
<th>Propane (lb/gal)</th>
<th>Butane (lb/gal)</th>
<th>Used/Waste Oil (lb/gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1.9</td>
<td>2.7</td>
<td>3.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>65.28</td>
</tr>
<tr>
<td>PM10</td>
<td>7.6</td>
<td>3.3</td>
<td>8.3</td>
<td>4.72</td>
<td>0.5</td>
<td>0.6</td>
<td>52.02</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>71.0</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td>110.3</td>
<td>5.10</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>24.0</td>
<td>47.0</td>
<td>8.3</td>
<td>4.72</td>
<td>0.5</td>
<td>25.62</td>
</tr>
<tr>
<td>CO</td>
<td>5.5</td>
<td>0.20</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td>0.20</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Emission Factor (units) - Methodology

- **PM**: Particulate Matter
- **SO2**: Sulfur Dioxide
- **NOx**: Nitrogen Oxides
- **CO**: Carbon Monoxide
- **VOC**: Volatile Organic Compounds
- **HAP**: Hazardous Air Pollutant
- **PAH**: Polyaromatic Hydrocarbons

Methodology

- **Natural Gas**: Limited Potential to Emit (tons/yr) = (Natural Gas Limitation (MMCF/yr)) * (Emission Factor (lb/MMCF))
- **No. 2, No.4, and No.6 Fuel Oil**: Limited Potential to Emit (tons/yr) = (Fuel Limitation (gals/yr)) * (Emission Factor (lb/gal))
- **Propane and Butane**: Limited Potential to Emit (tons/yr) = (Used/Waste Oil Limitation (gals/yr)) * (Emission Factor (lb/gal))
- **Worst Case Fuel**

Abbreviations

- **PM = Particulate Matter**
- **HAP = Hazardous Air Pollutant**
- **SO2 = Sulfur Dioxide**
- **NOx = Nitrogen Oxides**
- **VOC = Volatile Organic Compounds**
- **CO = Carbon Monoxide**
- **PAH = Polyaromatic Hydrocarbon**

Since there are no specific AP-42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.
The following calculations determine the limited emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer and all other fuel combustion sources at the source.

Production and Fuel Limitations

- **Maximum Hourly Asphalt Production**: 350 ton/hr
- **Annual Asphalt Production Limitation**: 600,000 ton/yr
- **Natural Gas Limitation**: 518 MMCF/yr
- **No. 2 Fuel Oil Limitation**: 1,552,067 gal/yr, and 0.5% sulfur
- **No. 4 Fuel Oil Limitation**: 0 gal/yr, and 0% sulfur
- **Residual (No. 5 or No. 6) Fuel Oil Limitation**: 0 gal/yr, and 0% sulfur
- **Propane Limitation**: 0 gal/yr, and 0.20 gr/100 ft³ sulfur
- **Butane Limitation**: 0 gal/yr, and 0 gr/100 ft³ sulfur
- **Used/Waste Oil Limitation**: 1,090,220 gal/yr, and 0.75% sulfur, 1.02% ash, 0.20% chlorine, 0.010% lead

Limited Emissions

Emission Factor (units)

<table>
<thead>
<tr>
<th>CO₂e Fraction</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>No. 4 Fuel Oil (lb/gal)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (lb/gal)</th>
<th>Propane (lb/gal)</th>
<th>Butane (lb/gal)</th>
<th>Used/Waste Oil (lb/gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>2.49</td>
<td>0.91</td>
<td>0.97</td>
<td>1.00</td>
<td>0.60</td>
<td>0.67</td>
<td>0.89</td>
</tr>
<tr>
<td>N₂O</td>
<td>2.20</td>
<td>0.26</td>
<td>0.19</td>
<td>0.63</td>
<td>0.90</td>
<td>0.90</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Limited Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th>CO₂e Fraction</th>
<th>Natural Gas (tons/yr)</th>
<th>No. 2 Fuel Oil (tons/yr)</th>
<th>No. 4 Fuel Oil (tons/yr)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (tons/yr)</th>
<th>Propane (tons/yr)</th>
<th>Butane (tons/yr)</th>
<th>Used/Waste Oil (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>31,129.89</td>
<td>17,461.85</td>
<td>0</td>
<td>0</td>
<td>0.65</td>
<td>0</td>
<td>12,005.59</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.57</td>
<td>0.20</td>
<td>0.05</td>
<td>0</td>
<td>0.10</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>31,130.90</td>
<td>17,462.86</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
<td>12,006.17</td>
</tr>
</tbody>
</table>

CO₂e Equivalent Emissions (tons/yr)

- **CO₂e for Worst Case Fuel** (tons/yr) = 31,319.93

Methodology

Fuel Limitations from TSD Appendix A.2, page 1 of 15.

- **Greenhouse Warning Potentials (GWP)** from Table A-1 of 40 CFR Part 98 Subpart A.
- **Emission Factors for fuel combustion**:
 - (Note: To form a conservative estimate, the "worst case" emission factors have been used.)
 - Natural Gas: Emission Factors for CO₂ and CH₄ from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factor for N₂O from AP-42 Chapter 1.4
 - No. 2 Fuel Oil: Emission Factors for CO₂ and CH₄ from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/gal. Emission Factor for N₂O from AP-42 Chapter 1.3
 - No. 4 Fuel Oil: Emission Factors for CO₂, CH₄, and N₂O from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/gal. Emission Factor for CO₂ from AP-42 Chapter 1.3 (dated 5/10), Table 1-3-8
 - Residual (No. 5 or No. 6) Fuel Oil: Emission Factors for CO₂, CH₄, and N₂O from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/gal. Emission Factor for N₂O from AP-42 Chapter 1.5 (dated 7/08), Table 1-5-1
 - Waste Oil: Emission Factors for CO₂, CH₄, and N₂O from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/gal. Emission Factor for CO₂ from AP-42 Chapter 1.5 (dated 7/08), Table 1-5-1
- **Emission Factor (EF) Conversions**
 - Natural Gas: EF (lb/MMCF) = (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of Natural Gas (MMBtu/scf) * Conversion Factor (1,000,000 scf/MMCF) / Conversion Factor (2.20462 lbs/kg) / Conversion Factor (1,000,000 scf/MMCF)
 - Fuel Oils: EF (lb/gal) = (kg/MMBtu) / Conversion Factor (1,000,000 scf/MMCF) / Conversion Factor (1,000,000 scf/MMCF) / Conversion Factor (2.20462 lbs/kg) / Conversion Factor (1,000,000 scf/MMCF)
- **Limited CO₂e Emissions (tons/yr) = CO₂ Potential Emission of "worst case" fuel (tons/yr) x CO₂ GWP (1) + CH₄ Potential Emission of "worst case" fuel (tons/yr) x CH₄ GWP (21) + N₂O Potential Emission of "worst case" fuel (tons/yr) x N₂O GWP (310).**

Abbreviations

- CH₄ = Methane
- CO₂ = Carbon Dioxide
- N₂O = Nitrogen Dioxide
- PTE = Potential to Emit
The following calculations determine the limited emissions from the aggregate drying/mixing process:

Maximum Hourly Asphalt Production

- **Maximum Hourly Asphalt Production =** 350 ton/hr

Annual Asphalt Production Limitation

- **Annual Asphalt Production Limitation =** 600,000 ton/yr

Emission Factor or Limitation

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Limited/Controlled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>0.262</td>
<td>0.262</td>
<td>0.262</td>
<td>78.05</td>
<td>78.05</td>
<td>78.05</td>
<td>84.32</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.281</td>
<td>0.281</td>
<td>0.281</td>
<td>84.32</td>
<td>84.32</td>
<td>84.32</td>
<td>84.32</td>
</tr>
<tr>
<td>SO2</td>
<td>0.093</td>
<td>0.093</td>
<td>0.093</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.40</td>
</tr>
<tr>
<td>NOX</td>
<td>0.028</td>
<td>0.055</td>
<td>0.055</td>
<td>7.80</td>
<td>16.50</td>
<td>16.50</td>
<td>16.50</td>
</tr>
<tr>
<td>VOC</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
<td>39.00</td>
</tr>
</tbody>
</table>

Methodology

- **Limited/Controlled Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)**

* **PM**, **PM10**, and **PM2.5 AP-42 emission factors** based on drum mix dryer fired with natural gas, propane, fuel oil, and waste oil. According to AP-42, fuel type does not significantly affect PM, PM10, and PM2.5 emissions.

* **SO2, NOx, and VOC AP-42 emission factors** are for natural gas, No. 2 fuel oil, and waste oil only. AP-42 did not provide emission factors for any other fuels.

* **CO AP-42 emission factor** determined by combining data from drum mix dryer fired with natural gas, No. 6 fuel oil, and No. 2 fuel oil to develop a single CO emission factor.

Total HAPs

- **Total HAPs = 3.30**

Abbreviations

- **VOC** = Volatile Organic Compounds
- **SO2** = Sulfur Dioxide
- **PAH** = Polyaromatic Hydrocarbon
- **HCl** = Hydrogen Chloride
- **HAP** = Hazardous Air Pollutant

Appendix A.2: Limited Emissions Summary

Company Name: Milestone Contractors, L.P.

Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951

Permit Number: F111-31236-05365

Reviewer: Renee Traivaranon

Date: 2/21/2012

Abbreviations

- VOC = Volatile Organic Compounds
- SO2 = Sulfur Dioxide
- PAH = Polyaromatic Hydrocarbon
- HCl = Hydrogen Chloride
- HAP = Hazardous Air Pollutant
The following calculations determine the limited emissions from the aggregate drying/mixing:

Maximum Hourly Asphalt Production = 350 ton/hr
Annual Asphalt Production Limitation = 600,000 ton/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>CO2e for Worst Case Fuel (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>9,900.00</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0120</td>
<td>0.0120</td>
<td>0.0120</td>
<td>3.60</td>
</tr>
<tr>
<td>N2O</td>
<td>310</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>9,903.60</td>
</tr>
</tbody>
</table>

CO2e Equivalent Emissions (tons/yr) = 9,975.60

Methodology

Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Tables 11.1-7 and 11.1-8

There are no emission factors for N2O available in either the 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no N2O emissions anticipated from this process.

Limited/Controlled Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.

Limited CO2e Emissions (tons/yr) = CO2 Potential Emission of "worst case" fuel (ton/yr) x CO2 GWP (1) + CH4 Potential Emission of "worst case" fuel (ton/yr) x CH4 GWP (21) + N2O Potential Emission of "worst case" fuel (ton/yr) x N2O GWP (310).

Abbreviations

CO2 = Carbon Dioxide
CH4 = Methane
N2O = Nitrogen Dioxide
PTE = Potential to Emit
Appendix A.2: Limited Emissions Calculations
Dryer/Mixer Slag Processing

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

The following calculations determine the limited emissions from the processing of slag in the aggregate drying/mixing:

Limited Blast Furnace Slag Usage = 50,000 ton/yr 1.50 % sulfur
Limited Annual Steel Slag Usage = 600,000 ton/yr 0.66 % sulfur

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)*</th>
<th>Limited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag</td>
<td>0.7400</td>
<td>18.5</td>
</tr>
<tr>
<td>Steel Slag</td>
<td>0.0014</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Methodology
* Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.
** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Limited Potential to Emit SO2 from Slag (tons/yr) = [(Limited Slag Usage (ton/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations
SO2 = Sulfur Dioxide
Appendix A.2: Limited Emissions Summary

Hot Oil Heater
Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Maximum Hot Oil Heater Fuel Input Rate* = 2.00 MMBtu/hr
Natural Gas Usage = 0 MMCF/yr
No. 2 Fuel Oil Usage = 125,143 gal/yr, and 0.50% sulfur

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Unlimited/Uncontrolled Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas Fuel Oil</td>
</tr>
<tr>
<td></td>
<td>(lb/MMCF)</td>
</tr>
<tr>
<td>PM</td>
<td>1.9</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.6</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutant

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Unlimited/Uncontrolled Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas Fuel Oil</td>
</tr>
<tr>
<td></td>
<td>(lb/MMCF)</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.0E-04</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.2E-05</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.1E-03</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8.4E-06</td>
</tr>
<tr>
<td>Lead</td>
<td>5.0E-04</td>
</tr>
<tr>
<td>Manganese</td>
<td>3.8E-04</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.6E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Selenium</td>
<td>2.4E-05</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>1.2E-03</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.5E-02</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.8E+00</td>
</tr>
<tr>
<td>Phenol</td>
<td>3.4E-03</td>
</tr>
<tr>
<td>Toluene</td>
<td>neg</td>
</tr>
<tr>
<td>Total PAH Haps</td>
<td>3.30E-03</td>
</tr>
</tbody>
</table>

Methodology

Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
Sources of AP-42 Emission Factors for fuel combustion:
Natural Gas: AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4.
Other Fuels: AP-42 Chapter 1.3 (dated 5/10), Tables 1.3-1, 1.3-2, 1.3-3, 1.3-8, 1.3-9, 1.3-10, and 1.3-11.

Abbreviations
PM = Particulate Matter
NOx = Nitrous Oxides
HAP = Hazardous Air Pollutant
PM10 = Particulate Matter (<10 um)
VOC = Volatile Organic Compounds
HCl = Hydrogen Chloride
SO2 = Sulfur Dioxide
CO = Carbon Monoxide
PAH = Polycyclic Hydrocarbon
Appendix A.2: Limited Emissions Summary
Greenhouse Gas (CO2e) Emissions from Hot Oil Heater Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

Maximum Hot Oil Heater Fuel Input Rate = 2.00 MMBtu/hr
Natural Gas Usage = 0 MMCF/yr
No. 2 Fuel Oil Usage = 125,143 gal/yr, 0.50 % sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/kgal)</th>
<th>Global Warming Potentials (GWP)</th>
<th>Natural Gas (tons/yr)</th>
<th>No. 2 Fuel Oil (tons/yr)</th>
<th>CO2e Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>120,161.84</td>
<td>22,501.41</td>
<td>1</td>
<td>0</td>
<td>1,407.95</td>
<td>1,414.19</td>
</tr>
<tr>
<td>CH4</td>
<td>2.49</td>
<td>0.91</td>
<td>21</td>
<td>0</td>
<td>5.71E-02</td>
<td>1.63E-02</td>
</tr>
<tr>
<td>N2O</td>
<td>2.20</td>
<td>0.26</td>
<td>310</td>
<td>0</td>
<td>1.63E-02</td>
<td>1.408.02</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1,408.02</td>
<td>1,414.19</td>
</tr>
</tbody>
</table>

CO2e Equivalent Emissions (tons/yr) = 0 + 1,408.02 = 1,414.19

Methodology
Greenhouse Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.
Sources of Emission Factors for fuel combustion: (Note: To form a conservative estimate, the "worst case" emission factors have been used.)

Natural Gas: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/mmBtu to lb/MMCF. Emission Factor for N2O from AP-42 Chapter 1.4 (dated 7/98), Table 1.4-2
No. 2 Fuel Oil: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/mmBtu to lb/kgal. Emission Factor for N2O from AP-42 Chapter 1.3 (dated 5/10), Table 1.3-8
Propane and Butane: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/mmBtu to lb/kgal. Emission Factor for N2O from AP-42 Chapter 1.5 (dated 7/08), Table 1.5-1

Emission Factor (EF) Conversions
Natural Gas: EF (lb/MMCF) = [EF (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of Natural Gas (MMBtu/scf) * Conversion Factor (1,000,000 scf/MMCF)]
Fuel Oils: EF (lb/kgal) = [EF (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of the Fuel Oil (MMBtu/gal) * Conversion Factor (1000 gal/kgal)]
Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (21) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (310).

Abbreviations
CH4 = Methane CO2 = Carbon Dioxide N2O = Nitrogen Dioxide PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Reciprocating Internal Combustion Engines

Diesel Fuel-fired Portable Crusher

Output Rating (= 600 HP)

Maximum Input Rate (= 4.2 MMBtu/hr)

Company Name: Milestone Contractors, L.P.

Source Address: 235 U.S. Highway 24, Kentland, IN 47951

Permit Number: F 111 - 23687 - 03273

Reviewer: Renee Trairavanon

Date: 2/21/2012

Emissions calculated based on fuel usage limit (gal/yr):

Output Horsepower Rating (hp) 173.0

Maximum Operating Hours per Year 8760

Unlimited Potential Throughput (hp-hr/yr) 1,515,480

Diesel Engine Oil Usage = 77,433 gal/yr

Sulfur Content = 0.5% sulfur

PM* PM10* PM2.5* SO2 NOx VOC CO

Emission Factor in lb/kgal 42.47 42.47 42.47 39.73 604.17 49.32 130.15

Potential Emission in tons/yr 1.64 1.64 1.64 1.54 23.39 1.91 5.04

PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

Benzene Toluene Xylene 1,3-Butadiene Formaldehyde Acetaldehyde Acrolein Total PAH HAPs***

Emission Factor in lb/kgal**** 1.28E-01 5.60E-02 3.90E-02 5.36E-03 1.62E-01 1.05E-01 1.27E-02 2.30E-02

Potential Emission in tons/yr 4.95E-03 2.17E-03 1.51E-03 2.07E-04 6.26E-03 4.07E-03 4.91E-04 8.91E-04

***PAH = Polycyclic Aromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

****Emission factors in lb/MMBtu were converted to lb/kgal using the heating value of diesel fuel oil (137,000 Btu/gal) as taken from AP 42 Appendix A (09/85), page A-5.

Notes

Constant: 1 kilogallon (kgal) = 1000 gallons (gal)
The heating value of Diesel fuel oil is 137,000 Btu/gal as taken from AP 42 Appendix A (09/85), page A-5.

Emission Factors for Diesel Fuel Oil combustion are from AP 42 - 3.3 Gasoline and Diesel Industrial Engines (Supplement B 10/96), Tables 3.3-1 and 3.3-2

The diesel fuel usage rate was determined using the maximum fuel input rate for the crusher (see Appendix A.1 for more details).

Methodology

Potential Throughput (hp-hr/yr) = Output Horsepower Rating (hp) * Maximum Operating Hours per Year

Diesel Engine Oil Usage (gal/yr) = [(Potential Throughput (hp-hr/yr) * average brake specific fuel consumption of 7,000 Btu/hp-hr) / 137,000 Btu/gal]

Limited Potential to Emit (tons/yr) = Diesel Engine Oil Usage (gal/yr) * Emission Factor (lb/kgal) / (1000 gal/kgal * 2,000 lb/ton)
Appendix A.2: Limited Emissions Summary
Greenhouse Gas (CO2e) Emissions from the
Diesel Fuel-fired Portable Crusher
Reciprocating Internal Combustion Engines
Output Rating (<= 600 HP)
Maximum Input Rate (<= 4.2 MMBtu/hr)

Company Name: Milestone Contractors, L.P.
Source Address: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F 111 - 23687 - 03273
Reviewer: Renee Traivaranon
Date: 2/21/2012

Emissions calculated based on fuel usage limit (gal/yr):

- Diesel Engine Oil Usage: 77,433 gal/yr
- Sulfur Content: 0.50% sulfur

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Global warming potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>CO₂</td>
<td>1</td>
</tr>
<tr>
<td>Methane</td>
<td>CH₄</td>
<td>21</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>310</td>
</tr>
</tbody>
</table>

Limited Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>22,472.92</td>
<td>0.91</td>
<td>0.18</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>870.08</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Summed Potential Emissions in tons/yr</td>
<td>870.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2e Equivalent Emissions (tons/yr) *</td>
<td>872.98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
Constant: 1 kilogallon (kgal) = 1000 gallons (gal)
The heating value of Diesel fuel oil is 137,000 Btu/gal as taken from AP 42 Appendix A (09/85), page A-5.
Sources of Emission Factors for fuel combustion: (Note: To form a conservative estimate, the "worst case" emission factors have been used.)

1. Diesel Engine Oil: Emission Factor for CO₂ from AP-42 Chapter 3.3 (dated 10/96), Table 3.3-1, has been converted from lb/MMBtu to lb/kgal. Emission Factors for CH₄ and N₂O from 40 CFR Part 98 Subpart C, Table C-2, have been converted from kg/MMBtu to lb/kgal.

Emission Factor (EF) Conversion for CO₂: EF (lb/kgal) = \(\text{EF (lb/MMBtu)} \times \frac{\text{average heating value of diesel (19,300 Btu/lb)}}{1,000,000 \text{MMBtu/gal}} \times \frac{\text{Conversion Factor (11,000 gal/kgal)}}{1,000 \text{gal/kgal}} \)

Emission Factor (EF) Conversion for CH₄ & N₂O: EF (lb/kgal) = \(\text{EF (kg/MMBtu)} \times \frac{\text{Conversion Factor (2,20462 lbs/kg)}}{1,000 \text{gal/kgal}} \times \frac{\text{Heating Value of the Fuel Oil (MMBtu/gal)}}{1,000 \text{gal/kgal}} \)

The diesel fuel usage rate was determined using the maximum fuel input rate for the crusher (see TSD Appendix A.1 for more details).

*The source will limit the combined CO2e emissions from the dryer mixer burner, hot oil heaters, diesel fuel-fired portable crusher, and dryer mixer process, such that the CO2e emissions do not exceed 99,000 tons per year. Compliance with these limits will be demonstrated using equations.

Methodology
Potential Throughput (hp-hr/yr) = Output Horsepower Rating (hp) * Maximum Operating Hours per Year
Diesel Engine Oil Usage (gal/yr) = \(\frac{\text{Maximum Throughput (hp-hr/yr) \times average brake specific fuel consumption of 7,000 Btu/hp-hr}}{137,000 \text{ Btu/gal}} \)

Limited Potential to Emit (tons/yr) = \(\text{Diesel Engine Oil Usage (gal/yr)} \times \text{Emission Factor (lb/kgal)} \times 1000 \text{ gal/kgal} \times 2,000 \text{ lb/ton} \)
Appendix A.2: Limited Emissions Summary

Large Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (>600 HP)

<table>
<thead>
<tr>
<th>Company Name: Milestone Contractors, L.P.</th>
<th>Source Address: 235 U.S. Highway 24, Kentland, IN 47951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Number: F111-31236-05365</td>
<td>Reviewer: Renee Traivaranon</td>
</tr>
<tr>
<td>Date: 3/21/2012</td>
<td></td>
</tr>
</tbody>
</table>

Output Horsepower Rating (hp)

<table>
<thead>
<tr>
<th>Limited Hours Operated per Year</th>
<th>Limited Throughput (hp-hr/yr)</th>
<th>Limited Diesel Fuel Usage (gal/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971.0</td>
<td>3,942,000</td>
<td>201,372</td>
</tr>
</tbody>
</table>

Limited Emissions Summary

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM</th>
<th>PM10</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>7.00E-04</td>
<td>6.07E-03</td>
<td>(0.0089S)</td>
<td>2.43E-02</td>
<td>7.05E-04</td>
<td>5.50E-03</td>
<td></td>
</tr>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>0.0573</td>
<td>0.0573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>13.70</td>
<td>7.85</td>
<td>7.85</td>
<td>118.78</td>
<td>469.82</td>
<td>13.80</td>
<td>107.67</td>
</tr>
</tbody>
</table>

1. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

2. Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

3. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

4. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Total PAH</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>HAPs3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>7.76E-04</td>
<td>2.81E-04</td>
<td>1.93E-04</td>
<td>7.89E-05</td>
<td>2.52E-05</td>
<td>7.88E-06</td>
<td>2.12E-04</td>
<td></td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>1.06E-01</td>
<td>3.85E-02</td>
<td>2.64E-02</td>
<td>1.08E-02</td>
<td>3.45E-03</td>
<td>1.08E-03</td>
<td>2.91E-02</td>
<td></td>
</tr>
</tbody>
</table>

1. PAH = Polyaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

2. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

3. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Green House Gas Emissions (GHG)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO25</th>
<th>CH46,6</th>
<th>N2O7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>1.16</td>
<td>6.35E-05</td>
<td>NA</td>
</tr>
<tr>
<td>Emission Factor in kg/MMBtu</td>
<td>NA</td>
<td>NA</td>
<td>0.0008</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>22.707.83</td>
<td>1.24</td>
<td>0.18</td>
</tr>
</tbody>
</table>

1. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

2. Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

3. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

4. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

5. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

6. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

7. Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

8. According to AP-42, Table 3.4-1, TOC (as CH4) is 9% methane by weight. As a result, the lb/hp-hr emission factor for TOC (as CH4) in AP-42 has been multiplied by 9% to determine the portion that is emitted as methane.

9. The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

10. Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Methodology

1. Limited Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Limited Hours Operated per Year]

2. Limited Diesel Fuel Usage (gal/yr) = Limited Throughput (hp-hr/yr) * 7000 (Btu/lb-hr) * 1/19300 (Btu/lb) * 1.71 (gal/lb)

3. Emission Factors are from AP-42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4 and have been converted to lb/kgal.

4. N2O Emission Factor from 40 CFR 98 Subpart C Table C-2 and have been converted to lb/kgal.

5. Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

6. Limited Emissions (tons/yr) = [Limited Diesel Fuel Usage (gal/yr) x Emission Factor (lb/kgal)] / (1,000 ga/kgal) / (2,000 lb/ton)

7. CO2e (tons/yr) = CO2 Potential Emission tons/yr x CO2 GWP (1) + CH4 Potential Emission tons/yr x CH4 GWP (21) + N2O Potential Emission tons/yr x N2O GWP (310).

Limited Emission of Total HAPs (tons/yr) 2.17E-02

Limited Emission of Worst Case HAPs (tons/yr) 1.07E-02

Summed Potential Emissions in tons/yr 2.286.50

CO2e Total in tons/yr 2.294.64
The following calculations determine the limited fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant.

Emission Factor Calculation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Load-Out</th>
<th>Silo Filling</th>
<th>On-Site Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PM</td>
<td>5.2E-04</td>
<td>5.9E-04</td>
<td>NA</td>
<td>0.16</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
<td>2.5E-04</td>
<td>NA</td>
<td>0.33</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
<td>0.012</td>
<td>0.001</td>
<td>0.016</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
<td>0.001</td>
<td>3.5E-04</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Limited Potential to Emit (tons/yr)

\[
\text{Limited Potential to Emit (tons/yr)} = \left(\frac{\text{Annual Asphalt Production Limitation (tons/yr)}}{2000 \text{ lbs}} \right) \times \left(\frac{\text{Emission Factor (lb/ton asphalt)}}{2000 \text{ lbs}} \right)
\]

Methodology

The asphalt temperature and volatility factor were provided by the source.

Limited Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):

- **Total PM**: \(0.00181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)\)
- **Organic PM**: \(0.00141(-V)e^((0.0251)(T+460)-20.43)\)
- **TOC**: \(0.0172(-V)e^((0.0251)(T+460)-20.43)\)
- **CO**: \(0.00558(-V)e^((0.0251)(T+460)-20.43)\)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):

- **Total PM**: \(0.000332 + 0.00105(-V)e^((0.0251)(T+460)-20.43)\)
- **Organic PM**: \(0.00105(-V)e^((0.0251)(T+460)-20.43)\)
- **TOC**: \(0.0504(-V)e^((0.0251)(T+460)-20.43)\)
- **CO**: \(0.00488(-V)e^((0.0251)(T+460)-20.43)\)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

No emission factors available for PM10 or PM2.5, therefore IDEM assumes PM10 and PM2.5 are equivalent to Total PM.

Abbreviations

- **TOC** = Total Organic Compounds
- **PM10** = Particulate Matter (<10 um)
- **PM2.5** = Particulate Matter (<2.5 um)
- **VOC** = Volatile Organic Compound
- **HAP** = Hazardous Air Pollutant
Organic Particulate-Based Compounds (Table 11.1-15)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Load-out and Onsite Yard (% by weight of Total Organic PM)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>0.26%</td>
<td>3.6E-04</td>
<td>6.2E-04</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>0.47%</td>
<td>1.4E-03</td>
<td>2.2E-03</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>2.7E-04</td>
<td>3.6E-04</td>
<td>6.3E-04</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [Organic PM (tons/yr)]

Abbreviations

- PM = Particulate Matter
- HAP = Hazardous Air Pollutant
- POM = Polycyclic Organic Matter

Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Load-out and Onsite Yard (% by weight of TOC)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of TOC)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td></td>
<td>PM/HAP</td>
<td>TOC</td>
<td>1.18%</td>
<td>1.2E-03</td>
<td>0.003</td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>6.50%</td>
<td>8.1E-02</td>
<td>0.112</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>0.046%</td>
<td>2.0E-03</td>
<td>0.003</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>TOC</td>
<td>0.71%</td>
<td>4.0E-02</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Total non-VOC/non-HAPS

- 7.30% 1.40% 0.091 0.051 0.024 0.17

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [TOC (tons/yr)]

Abbreviations

- TOC = Total Organic Compounds
- HAP = Hazardous Air Pollutant
- VOC = Volatile Organic Compound
- MTBE = Methyl tert butyl ether
Appendix A.2: Limited Emissions Summary

Material Storage Piles

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Traivaranon
Date: 2/21/2012

Note: Since the emissions from the storage piles are minimal, the limited emissions are equal to the unlimited emissions.

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA's AP-42 (Pre 1983 Edition), Section 11.2.3.

\[
Ef = 1.7*(s/1.5)*(365-p)/235*(f/15)
\]

where

- \(s \) = silt content (wt %)
- \(p \) = 125 days of rain greater than or equal to 0.01 inches
- \(f \) = 15% of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>0.80</td>
<td>0.439</td>
<td>0.154</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>1.30</td>
<td>0.439</td>
<td>0.154</td>
</tr>
<tr>
<td>RAP</td>
<td>0.5</td>
<td>0.58</td>
<td>1.40</td>
<td>0.148</td>
<td>0.052</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>1.20</td>
<td>0.406</td>
<td>0.142</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.40</td>
<td>1.00</td>
<td>0.803</td>
<td>0.281</td>
</tr>
<tr>
<td>Shingles</td>
<td>3.8</td>
<td>4.40</td>
<td>0.40</td>
<td>0.321</td>
<td>0.112</td>
</tr>
<tr>
<td>**Totals</td>
<td></td>
<td></td>
<td></td>
<td>2.56</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Methodology

PTE of PM (tons/yr) = (Emission Factor (lb/acre/day)) * (Maximum Pile Size (acres)) * (ton/2000 lbs) * (8760 hours/yr)

PTE of PM10/PM2.5 (tons/yr) = (Potential PM Emissions (tons/yr)) * 35%

*Silt content values obtained from AP-42 Table 13.2.4-1 (dated 1/95)

**Maximum anticipated pile size (acres) provided by the source.

PM2.5 = PM10

Abbreviations

PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-05365
Reviewer: Renee Trairavanon
Date: 2/21/2012

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)

To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1/95) are utilized.

\[
Ef = k*(0.0032)*\left[\frac{U}{5}\right]^{1.3}/\left(\frac{M}{2}\right)^{1.4}
\]

where:
- \(Ef\) = Emission factor (lb/ton)
- \(k\) (PM) = 0.74 = particle size multiplier (0.74 assumed for aerodynamic diameter <=100 um)
- \(k\) (PM10) = 0.35 = particle size multiplier (0.35 assumed for aerodynamic diameter <=10 um)
- \(k\) (PM2.5) = 0.053 = particle size multiplier (0.053 assumed for aerodynamic diameter <=2.5 um)
- \(U\) = 10.2 = worst case annual mean wind speed (Source: NOAA, 2006*)
- \(M\) = material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1)

\[
Ef\ (PM) = 2.27E-03 \text{ lb PM/ton of material handled}
\]
\[
Ef\ (PM10) = 1.07E-03 \text{ lb PM10/ton of material handled}
\]
\[
Ef\ (PM2.5) = 1.62E-04 \text{ lb PM2.5/ton of material handled}
\]

Annual Asphalt Production Limitation = 600,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 570,000 tons/yr

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Limited PTE of PM (tons/yr)</th>
<th>Limited PTE of PM10 (tons/yr)</th>
<th>Limited PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>0.65</td>
<td>0.31</td>
<td>0.05</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>0.65</td>
<td>0.31</td>
<td>0.05</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>0.65</td>
<td>0.31</td>
<td>0.05</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>1.94</td>
<td>0.92</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Methodology
The percent asphalt cement/binder provided by the source.

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include limestone, sand, recycled asphalt pavement (RAP), gravel, slag, and other additives

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006

Material Screening and Conveying (AP-42 Section 19.2.2)

To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 19.2.2 (dated 8/04) are utilized.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lbs/ton)*</th>
<th>Limited PTE of PM (tons/yr)</th>
<th>Limited PTE of PM10 (tons/yr)</th>
<th>Limited PTE of PM2.5 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0064</td>
<td>0.0024</td>
<td>1.54</td>
<td>0.68</td>
</tr>
<tr>
<td>Screening</td>
<td>0.025</td>
<td>0.0087</td>
<td>7.13</td>
<td>2.48</td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.86</td>
<td>0.31</td>
</tr>
<tr>
<td>Limited Potential to Emit (tons/yr)</td>
<td>9.52</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology
Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include stone/gravel, slag, and recycled asphalt pavement (RAP)

Emission Factors from AP-42 Chapter 11.19.2 (dated 8/04), Table 11.19.2-2

*Uncontrolled emissions factors for PM/PM10 represent tertiary crushing of stone with moisture content ranging from 0.21 to 1.3 percent by weight (Table 11.19.2-2). The bulk moisture content of aggregate in the storage piles at a hot mix asphalt production plant typically stabilizes between 3 to 5 percent by weight (Source: AP-42 Section 11.1.1.1).

**Assumes PM10 = PM2.5

Abbreviations
- PM = Particulate Matter
- PM2.5 = Particulate Matter (<2.5 um)
- PM10 = Particulate Matter (<10 um)
- PTE = Potential to Emit
Unpaved Roads at Industrial Site

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch 13.2.2 (12/2003).

Annual Asphalt Production Limitation = 600,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 570,000 tons/yr
Maximum Asphalt Cement/Binder Throughput = 30,000 tons/yr
No. 2 Fuel Oil Limitation = 1,552,067 gallons/yr

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (tons)</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum Weight of Vehicle and Load (tons)</th>
<th>Maximum Trips per Year (trip/yr)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Total Weight Driven per Year (ton/yr)</th>
<th>Total Weight Driven per Year (ton/yr) * (ton/2000 lbs)</th>
<th>Controlled PTE of PM (tons/yr)</th>
<th>Controlled PTE of PM10 (tons/yr)</th>
<th>Controlled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Enter Full Dump truck (16 CY)</td>
<td>17.0</td>
<td>8.0</td>
<td>25.0</td>
<td>8,539,040</td>
<td>8,539,040</td>
<td>300</td>
<td>0.057</td>
<td>1,445.42</td>
<td>0.028</td>
<td>0.075</td>
<td>0.008</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>8,539,040</td>
<td>8,539,040</td>
<td>300</td>
<td>0.057</td>
<td>1,445.42</td>
<td>0.028</td>
<td>0.075</td>
<td>0.008</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Full Dump truck (16 CY)</td>
<td>17.0</td>
<td>8.0</td>
<td>25.0</td>
<td>8,539,040</td>
<td>8,539,040</td>
<td>300</td>
<td>0.057</td>
<td>1,445.42</td>
<td>0.028</td>
<td>0.075</td>
<td>0.008</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>8,539,040</td>
<td>8,539,040</td>
<td>300</td>
<td>0.057</td>
<td>1,445.42</td>
<td>0.028</td>
<td>0.075</td>
<td>0.008</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Enter Empty Dump truck (16 CY)</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>8,539,040</td>
<td>8,539,040</td>
<td>300</td>
<td>0.057</td>
<td>1,445.42</td>
<td>0.028</td>
<td>0.075</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Average Vehicle Weight Per Trip = 20.3 tons/trip
Average Miles Per Trip = 0.057 miles/trip

Unmitigated Emission Factor, \(E_f\) = \(k \cdot (s/12)^a \cdot (W/3)^b\) (Equation 1a from AP-42 13.2.2)

where \(k = 4.9\) 1.5 0.15 lb/mi = particle size multiplier (AP-42 Table 13.2.2-2 for Industrial Roads)
\(s = 4.8\) 4.8 4.8 % = mean % silt content of unpaved roads (AP-42 Table 13.2.2-3 Sand/Gravel Processing Plant Road)
\(a = 0.7\) 0.9 0.9 = constant (AP-42 Table 13.2.2-2)
\(W = 20.3\) 20.3 20.3 tons = average vehicle weight (provided by source)
\(b = 0.45\) 0.45 0.45 = constant (AP-42 Table 13.2.2-2)

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{ext}\) = \(E_f \cdot (365 - P)/365\)

where \(P = 125\) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)

Mitigated Emission Factor, \(E_{ext}\) = 4.01 1.02 0.10 lb/mile

Dust Control Efficiency = 50% 50% 50% (pursuant to control measures outlined in fugitive dust control plan)

Unmitigated PTE of PM (tons/yr) = 6.10 1.55 0.16
Mitigated PTE of PM (tons/yr) = 4.01 1.02 0.10
Controlled PTE of PM (tons/yr) = (Mitigated PTE (tons/yr)) * (1 - Dust Control Efficiency)

PM2.5 = PM10

Methodology

Maximum Material Handling Throughput = \(\text{Annual Asphalt Production Limitation (tons/yr)} \times (1 - \text{Percent Asphalt Cement/Binder (weight %)})\)

Maximum Asphalt Cement/Binder Throughput = \(\text{Annual Asphalt Production Limitation (tons/yr)} \times \text{Percent Asphalt Cement/Binder (weight %)}\)

Maximum Weight of Vehicle and Load (tons) = \(\text{Maximum Weight of Vehicle (tons)} + \text{Maximum Weight of Load (tons)}\)

Maximum trips per year (trip/yr) = \(\text{Maximum Material Handling Throughput (tons/yr)} / \text{Maximum Weight of Load (tons/trip)}\)

Maximum one-way distance (miles/trip) = \(\text{Maximum Material Handling Throughput (tons/yr)} / \text{Maximum Weight of Vehicle (tons/trip)}\)

Average Vehicle Weight Per Trip (tons/trip) = \(\text{Total Weight Driven per Year (ton/yr)} / \text{Maximum trips per year (trip/yr)}\)

Average Miles Per Trip = \(\text{Average Vehicle Weight Per Trip (tons/trip)} \times \text{Average Miles Per Trip (miles/ton)}\)

Abbreviations

PM = Particulate Matter
PM2.5 = Particulate Matter (<2.5 um)
PM10 = Particulate Matter (<10 um)
PTE = Potential to Emit

PM25 = PM10

PM10 = Particulate Matter (<10 um)
PTE = Potential to Emit
Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch. 13.2.1 (12/2003).

Annual Asphalt Production Limitation

\[\text{Annual Asphalt Production Limitation} = \frac{\text{Maximum Material Handling Throughput}}{1 - \text{Percent Asphalt Cement/Binder (weight %)}} \]

Maximum Asphalt Cement/Binder Throughput

\[\text{Maximum Asphalt Cement/Binder Throughput} = \text{Annual Asphalt Production Limitation} \times \text{Percent Asphalt Cement/Binder (weight %)} \]

Maximum Weight of Vehicle and Load (tons/trip)

\[\text{Maximum Weight of Vehicle and Load (tons/trip)} = \text{Maximum Weight of Vehicle (tons/trip)} + \text{Maximum Weight of Load (tons)} \]

Average Vehicle Weight Per Trip

\[\text{Average Vehicle Weight Per Trip} = \frac{\text{Maximum Weight of Vehicle and Load (tons/trip)}}{\text{Maximum trips per year (trip/yr)}} \]

Average Miles Per Trip

\[\text{Average Miles Per Trip} = \frac{\text{Maximum one-way distance (feet/trip)}}{2000} \]

Unmitigated Emission Factor

\[\text{Unmitigated Emission Factor, } E_f = k \times (sL)^{0.91} \times (W)^{1.02} \]

Mitigated Emission Factor

\[\text{Mitigated Emission Factor, } E_{ext} = E_f \times \left[1 - \frac{p}{4N}\right] \]

Dust Control Efficiency

\[\text{Dust Control Efficiency} = \text{50\%} \]

Controlled PTE (tons/yr)

\[\text{Controlled PTE (tons/yr)} = (\text{Mitigated PTE (tons/yr)}) \times (1 - \text{Dust Control Efficiency}) \]

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PM2.5 = PM10
- PTE = Potential to Emit

Process Summary

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (tons/trip)</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum Weight of Vehicle and Load (tons/trip)</th>
<th>Maximum trips per year (trip/yr)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Maximum one-way miles (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Enter Full</td>
<td>Aggregate/RAP Truck Enter Full</td>
<td>17.0</td>
<td>2.4</td>
<td>19.4</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>17.0</td>
<td>2.4</td>
<td>19.4</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Enter Full</td>
<td>Asphalt Cement/Binder Truck Enter Full</td>
<td>12.0</td>
<td>2.4</td>
<td>14.4</td>
<td>2.5E+04</td>
<td>4.0E+04</td>
<td>1.5E+04</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Empty</td>
<td>Aggregate/RAP Truck Enter Empty</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Enter Full</td>
<td>Asphalt Concrete Truck Enter Full</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Full</td>
<td>Aggregate/RAP Loader Full</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Empty</td>
<td>Aggregate/RAP Loader Empty</td>
<td>17.0</td>
<td>0.0</td>
<td>17.0</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Leave Full</td>
<td>Asphalt Concrete Truck Leave Full</td>
<td>17.0</td>
<td>4.0</td>
<td>21.0</td>
<td>2.5E+04</td>
<td>1.0E+06</td>
<td>300</td>
</tr>
</tbody>
</table>

Totals:

<table>
<thead>
<tr>
<th>Process</th>
<th>Unmitigated PTE of PM (tons/yr)</th>
<th>Unmitigated PTE of PM10 (tons/yr)</th>
<th>Unmitigated PTE of PM2.5 (tons/yr)</th>
<th>Mitigated PTE of PM (tons/yr)</th>
<th>Mitigated PTE of PM10 (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (tons/yr)</th>
<th>Controlled PTE of PM (tons/yr)</th>
<th>Controlled PTE of PM10 (tons/yr)</th>
<th>Controlled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Enter Full</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>0.10</td>
<td>0.02</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Enter Empty</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Leave Empty</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Totals:

<table>
<thead>
<tr>
<th>Process</th>
<th>Unmitigated PTE of PM (tons/yr)</th>
<th>Unmitigated PTE of PM10 (tons/yr)</th>
<th>Unmitigated PTE of PM2.5 (tons/yr)</th>
<th>Mitigated PTE of PM (tons/yr)</th>
<th>Mitigated PTE of PM10 (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (tons/yr)</th>
<th>Controlled PTE of PM (tons/yr)</th>
<th>Controlled PTE of PM10 (tons/yr)</th>
<th>Controlled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Enter Full</td>
<td>1.58</td>
<td>0.32</td>
<td>0.06</td>
<td>1.45</td>
<td>0.29</td>
<td>0.07</td>
<td>0.72</td>
<td>0.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Volatile Organic Compounds

<table>
<thead>
<tr>
<th>VOC Solvent in Binder</th>
<th>Weight % of VOC Solvent in Binder that evaporates</th>
<th>VOC Solvent Usage Limitation (tons/yr)</th>
<th>Limited PTE of VOC (tons/yr)</th>
<th>Liquid Binder Adjustment Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt rapid cure (assuming gasoline or naphtha solvent)</td>
<td>25.3%</td>
<td>63.48</td>
<td>60.30</td>
<td>1.063</td>
</tr>
<tr>
<td>Cut back asphalt medium cure (assuming kerosene solvent)</td>
<td>28.6%</td>
<td>86.15</td>
<td>60.30</td>
<td>1.429</td>
</tr>
<tr>
<td>Cut back asphalt slow cure (assuming fuel oil solvent)</td>
<td>20.0%</td>
<td>241.22</td>
<td>60.30</td>
<td>4.000</td>
</tr>
<tr>
<td>Emulsified asphalt with solvent (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>129.97</td>
<td>60.30</td>
<td>2.155</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.9%</td>
<td>2,412.16</td>
<td>60.30</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Worst Case Limited PTE of VOC = 60.30 tons/yr

Hazardous Air Pollutants

- **Worst Case Total HAP Content of VOC solvent (weight %)** = 26.08%
- **Worst Case Single HAP Content of VOC solvent (weight %)** = 9.0% Xylenes

<table>
<thead>
<tr>
<th>Total HAP</th>
<th>Limited PTE of Total HAPs (tons/yr)</th>
<th>Limited PTE of Single HAP (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>15.73</td>
<td>5.43 Xylenes</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutant (HAP) Content (% by weight) For Various Petroleum Solvents

<table>
<thead>
<tr>
<th>HAP</th>
<th>CAS#</th>
<th>Gasoline</th>
<th>Kerosene</th>
<th>Fuel Oil</th>
<th>No. 2 Fuel Oil</th>
<th>No. 6 Fuel Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH2=CH=CH2</td>
<td>100-43-0</td>
<td>1.70%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>100-43-0</td>
<td>1.70%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>122-50-0</td>
<td>2.40%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>95-15-1</td>
<td>4.06%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>101-39-3</td>
<td>4.06%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-17-7</td>
<td>4.06%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56-59-5</td>
<td>9.00%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>202-92-0</td>
<td>1.32%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>71-23-2</td>
<td>1.32%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Biphenyl</td>
<td>92-52-4</td>
<td>6.30%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>9.00%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>9.00%</td>
<td>4.06%</td>
<td>2.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
<td>7.10%</td>
<td>5.90%</td>
<td>1.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>7.10%</td>
<td>5.90%</td>
<td>1.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>1.60%</td>
<td>1.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Methyl-tert-butylether</td>
<td>1634-04-4</td>
<td>0.33%</td>
<td>0.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>0.23%</td>
<td>0.07%</td>
<td>3.40%</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>1330-20-7</td>
<td>9.00%</td>
<td>0.50%</td>
<td>0.23%</td>
<td>0.07%</td>
<td></td>
</tr>
</tbody>
</table>

Total Organic HAPs = 26.08%

Worst Single HAPs = 3.06%

Methodology

- Limited PTE of VOC (tons/yr) = [Weight % VOC solvent in binder that evaporates] * [VOC Solvent Usage Limitation (tons/yr)]
- Limited PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]
- Limited PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]

Abbreviations

- VOC = Volatile Organic Compounds
- PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary
No Gasoline Fuel Transfer and Dispensing Operation at this location

Company Name: Milestone Contractors, L.P.
Current Source Location: 235 U.S. Highway 24, Kentland, IN 47951
Permit Number: F111-31236-0536
Reviewer: Renee Traivaranon
Date: 2/21/2012

Gasoline Throughput = 0 gallons/day
= 0 kgal/yr

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Emission Factor (lb/kgal of throughput)</th>
<th>PTE of VOC (tons/yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling storage tank (balanced submerged filling)</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Tank breathing and emptying</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle refueling (displaced losses - controlled)</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>Spillage</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants

Worst Case Total HAP Content of VOC solvent (weight %)* = 26.08%
Worst Case Single HAP Content of VOC solvent (weight %)* = 9.0% Xylenes

Limited PTE of Total HAPs (tons/yr) = 0
Limited PTE of Single HAP (tons/yr) = 0 Xylenes

Methodology

The gasoline throughput was provided by the source.

Gasoline Throughput (kgal/yr) = [Gasoline Throughput (lbs/day)] * [365 days/yr] * [kgal/1000 gal]
PTE of VOC (tons/yr) = [Gasoline Throughput (kgal/yr)] * [Emission Factor (lb/kgal)] * [ton/2000 lb]
PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [PTE of VOC (tons/yr)]
PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [PTE of VOC (tons/yr)]

Abbreviations

VOC = Volatile Organic Compounds
PTE = Potential to Emit

Note: Since the emissions from the gasoline fuel transfer and dispensing operation are minimal, the limited emissions are equal to the unlimited emissions.

To calculate evaporative emissions from the gasoline dispensing fuel transfer and dispensing operation handling emission factors from AP-42 Table 5.2-7 were used. The total potential emission of VOC is as follows:

Gasoline Throughput = 0 gallons/day
= 0 kgal/yr
March 28, 2012

Robert Beyke
Milestone Contractors, LP
5950 S Belmont Ave
Indianapolis, IN 46217

Re: Public Notice
Milestone Contractors, LP
Permit Level: FESOP
Permit Number: 111-31236-05365

Dear Mr. Beyke:

Enclosed is a copy of your draft FESOP, Technical Support Document, emission calculations, and the Public Notice which will be printed in your local newspaper.

The Office of Air Quality (OAQ) has submitted the draft permit package to the Kentland – Jefferson Public Library, 210 E. Graham St in Kentland, IN. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

You will not be responsible for collecting any comments, nor are you responsible for having the notice published in the newspaper. The OAQ has requested that the Newton County Enterprise in Kentland, IN publish this notice no later than April 4, 2012.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Renee Traivaranon, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 4-5615 or dial (317) 234-5615.

Sincerely,

Michelle Denney
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover letter. dot 3/27/08
ATTENTION: PUBLIC NOTICES, LEGAL ADVERTISING

March 27, 2012

Newton County Enterprise
Betty Long
305 E. Graham
P.O. Box 107
Kentland, IN 47951

Enclosed, please find one Indiana Department of Environmental Management Notice of Public Comment for Milestone Contractors, L.P., Newton County, Indiana.

Since our agency must comply with requirements which call for a Notice of Public Comment, we request that you print this notice one time, no later than April 4, 2012.

Please send a notarized form, clippings showing the date of publication, and the billing to the Indiana Department of Environmental Management, Accounting, Room N1345, 100 North Senate Avenue, Indianapolis, Indiana, 46204.

We are required by the Auditor's Office to request that you place the Federal ID Number on all claims. If you have any conflicts, questions, or problems with the publishing of this notice or if you do not receive complete public notice information for this notice, please call Michelle Denney at 800-451-6027 and ask for extension 3-6867 or dial 317-233-6867.

Sincerely,

Michelle Denney
Permit Branch
Office of Air Quality

cc: OAQ Billing, Licensing and Training Section
Permit Level: FESOP
Permit Number: 111-31236-05365
March 28, 2012

To: Kentland – Jefferson Public Library

From: Matthew Stuckey, Branch Chief
 Permits Branch
 Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Milestone Contractors, LP
Permit Number: 111-31236-05365

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Request to publish the Notice of 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library.dot 03/27/08
Notice of Public Comment

March 28, 2012
Milestone Contractors, LP
111-31236-05365

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has been placed in the Legal Advertising section of your local newspaper. The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure
PN AAA Cover.dot 3/27/08
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>MIDENNEY 3/28/2012 Milestone Contractors LP 111-31236-05365 (draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of Sender</td>
<td>Indiana Department of Environmental Management Office of Air Quality – Permits Branch 100 N. Senate Indianapolis, IN 46204</td>
</tr>
<tr>
<td>Type of Mail</td>
<td>CERTIFICATE OF MAILING ONLY</td>
</tr>
<tr>
<td>Line</td>
<td>Article Number</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See *Domestic Mail Manual* R900, S913, and S921 for limitations of coverage on insured and COD mail. See *International Mail Manual* for limitations on coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.